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Abstract

We consider methods for solving certain network characterization and design problems that arise 

in network epidemiology. We argue that the network reliability polynomial introduced by Moore 

and Shannon is a useful framework in which to reason about these problems. Specifically, we 

show how efficient estimation of the polynomial permits characterizing and distinguishing very 

large networks in ways that are are dynamically relevant. Furthermore, a generalization of flows 

and cuts to structures that determine the reliability suggests a new measure of edge or vertex 

centrality that we call criticality. We describe how criticality is related to the more common notion 

of betweenness and illustrate its application to targeting interventions to control outbreaks of 

infectious disease. Although our applications are to infectious disease outbreaks, the methods we 

develop are applicable to many other diffusive dynamical systems over complex networks.

Keywords

complex networks; network topology; network reliability; network theory; graph theory; graphical 
models

1. Introduction

1.1 Important problems in infectious disease epidemiology

The spread of infectious disease through a population is well-represented as a diffusion 

process on a contact network whose vertices represent hosts and whose edges represent 

opportunities for transmission [3]. For example, the network version of the commonly-used 

Susceptible – In f ectious – Recovered, or S – I – R, model is equivalent to bond 

percolation[6]. We can view network structure as a set of model parameters alongside the 

usual biological parameters of the host-pathogen interaction such as incubation period or 

susceptibility. This perspective raises the possibility of applying new tools to infectious 
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disease epidemiology. Two questions in particular can be viewed as specializations of 

network characterization and design problems:

• Q1 Characterization: How can we parameterize aspects of network structure that 

have important dynamical consequences?

• Q2 Design: What structural changes – i.e. what changes to these structural 

parameters – most cost-effectively control the consequences of an outbreak?

These questions have, of course, been raised many times in many domains besides 

epidemiology. Proposed parameterizations include most graph statistics, such as 

distributions of degree, clustering, shortest-path lengths, and eigenvalue spectra of the 

adjacency and related matrices. Note, however, that answers to these questions depend on a 

cost function that defines the “consequences”, whereas graph statistics do not. We develop 

and illustrate a theoretical framework and practical methodology for answering these 

questions when the costs are properties of dynamical processes on the network. We propose 

using Moore and Shannon’s concept of network reliability [12] to characterize the network, 

and provide a general algorithm for finding a set of edge or vertex deletions that achieves 

maximal change in reliability.

For model results to inform policy, the limitations of the models must be well-understood. In 

the case of networked epidemiology models, that requires understanding the sensitivity of 

the model to uncertainty in network specification. Moreover, since the biological parameters 

are largely beyond our control, the only “control surface” for epidemiology is the structure 

of the contact network. For example, isolating or vaccinating an individual with a perfect 

transmission-blocking vaccine removes the corresponding vertex from the network; closing 

a location where people come into contact, such as a school, removes edges corresponding 

to all the contacts that would have occurred there. Answers to the characterization and 

design questions will permit a better understanding of sensitivity and control in network 

epidemiology.

1.2 Network characterization and design

A network can be characterized by assigning it to an equivalence class. Two networks are 

deemed equivalent if and only if an observable has the same (or similar) value on both. 

Clearly, if two networks are isomorphic, they are equivalent, but our notion of equivalence 

will be much weaker than isomorphism. Characterizations are usually based on observables 

that are simple graph statistics not directly related to any cost function. For example, so-

called “scale-free” networks form an equivalence class defined by degree distributions, 

“small-world” networks form an equivalence class defined by the distribution of shortest 

paths, etc.

A general approach to designing improvements to a given network under a budget has three 

steps, illustrated in Figure 1:

1. Characterize the original graph, i.e. evaluate the mapping E from graphs to 

equivalence classes.
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2. Characterize the desired graphs in terms of a “target” equivalence class, i.e. 

evaluate the mapping O from an observable to an equivalence class.

3. Find a minimal set of changes to the original graph that transform it to one in the 

target equivalence class.

Unfortunately, the relationship between the topology of a network and values of a dynamical 

observable on the network is extremely complicated in general. Hence, either E or O will be 

complicated, and both are required. On one hand, when simple graph statistics define 

equivalence classes, E is simple but O is not. In this case, the distribution of observables 

across an equivalence class (which was defined without regard to the observable) is not 

necessarily concentrated, as illustrated in Figure 1. It is possible that a change in the network 

that decreases the cost on average over the equivalence class, will actually increase the cost 

when applied to a particular network. On the other hand, when equivalence classes are 

induced by values of the observable, O is trivial but E is not. Without an easy way to 

determine membership, it is hard to generate instances of graphs in the target equivalence 

class. Even though there is no free lunch, we claim that this second approach is worth 

pursuing. The most expensive step in designing networks is step 3, and the second approach 

allows us to establish provable reductions in the cost function itself, rather than a more or 

less related function. As Tukey said, “Far better an approximate answer to the right question 

… than an exact answer to the wrong question.”

1.3 Network reliability

We describe here the application of Moore and Shannon’s concept of network reliability 

[12] to provide a practical, efficiently computable organizing principle for characterizing 

and designing networks. Since its introduction in the 1950’s, the network reliability 

polynomial has remained more of an interesting theoretical construct than a practical tool for 

working with large networks. In large part, this is due to well-established complexity results 

for both its evaluation and approximation. However, as the authors have recently observed, 

estimation of the polynomial to within practically useful confidence intervals is easy, even 

without taking into consideration any properties of the graph [4, 17]. Estimation is also 

embarrassingly parallel, and we have extended this previous work by developing a 

distributed implementation, available to researchers as a web service, that scales to graphs 

with tens of millions of edges, limited only by the memory available to each computing 

element. We demonstrate this here by estimating the reliability polynomial for a contact 

graph representing the New River Valley with more than 4 million edges. Furthermore, we 

have introduced an interpretation for the reliability polynomial’s coefficients in terms of 

minimal subgraphs which we refer to as structural motifs [4, 8]. Structural motifs support 

analytical reasoning about the consequences of changes in network structure.

Ranking edges by betweenness and removing the top-ranked ones is often suggested as a 

heuristic solution to the network design problem. Network reliability can be used to 

generalize the notion of betweenness to include the specific dynamical phenomena and cost 

functions of interest. Furthermore, the usual Ford and Fulkerson Max Flow / Min Cut 

theorem [5] can be extended to structures that are not normally considered “cuts” or “flows”, 

specifically the structural motifs that determine the reliability polynomial. By relating 
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reliability to flows and cuts on a network, we demonstrate that the generalized betweenness 

can in principle be used to solve the network design problem. We evaluate the feasibility of 

approximating this solution on large networks using our distributed reliability estimation 

tool.

Section 2 provides a brief, self-contained introduction to network reliability, including an 

extension to general damage models. We provide very general definitions to emphasize the 

broad applicability of the formalism and the methods we will develop. For ease of 

exposition, we immediately introduce simplifications tailored to the applications in this 

manuscript. In particular, Section 2.2 develops an extended analogy to cuts and flows for 

structural motifs, which motivates our heuristic algorithm for ranking edges. Section 3 

suggests methods for answering the questions Q1 and Q2, characterizing and designing 

networks. Section 3.1.1 describes an efficient way of estimating the reliability polynomial 

for graphs with tens of millions of edges. Section 3.1.2 describes the use of reliability 

estimates to characterize networks. Related methods were proposed in [4], but here they are 

placed on firmer theoretical ground. In particular, Section 3.2 extends the notion of 

betweenness centrality in the context of minimal cuts to structural motifs. Section 3.3 

describes the networks to which we apply these methods in Section 4.

2. Theory

2.1 Network Reliability for Characterization

2.1.1 Definition—To address Q1, we rely on Moore-Shannon reliability. For a general 

introduction to network reliability, see Colbourn [1]. The Moore-Shannon reliability for a 

network is the probability that it functions correctly after sustaining damage [12]. Network 

reliability depends on three things:

1. the network itself, here represented as a labeled graph G with E edges and V 

vertices;

2. a criterion that defines what it means to function correctly, here represented by a 

rule r that is a binary function of graphs r(g) ∈ {0, 1}. We say that a graph is 

“accepted” if r(g) = 1;

3. a damage model, i.e. a parameterized measure over subgraphs g ⊂ G, denoted 

(g), where  are the parameters of the damage model.

The reliability is the expected value of the rule r over all possible subgraphs weighted by the 

probability of the subgraph under the damage model:

(2.1)

It is often the case that many subgraphs have the same probability of occurrence under the 

damage model. We can rewrite the reliability in terms of the set of equivalence classes 

induced by the damage model. Thus, if there are C such classes {c1, … , cC } and the ith 

class contains |ci| subgraphs, each appearing with probability , then
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(2.2)

(2.3)

This form for the reliability applies to labeled, directed, multigraphs under arbitrary damage 

models and arbitrary reliability rules. For ease of exposition and simplicity of notation, we 

will restrict our attention here to unlabeled, undirected, simple graphs under a single damage 

model for a single reliability rule. Recovering the fully general theory and methods is not 

difficult. We will use Moore and Shannon’s original damage model, in which each edge is 

chosen independently with probability x from the original graph G. If the original graph is a 

complete graph on V vertices, our damage model is equivalent to Erdős-Rényi measure on 

the space of graphs with V vertices; in general, the original graph strongly biases the 

structure of subgraphs selected under the damage model [2]. This bias is the reason the 

reliability polynomial characterizes structure in the original graph. This damage model 

corresponds to bond percolation and thus to networked models of infectious disease spread, 

with x representing the conditional probability of transmission across a link [6]. Specifically, 

the probability that an S – I – R outbreak seeded in a set of index vertices infects exactly a 

set T of vertices is given by the total probability under the damage model that the union of 

all the connected components including at least one index vertex is exactly T.

Equivalence classes under this damage model are sets of subgraphs that have the same 

number of edges. There are C = E + 1 such sets. The number of subgraphs in the 

equivalence class with k edges is . The probability with which any of these 

subgraphs occurs is p(g|x) = xk (1 – x)E–k. Summarizing, we have

(2.4)

We use two reliability rules here: “AR-0.2” accepts graph g if and only if the mean square 

size of connected components in g ≽ 0.2V ; ST-reliability accepts graph g if and only if it 

contains a path between two specified vertices S and T. These two rules are examples of 

coherent rules, for which adding an edge to an accepted graph cannot make it unacceptable. 

AR-0.2 has an important interpretation as the expected probability that an outbreak seeded in 

a single vertex chosen uniformly at random will eventually infect 20% or more of the 

vertices. ST-reliability, also known as “two-terminal” reliability, is useful for making the 

analogy to betweenness.

For a coherent rule, Pk is monotonic nondecreasing in k. For nontrivial original graphs, we 

have R(0) = 0 and R(1) = 1, and thus P0 = 0 and PE = 1. Hence we can define two special 
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values of k: k− is the smallest value of k such that Pk > 0; k+ is the largest value of k such 

that Pk < 1. To leading order in x, R(x) ≈ Rk−
 xk−; to leading order in 1 – x, R(x) ≈ 1 – Rk+ 

(1 – x)k+.

2.1.2 Interpretation—As shown in [8], we can expand the binomial factor (1 – x)E–k in 

Equation 2.4 to rewrite R(x) as a sum of monomials:

(2.5)

where

(2.6)

We have described a simple physical interpretation of Mk in terms of special subgraphs of G 

that we call structural motifs [8]. A structural motif of the network G is a minimal accepted 

subnetwork, i.e. a subnetwork g ⊂ G for which r(g) = 1 that would not be accepted if any of 

its edges were removed. A motif is a specific subgraph that occurs in multiple places in the 

original graph [11]. It is in this sense that structural motifs are motifs. Structural motifs are 

motifs that fully determine the reliability polynomial. Our usage of the term “motif” differs 

slightly from Alon and others in that structural motifs can be very large; our usage of the 

structural motifs themselves differs from theirs in that the motifs are not pre-defined by an 

analyst, but instead emerge from the dynamics and the rule. For example, for AR-0.2, trees 

that include exactly 20% of the vertices are structural motifs; for ST-reliability, non-self-

intersecting paths from S to T are structural motifs. Importantly, the structural motifs for ST-

reliability need not be shortest paths – any path will do as long as it does not contain 

extraneous edges.

If we define  as the number of unions of l structural motifs that contain exactly k edges, 

then it can be shown that [8]

(2.7)

Thus, the sizes of the structural motifs and their unions completely determine the reliability 

polynomial. It is in this sense that these motifs are the structural motifs.

2.2 Criticality

To address question Q2, we extend the intuitive notion of being on a critical path to a notion 

of criticality for arbitrary properties of dynamics. See Page and Perry for a related approach 

[14]. Colloquially, an edge is critical if it is on the critical path between S and T , i.e. if its 

removal ensures there is no path from S to T. If there are multiple paths from S to T , no 

single path is critical, and the binary notion of criticality must be extended to reflect the 

fraction of the paths that contain the edge. The notion of criticality must be further extended 
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to account for the fact that different paths contribute differently to the dynamics. For 

example, if there are two paths of different length between S and T , the shorter path is often 

more important than the longer one. Betweenness is the concept that captures these 

extensions.

In our more general context, structural motifs play the role of critical paths. We correctly 

account for the possibility of multiple structural motifs with different contributions to the 

dynamics with this definition: the criticality of a set of edges is the difference in reliability 

between the graph G in which they appear and the graph G′ ⊂ G in which they do not.1 

Since reliability depends on the rule, the damage model, and its parameter values , 

criticality also depends on these things. The reliability polynomial weights each structural 

motif in precisely the way it contributes to dynamical phenomena of interest, as specified by 

the reliability rule, in the parameter range of interest, as specified by .

In general, the criticality of an edge is a very complicated function of the overlaps among 

the structural motifs that contain it. However, we illustrate the concept with a simple 

example in which the criticality can be expressed easily. Suppose we add a structural motif 

of size k0 to a graph G, and that it is edge-disjoint from any existing structural motif in the 

graph. Then, using Equations 2.5 and 2.7, it can be shown that the reliability of the new 

graph, R′(x) is:

(2.8)

Thus the criticality of any edge in the new structural motif is R′(x) – R(x) = xk0 (1 – R(x)).

To apply the concept of criticality to answering question Q2, we define a generalized notion 

of capacity in such a way that a generalized Min Cut / Max Flow theorem will hold. 

Specifically, we define the generalized capacity of an edge to be the number of structural 

motifs that include it. For ST-reliability, an edge’s capacity under this definition is the 

number of times it appears in a non-self- intersecting path from S to T ; for AR-0.2, it is the 

number of trees with exactly 0.2V vertices in which it appears. Clearly, generalized capacity 

can also be thought of as a generalized notion of betweenness.

We define a generalized edge cut in a network under a given reliability rule as a set of edges 

whose removal reduces the reliability to 0. A minimal cut is one that has no proper 

subgraphs that form a cut. We define a generalized flow with respect to a given reliability 

rule as the number of structural motifs that appear in the graph. Removing the edges that 

comprise a cut reduces the reliability to 0 by definition. Remembering that a structural motif 

is a minimal accepted subgraph, we note that any structural motif can be broken by 

removing any one of its edges. Hence a cut contains at least one edge from every structural 

motif. Therefore the total capacity of the edges in a cut must be at least as large as the flow. 

If structural motifs are not edge-disjoint, removing an edge in their overlap breaks more than 

one motif. Our definition of capacity properly accounts for the case of non-disjoint motifs: if 

1A similar definition for vertex criticality can be made, with obvious changes in the following remarks.
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a single edge appears in c motifs, then removing that edge breaks all c and removes c units 

of flow.

This analogy between cut, flows, and betweenness and their generalized versions suggests 

the existence of a greedy algorithm for finding a minimum cut, i.e. a minimal cut using the 

smallest possible number of edges. We do not pursue this here, but use the analogy to 

motivate a heuristic approach to ranking edges.

3. Methods

3.1 A1: Using reliability to characterize graphs

3.1.1 Estimating reliability efficiently—Reliability provides a natural way to 

characterize graphs and thus to determine important differences between them. However, 

exact determination – and even approximation – of coefficients in the reliability polynomial 

for many rules and many classes of networks is known to be hard, often #−P hard [1]. Much 

of the work on reliability has focused on ways to take advantage of properties of particular 

rules or classes of graphs, or on efficient ways to organize a recursive computation. In 

contrast, our estimation procedure is simply to evaluate the reliability rule for each of a 

sample of s subgraphs with k edges drawn from G according to the damage model. The 

fraction of subgraphs in the sample that are accepted yields an estimate of . We expect the 

number of accepted subgraphs in our sample to be distributed binomially with parameters 

sPk and s. If we make the common approximation that the parameter Pk in this binomial 

distribution is approximately given by its sample mean  then we can bound the 

probability that the true Pk is outside any desired interval around . We can also take 

advantage of constraints including monotonicity and the finite set of possible values for Pk. 

We find that the entire set of coefficients can be estimated to a useful uniform, absolute 

precision on a laptop for graphs with millions of edges [17]. Furthermore, the estimation 

procedure is an embarrassingly parallel computation, since the sampling and rule evaluation 

can be performed independently and asynchronously, with very little inter-processor 

communication.

We have written software for estimating reliability that implements a variety of rules under 

either the independent edge or independent vertex damage models and can handle large, 

labeled graphs. The largest graph it handles is constrained by available memory. It has been 

tested on graphs with up to 50 million edges, which required roughly 5 hours (edge damage) 

or 15 hours (vertex damage) with 240 processes, using about 4 GB per process. The 

reliability for more modest graphs, such as those with 1000 edges, can be evaluated on a 

laptop in a few seconds. As noted above, running time is independent of graph structure. 

Instead, it is dominated by the time required to evaluate the rule on a graph and the number 

of samples required to reach the desired precision. It depends weakly on the values k− and 

k+, as most samples will be drawn from this interval and evaluating the rule generally scales 

with the size of the subgraph. This tool has been made available to researchers via the 

Cyber-Infrastructure for Network Science (CINET) web site http://ndssl.vbi.vt.edu/cinet.
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3.1.2 Identifying dynamically important differences between networks—

Reliability reorganizes all the information about a graph’s structure, both local and global, 

into a form that allows us to determine the differences between graphs that are relevant to 

our specific question (the reliability rule) by inspection. Given two graphs with the same 

number of edges E and with reliability polynomials R1(x) and R2(x), we first find the value 

of x which maximizes their difference, xm ≡ arg maxx |R1(x) – R2 (x)|. The difference in 

reliability between these graphs is mostly due to subgraphs of size km = xmE because of the 

strong windowing created by the binomial factor  in Equation 2.4. By 

evaluating the reliability rule on samples of subgraphs with km edges, we can find accepted 

subgraphs in graph 1 that do not appear in graph 2 and identify the edges missing from 

graph 2 that are responsible for the difference. These are exactly the differences that are 

most important dynamically.

If, in addition, we know the graph model, that is, how the graphs were generated, we can 

build a distribution of reliability polynomials under that graph model. This distribution is the 

null distribution for the hypothesis that any given graph has the same dynamical properties 

as those of graphs drawn from the graph model. In other words, this places the problem of 

distinguishing two graphs in a traditional statistical hypothesis testing framework. For 

example, in the left panel of Figure 3 the “curve” on the left is actually one hundred different 

curves generated by one hundred different random graphs with the same number of edges 

and vertices. There is no need for a formal test of significance to appreciate that the curve on 

the right is extremely unlikely under the distribution of curves on the left. The novelty here 

is that the test is based directly on dynamical properties – it does not require first arguing 

that the value of a statistic is significantly different from what would be expected under the 

null and then separately arguing that this difference is sufficient to induce a difference in a 

dynamical observable.

3.2 A2: Ranking edges by importance

The budget for controlling an outbreak of infectious disease is rarely large enough to reduce 

the probability that it will spread to 20% of the population to 0, corresponding to finding a 

cut for the AR-0.2 rule. Instead, we try to prioritize changes to the network structure, for 

example ranking edges to target for removal. Our heuristic, based on the greedy algorithm 

referred to in Section 2.2, is to rank edges in order of their criticality. Like betweenness, the 

criticality must be re-evaluated after any change to the graph’s structure.

A straightforward implementation of the greedy algorithm identifies structural motifs and 

removes an edge from each. We have found through experimentation that this is not a 

particularly good strategy for several reasons:

1. a great deal of computation is required to ensure that an accepted subgraph is 

minimal;

2. concentrating on individual structural motifs does not identify edges that are in the 

overlap of many structural motifs; i.e. all edges in any single structural motif 

appear to be equally important;
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3. although every motif contributes equally to a cut, motifs contribute differently to a 

ranking.

The last point is related to a ranking’s dependence on the damage model’s parameter x: at x 

= 1, every structural motif is equally important because the existence of any one guarantees 

that the reliability will be 1; at x = 0, every structural motif is equally unimportant because 

none of them has any chance of appearing in a subgraph with 0 edges. We have designed a 

heuristic that takes this behavior into account.

We first find the value k for which R(k/E) = 0.5. Next, using the 2×2 contingency table 

described in [4], we evaluate for each edge (the fraction of accepted graphs when the edge is 

present) - (the fraction of accepted graphs when the edge is absent). If the edge is not part of 

a motif, both terms will be approximately Pk, and their difference will be close to 0. If the 

edge is part of a motif of size k0, the first term will be approximately ((k – 1)/E)k0–1, the 

probability that all the other edges in the motif were selected for the subgraph; the second 

term will be less than Pk, depending on how many other structural motifs there are and how 

they overlap. A more careful argument could derive the sampling distribution for the 

difference in each of these cases, but for ranking edges we do not need this extra 

complexity. The larger the difference, the more important the edge is. Hence we use 

Algorithm 1 to rank edges.

3.3 Example networks

For experiments in a previous paper [17], we generated a large set of graphs with 992 edges, 

341 vertices, and carefully controlled degree distributions, assortativity-by-degree, and 

number of triangles. Each graph was created by swapping edges in one of two original 

graphs, a connected Erdős-Rényi graph (“GNM”) drawn by choosing edges independently at 

random and rejecting any graphs that were not connected, and a hand-designed connected, 

scale-free-like (“SFL”) graph. The degree distribution of all graphs based on the GNM 

graph is (1, 9), (2, 7), (3, 33), (4, 58), (5, 54), (6, 53), (7, 57), (8, 31), (918), (10, 8), (11, 7), 

(12, 3), (13, 2), (14, 1)); and the degree distribution of all graphs based on the SFL graph is 

(4, 256), (8, 64), (16, 16), (32, 4), (64, 1). Figure 2 shows constrained edge-swapping 

operations that adjust the assortativity-by-degree and number of triangles while maintaining 

the degree distribution unchanged. See [17] for more details on the ranges of assortativity 

and triangles in these graphs.

We also use friendship networks obtained from the National Longitudinal Study of 

Adolescent Health (“Add Health”) [7]. Add Health is a longitudinal study of a sample of 
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adolescents who were in grades 7-12 in the United States during the 1994-95 school year. 

The study collects information about the respondents’ social, economic, psychological and 

physical well-being with contextual data on the family, neighborhood, community, school, 

friendships, peer groups, and romantic relationships.

Finally, to demonstrate that these techniques are feasible for large graphs, we use an 

estimated social contact for the New River Valley region near Blacksburg, Virginia. This 

network was generated in the Network Dynamics and Simulation Sciences Laboratory 

according to methods described elsewhere, and has been made publicly available [13, 15]. It 

contains more than 4.1 million edges and 150 thousand vertices.

4. Results

4.1 Characterizing graphs using reliability

Figure 3 shows the reliability polynomial under AR-0.2 for the New River Valley social 

network. We also evaluated the reliability polynomial for 100 Erdős-Rényi graphs with the 

same number of edges and vertices as the NRV network. Clearly, the NRV network’s 

reliability is significantly different from an Erdős-Rényi network’s. Characterizing these 

networks as in the right panel of Figure 1 would place the NRV network in a different 

equivalence class from all the others. Of course, the NRV network is placed in a different 

equivalence class from the Erdős-Rényi graphs under many graph statistics, including 

degree distribution. The utility of the current approach is that the difference can be detected 

whether or not the analytic relationship between the statistics and the reliability is 

understood. For example, one could use constrained edge-swapping to develop an ensemble 

of random graphs that share many statistical properties with the NRV network and conduct 

this same test. The right panel of Figure 3 illustrates a linear transformation of 

transmissibility that makes the reliability on the NRV network identical to the reliability on 

an Erdős-Rényi network. We remark further on the implications of this renormalization in 

the Discussion section.

4.2 Identifying structural differences using reliability

We exhibit the results of the methods in Section 3.1.2 on two of the SFL graphs described in 

Section 3.3 shown in Figure 4 (left and middle panels). They have the same number of 

vertices (341) and edges (992), the same assortativity-by-degree (0.25), and the same degree 

distribution. We have used the degree- and assortativity-preserving edge swapping technique 

shown in Figure 2 to change the number of triangles. The graph in the center panel contains 

1251 triangles, while the one in the left panel contains 910 triangles. Although they look 

very similar to the eye, not surprisingly, their reliability under many rules differs.

The first step in the comparison is to determine the value of k for which R(k/E) has the 

largest difference between the two graphs. Figure 5a (left) shows the reliability polynomials 

R(x) for each graph and their difference as a function of edge failure probability for the 

AR-0.2 rule. A peak in the difference in reliability for these graphs is observed at k ≈ 428. 

Structural motifs yield sets of edges found only in A or only in B that dock with sets of edges 

in the intersection of A and B to form reliable networks. In this case, we note that the 
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smallest structural motif in graph A must be much smaller than in graph B. One example of 

such a structural motif is displayed in the right panel of Figure 4.

4.3 Ranking edges

Using algorithm 1, we found a cut in 230 GNM graphs and 93 SFL graphs. To verify our 

results, we compared them with those obtained using the matrix tree theorem. Kirchhoff’s 

matrix tree theorem [9] states that the total number of spanning trees in a graph equals any 

cofactor of the Laplacian matrix of that graph. The Laplacian matrix is the diagonal matrix 

of vertex degrees minus the adjacency matrix. To rank the edges using Kirchhoff’s theorem, 

we first computed the total number of spanning trees in the graph. An edge’s criticality is the 

reduction in number of minimum spanning trees when that edge is removed from the graph. 

Note that for this rule, all structural motifs have exactly V – 1 edges, so there is no 

complication arising from motifs with different sizes. We found that the most critical edge 

determined through Kirchhoff’s theorem always belongs to the edges in the cut set obtained 

using algorithm 1, although it is not always the highest ranked edge.

We also found cuts under AR-0.2 for the AddHealth graphs. Table 1 shows the 

characteristics of a subset of Add Health graphs and the number of edges in the cut produced 

by algorithm 1. The cuts require removing from 70% to 74% of all edges. This is large, but 

smaller than would be expected (87%) if the networks were degree-regular with the 

observed degree.

We ranked edges for the SFL graphs in Figure 4 and compared the reliability polynomials as 

we removed either 25 or 50 top-ranked edges with those obtained by removing the same 

number of randomly selected edges. Results are shown in the right panel of Figure 5b. The 

difference is barely noticeable for 25 edges, but clearly significant for 50 edges.

We ranked edges for the NRV network under AR-0.2. We found the top 4152 edges 

(approximately 0.1% of all edges) and examined the effect on reliability of removing these 

edges from the network. The optimal ranking for this case is not known. Instead, we 

compare our results with the effect of removing the same number of edges chosen uniformly 

at random. As before, we created an ensemble of networks with random edges deleted for 

generating a distribution of changes in reliability under the null hypothesis that our 

algorithm’s selection was no better than random. In this case we used an ensemble of size 

10. We expect that the effect of removing 0.1% of the edges on the dynamics over a large 

graph will be very small. We also expect any effect for our algorithm to be most evident 

near x for which R(x) = 0.5, because the algorithm concentrates its effort at that point. For 

the NRV network under this rule, this corresponds to x ~ 0.0224. Figure 6 confirms our 

expectations. Moreover, it demonstrates that the edge ranks depend on x. Our choice of 

evaluating the difference in reliability for x such that R(x) = 0.5 seems justified by this 

figure, because the average reduction over the interval is clearly larger for edges selected by 

algorithm 1 than for randomly selected edges.
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5. Discussion

Network reliability depends on dynamics and, for a given dynamical process, on the 

parameters of the process and the observed features. A network cannot be characterized 

sufficiently without taking the dynamics and observations into account. We argue that the 

reliability polynomial itself is a natural tool for characterizing networks that takes both 

dynamics and observations into account. The reliability polynomial depends on the 

dynamics through the damage model; it depends on the observed features through the 

reliability rule; and its value varies from 0 to 1 across the domain of dynamical parameters.

The primary reason to characterize networks is to understand how changes in a network 

affect dynamical outcomes. Such an understanding is crucial for both model sensitivity 

analysis and solving network design problems. We argue that the characterizations provided 

by the reliability polynomial are useful for understanding the effect of changes in network 

structure. They can be used both to identify network structures responsible for changes in 

outcomes, as in Section 3.1.2, and to guide attempts to control dynamics by changing the 

network, as in Section 3.2.

The results displayed in Figure 3 raise an important issue of model identifiability in network 

epidemiology. It is very difficult to estimate the person-person transmissibility of a newly 

emerging infectious disease; likewise, it is very difficult to estimate the contact network 

structure. The possibility of renormalizing transmissibility illustrated here means that only 

the combination of network structure and transmissibility can be estimated from population 

level data, not either separately. This would not be a problem except that there is no 

guarantee that the same renormalization applies when these networks are perturbed, e.g. 

when outbreak controls are applied. Thus the fact that a combination of network and 

transmissibility fits observed data does not necessarily imply that the model will correctly 

predict the outcome of interventions.

The ability to rank edges in order of their contribution to dynamical phenomena supports 

quantitative analysis of targeted interventions in an infectious disease outbreak. We can 

compare the reduction in reliability achieved by the targeted intervention with both the 

reduction produced by an ensemble of random interventions and the optimal reduction, as 

shown in Figure 6. Moreover, the reduction can be evaluated either for a specific value of 

transmissibility, or in expectation across a range of possible transmissibilites.

5.1 Future directions

We note that the restrictions imposed on the analyses we have performed here – to an 

independent edge damage model for unlabeled, undirected graphs under a single reliability 

rule – are in no way required by the theoretical framework. The results presented here are 

just a few examples of the analytical power the Moore-Shannon approach brings to network 

analysis. There are many opportunities for further research into theory, methodology, and 

applications, including:

• proof that a greedy algorithm is appropriate for generalized cuts and flows;

• tight bounds on the reliability polynomial;
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• efficient approximation methods for criticality;

• extension to generalized contagion dynamics;

• extensions to other damage models, especially models that mix vertex and edge 

failures;

• definition of coherent reliability rules useful for studying dynamics on directed, 

labeled graphs;

• comparisons to graph spectral methods;

• application to the community detection problem.

Moreover, the results obtained here are not yet applicable to the problem of controlling an 

outbreak of disease in a real population. There is no practical way to determine the criticality 

of a contact between two people, for example. It remains to identify observable properties of 

the edges that correlate with the ranking determined here. For example, one might correlate 

rank with the demographic labels (such as age, gender, household size) associated with 

vertex endpoints or the activity labels (such as work, school home) associated with the edges 

themselves.

We hope that future network analyses will not restrict themselves to characterizing a 

network using only statistics that do not take dynamics into account, or evaluating the 

performance of a network design strategy for only a single set of dynamical parameters, or 

ignoring label and direction constraints.
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FIG. 1. 

(Left:) A coordinate system on graph space defined by the values of two graph statistics s1 

and s2, for example assortativity-by-degree and clustering coefficient. The red and green 

areas are two different sets of equivalent graphs, where equivalence is defined by the values 

of s1 and s2. The distributions of an observable, for example, the infection attack rate, for 

each equivalence class are caricatured in the plot. In general, there is no guarantee that these 

distributions are unimodal or non-overlapping. (Right:) An alternative pair of equivalence 

classes under a definition of equivalence induced by the observable. By definition, the 

distribution of observables for each equivalence class is concentrated and non-overlapping; 

however, the support of any equivalence class is not necessarily convex or even contiguous 

in the s1 – s2 coordinate system, as suggested by the red regions.
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Fig. 2. 

(left panel) Assortativity-changing edge swap: vertex degrees are d1 = 4, d2 = 3, d3 = 2, and 

d4 = 5. The contributions of these vertices to assortativity are d1d2 + d3d4 = 22 and d1d3 + 

d2d4 = 23 so the network at the bottom has a higher assortativity than the one at the top [10, 

16]. If the network at the top is connected, the network at the bottom will also be connected 

if there is a path from vertex 1 to vertex 2. (right panel) Assortativity-preserving, triangle-

changing edge swap: B and D have no neighbors in common, nor do C and E. The vertex 

degrees are dB = dE = 4 and dC = dD = 2. Their contributions to assortativity are dBdD + 

dCdE = 40 = dBdC + dDdE so the network at the top has the same assortativity as the one at 

the bottom. If the network at the top is connected, the network at the bottom will also be 

connected if there is a path from B to D. This swap changes the number of triangles in the 

network by at least one – more, if B and C have any common neighbors besides A.
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Fig. 3. 

Characterizing epidemic dynamics on an estimated contact network for the New River 

Valley Here, R(x) is the probability that an outbreak seeded in a single randomly selected 

individual will spread to at least 20% of the population if the transmission probability across 

every edge is x. Left:The median reliability for 100 Erdős-Rényi random graphs with the 

same number of edges and vertices as the NRV network is on the left; the reliability for the 

NRV network is on the right. Note the expanded x scale – this is a very sharp epidemic 

transition and the difference between the curves, though statistically and practically 

significant, is small. However, the distribution of reliability across the Erdős-Rényi 

ensemble is too tight to be discernible even at this scale. Right: After scaling both reliability 

curves linearly by x → (x – x−)/(x+ – x−), the threshold behavior is still noticeably different. 

The dotted curve sows the reliability of the NRV network under this scaling; the boxes 

represent 0, 25, 50, 75, and 100% quantiles of the ensembles under this scaling. A further 

renormalization of the transmissibility for the NRV network, x → 0.56x + 0.225, determined 

by eye, produces a “scaling form” for the reliability, the solid curve. That is, the reliability 

of the NRV network at a scaled value of x is indistinguishable from the reliability of an 

Erdős-Rényi random graph.
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Fig. 4. 

Two graphs with 992 edges each, the same scale-free-like degree distribution, and the same 

assortativity-by-degree (0.25), but with different numbers of triangles (1251 on the left, 900 

in the center). Vertices and edges are colored, sized, and arranged by degree. Right: a 241-

edge structural motif for this rule in the 900-triangle graph that does not occur in the 1251-

triangle graph.
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Fig. 5. 

Left: R(x) for the two graphs shown in Figures 4 (left and middle panels) along with the 

difference. The difference peaks around k = xE = 428, indicating that one graph has many 

more structures with 428 edges that are accepted by AR-0.2 than the other. This is most 

likely due to the difference in k− – 241 vs. 295 edges – between the two graphs. Right: The 

change in reliability for the graph in Figure 4 (center panel) as edges are removed either at 

random or according to their criticality as defined in the text.
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Fig. 6. 

We evaluate the quality of the edge ranking strategy in algorithm 1 by comparing the effects 

on reliability for the NRV network of removing the edges selected with a randomly chosen 

set of edges. We remove a set of 4152 edges (approximately 0.1%) from the network and 

evaluate the AR-0.2 reliability of the remaining graph. For the random edge selection, we 

repeat this 10 times to estimate the mean and the standard deviation in reliability. The range 

of x values plotted here spans the entire transition range, over which R(x) for the original 

graph rises from 10−3 to 1 – 10−3. (Left) The difference between the mean reliability of 

edges selected randomly and edges selected according to algorithm 1. Positive values 

indicate that our algorithm selects edges that reduce the reliability more than a random 

selection. The absolute difference is very small because we have removed such a small 

fraction of the edges. (Right) The difference between reliabilities relative to the standard 

deviation in the 10 sets of randomly selected edges. Values greater than 1 indicate that our 

algorithm selects edges that reduce the reliability by more than one standard deviation more 

than the randomly selected edges. The spikes at the left and right sides of the plot arise from 

small-sample statistics in our estimates of the standard deviation.
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Table 1

The fraction of edges whose removal is required to cut Add Health graphs for the AR-0.2 reliability rule. For 

uniform mixing S –I–R model when the mean degree is d, the threshold transmissibility for herd immunity is 

1/d. Below this threshold, outbreaks do not spread very far. To control an outbreak in such a system, the mean 

degree must be reduced to at most 1. For each of the AddHealth graphs, this corresponds to removing 87% of 

the edges. The cuts we find remove fewer edges, due to the non-uniformity of mixing represented by network 

topology.

Vertices Mean degree % of edges
in cut

291 7.81 0.74

457 7.44 0.70

205 7.89 0.71

255 7.87 0.74

685 8.16 0.70

426 7.46 0.77
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