
Using the π-calculus for Formalizing
Workflow Patterns

Frank Puhlmann and Mathias Weske

Hasso-Plattner-Institute for IT Systems Engineering
at the University of Potsdam
D-14482 Potsdam, Germany

{puhlmann,weske}@hpi.uni-potsdam.de

Abstract. This paper discusses the application of a general process
theory—the π-calculus—for describing the behavioral perspective of work-
flow. The π-calculus is a process algebra that describes mobile sys-
tems. Mobile systems are made up of components that communicate
and change their structure as a result of communication. The ideas be-
hind mobility, communication and change, can also enrich the workflow
domain, where flexibility and reaction to change are main drivers. How-
ever, it has not yet been evaluated whether the π-calculus is actually
appropriate to represent the behavioral patterns of workflow.

This paper investigates the issue and introduces a collection of work-
flow patterns formalizations, each with a sound formal definition and
execution semantics. The formalizations can be used as a foundation for
pattern-based workflow execution, reasoning, and simulation as well as
a basis for future research on theoretical aspects of workflow.

1 Introduction

Recently, the π-calculus has been discussed as a formal foundation for work-
flow [1, 2]. The advocators of the so called Third Wave claim that the π-calculus
is a natural foundation for workflow as it is based on communication and change.
Indeed, communication is required for inter-organizational workflow and service
oriented languages like BPML, XLang, or BPEL4WS [3–5]. The ability to dy-
namically change workflows on demand is already an important topic in workflow
research [6–8]. Despite these discussions, no formal and reasonably complete in-
vestigation of the π-calculus regarding the workflow domain has been made. This
paper takes a first step by analyzing the capabilities of the π-calculus regarding
workflow patterns [9]. It introduces a collection of workflow patterns formaliza-
tions, each with an unambiguous formal definition and execution semantics.

The formalizations can be used in two major directions. First, they build
a foundation for pattern-based workflow execution, reasoning, and simulation,
which is based upon the execution semantics and proving capabilities of a formal
algebra. Second, the formalizations show that the π-calculus is indeed a base for a
precise definition of behavioral workflow requirements. At the same time it might



2 F. Puhlmann and M. Weske

open the door for future research, i.e. integrating other workflow perspectives
like organizational, operational, or informational [10, 11].

The remainder of this paper is organized as follows. Section 2 discusses re-
lated work. A brief introduction to the π-calculus is given in Section 3. Section
4 contains the formal definitions of workflow patterns; the main concepts are
illustrated by examples. The paper is concluded with an outlook and directions
for future work.

2 Related Work

Another approach of giving a detailed representation of the workflow patterns
has been made with YAWL [12]. Starting as an endeavor as a workflow language
of high expressiveness, YAWL has received considerable attention recently. The
focus of YAWL is the convenient representation of all workflow patterns, as
well as tool support and interfacing to various workflow tools. In the context of
YAWL, a detailed representation of workflow patterns has been proposed [12]. As
such, it is an important area of related work. However, the work presented in this
paper aims at providing a broader exploitation and areas for future work, since
the concepts provided by π-calculus allow for further representation, analysis,
and reasoning, such as compliance of multiple processes.

From the context of process algebra, there has little been done for workflow
purposes up to now. A Ph.D. thesis by Twan Basten researches basic process
algebra and Petri nets [13]. A more practical approach of using CCS [14] to for-
malize web service choreography can be found in [15]. The only approach known
to the authors on the use of the π-calculus for workflow definitions is from Yang
Dong and Zhang Shen-Sheng and centers on basic control flow constructs and
the definition of activities [16]. An approach close to process algebra is the logic
based modeling and analysis of workflows by the use of concurrent transaction
logic [17]. However, the expressiveness of this approach regarding to the workflow
patterns has still to be investigated. Further approaches regarding the formaliza-
tion of workflow patterns might include procedural techniques, which combine
imperative, object-oriented and concurrent programming, logic–based attempts
as well as graphgrammar- and net-based ones. Some approaches could be com-
bined like the event-based and the process algebra has been used together in this
paper.

3 The π-calculus

The π-calculus is a process algebra that describes mobile systems in a broader
sense [18]. The calculus is based on the concept of mobility, which includes com-
munication and change. Communication takes place between different π-calculus
processes. The structure of the processes changes over time by communication
e.g., a process can dynamically include other processes which he received through
communication. The communication itself is based on the concept of names. A
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name is a collective term for previous existing concepts like links, pointers, ref-
erences, identifiers, etc., each of which has a scope. Assuming a name represents
the reference to a process that currently processes a workflow activity, the scope
of the name includes at that time only the active process. As soon as the process
has finished, the scope is extruded to the process that handles the next workflow
activity. Based on the flexibility of the π-calculus, which has only been sketched,
many different possibilities arise to formalize the workflow patterns. We adopt
an event, condition, action (ECA) approach, where each activity of a workflow
is mapped conceptually to an independent π-calculus process. The processes use
events in the form of communication to coordinate the behavior of a workflow.
Several processes together form a behavioral pattern, which represents a work-
flow pattern.

Syntax

As several different notations of the π-calculus exist [18–21], the one used through-
out this paper is outlined. Details can be found in [22].

Basically, the π-calculus consists of processes and names, where names define
links. The processes are defined through:

P ::= M | P |P | vzP | !P .

The composition P |P is the concurrent execution of P and P , vzP is the
restriction of the scope of the name z to P , which is also used to generate a
unique, fresh name z and !P is the replication operator that satisfies the equation
!P = P | !P . M contains the summations of the calculus:

M ::= 0 | π.P | M + M

where 0 is inaction, a process that can do nothing, M +M is the exclusive choice
between M and M ′, and the prefix π.P is defined by:

π ::= x 〈y〉 | x(z) | τ | [x = y]π .

The output prefix x 〈y〉 .P sends the name y over the name x and then con-
tinues as P . The input prefix x(z) receives any name over x and then continues
as P with z replaced by the received name (written as {name/z}). The unob-
servable prefix τ.P expresses an internal action of the process, and the match
prefix [x = y]π.P behaves as π.P , if x is equal to y.

Throughout this paper, upper case letters are used for process identifiers
and lower case letters for names. Some additional process identifiers and names
that represent special functions are introduced later on. Furthermore defined
processes from the original paper on the π-calculus are used for parametric
recursion, that is A(y1, ..., yn) [18]. For the definitions given in this paper, defined
processes are more applicable than the recent form with recursive definitions
K

M= (x̃).P and constant applications K bãc where x̃ and ã represent sets of
names [22].
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Fig. 1. The EA (a), ECA (b), and ECAA (c) notation for business rules and sequential
(d), parallel (e), and optional (f) control flow.

We use the abbreviation
∑m

1 (M) to denote the summation of m choices;
e.g.

∑3
1(Mi) = M1 + M2 + M3. The abbreviation

∏m
1 (P ) is used to denote

the composition of m parallel copies of P , e.g.
∏3

1(P ) = P | P | P . Also, {π}m
1

denotes m subsequent executions of π, e.g. {π}3
1 = π.π.π. All abbreviations

could be used with an indexing variable, e.g.
∏3

i=1(di(x)) = d1(x) | d2(x) | d3(x).
Round brackets are used to define the ordering of a process definition. Given τ.P
for instance, P might be expanded to M +M ′ by using the summation rule from
the π-calculus grammar. To avoid ambiguity, round brackets are put around the
expanded symbol, e.g. τ.(M + M ′) instead of τ.M + M ′.

4 Pattern Representation

The formalization of the workflow patterns in the π-calculus starts with a map-
ping from activities to π-calculus processes.1 Let every activity be an indepen-
dent process. Each process has pre- and postconditions. A precondition for a
process B could be that it should only start working after a process A has fin-
ished. A postcondition for process B could state that B has completed execution
and then signals this to other processes.

The core idea is based on the ECA approach that originates from active
database systems. ECA means Event, Condition, Action [23]. The event compo-
nent specifies when a rule must be evaluated. After the rule has been evaluated,
the conditional component must be checked and if it matches, the action compo-
nent is executed. This approach has been adapted to specify control flow between
different activities in a workflow [24]. The adapted paradigm is called ECmAn. It
allows m conditions and n actions. In the workflow domain ECAA, ECA and EA

1 We abbreviate the term π-calculus process to process in the following.
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rules are most common (see figure 1). The figure also shows sequential, parallel,
and optional control flow.

We can map the ECA approach to process definitions. The preconditions
of the processes comply to the event and conditional part of the ECA rules.
Every process that has no event part represents an initially starting activity, as
the process has no further dependencies. The events are modeled in the process
definitions as input prefixes. After the input prefixes have been triggered (that is,
the event has occurred) an optional condition has to be checked. This is modeled
by a match prefix. It can be used to model global constraints like testing a
cancellation flag. The action part is divided into two parts. First, the functional
perspective of the activity is represented as an unobservable action. Second, the
process can trigger other processes by output prefixes. Output prefixes represent
postconditions. If a process does not trigger other processes it represents a final
workflow activity. The complete process definition for a basic activity is:

x.[a = b].τ.y.0 . (1)

A process receives a trigger x mapping to an event, makes a comparison
[a = b] mapping to a condition, does some internal work τ and finally triggers
another process with y as the resulting action. This notation can be generalized
to:

{xi}m
i=1.{[a = b]}n

1 .τ.{yi}o
i=1.0 . (2)

A generic process can have m incoming triggers, n conditions, and o outgoing
triggers. A process that represents an activity must have a functional part rep-
resented by τ . Note that it is explicitly allowed to have zero incoming triggers,
conditions or outgoing triggers. The consequences have been discussed earlier. If
a process representing an activity can be triggered more than once, the replica-
tion operator must be used.

The description given applies only to basic control flow structures. Advanced
structures require slightly different approaches. Additionally to the processes
that represent the workflow activities, system and helper processes are required.
These processes do not belong directly to the workflow, but are needed for rea-
soning and execution control.

The patterns given in the next paragraphs can be seen as small pieces of
a workflow definitions. The postconditions of the processes that link to other
processes are indicated by a process identifier with an apostrophe, like the process
A has process A′ as a postcondition. The process A′ might represent any other
workflow pattern.

4.1 Basic Control Flow Patterns

The basic control flow patterns capture elementary aspects of workflow control
flow. They are structured like shown in equation 2.
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Sequence. A sequence between two processes A and B is achieved by A sending
a name over b to process B, which executes τB and afterward activates the
continuation as B′:

A = τA.b.0
B = b.τB .B′ A B

b

As can be seen, the actual process definition transmits no name, because the
name is irrelevant for triggering another process. We abbreviate b 〈x〉 | b(x).B′

to b | b.B′, when the argument count is zero. As explained earlier, this is called
triggering.

Parallel Split. To achieve a parallel split from a process A to two processes B
and C, A triggers two names b and c at the processes B and C.

A = τA.(b.0 | c.0)
B = b.τB .B′

C = c.τC .C ′
A

B

C

b

c

Synchronization. The synchronization between two processes B and C at an-
other process D is represented by B and C each triggering the names d1 or d2

at D. The process D waits on those two names until it can continue as D′.

B = τB .d1.0
C = τC .d2.0
D = d1.d2.τD.D′

B

C

D
d1

d2

Exclusive Choice. The exclusive choice between two alternative processes B or
C after A is modeled by the π-calculus summation operator. Thereby A triggers
either b or c.

A = τA.(b.0 + c.0)
B = b.τB .B′

C = c.τC .C ′
A

B

C

b

c

Simple Merge. The simple merge of two control flows from either processes
B or C in D is achieved by B and C triggering a name d. Per definition of
this pattern, B and C will never be executed in parallel, so D only needs to
wait on one incoming name d. If B and C should be executable in parallel, the
synchronizing merge pattern applies.

B = τB .d.0
C = τC .d.0
D = d.τD.D′

B

C

D
d
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4.2 Advanced Branching and Synchronization Patterns

This section covers advanced branching and synchronization patterns. They re-
quire advanced concepts and map only partly to equation 2. One pattern, the
synchronizing merge, needs to know the number of incoming flows that depend
on preceding multi–choices. However, this is only important at the execution
level. At the design level considered here, all possibilities must be captured.

Multi–choice. The choice between processes B or C or B and C after A is
modeled by A having three possibilities of execution. Either A triggers B or C
or both, B and C.

A = (vexec)τA.(A1 | A2)
A1 = exec 〈b〉 .0+

exec 〈c〉 .0+
exec 〈b〉 .exec 〈c〉 .0)

A2 = !exec(x).x.0
B = b.τB .B′

C = c.τC .C ′

A

B

C

b

c

Note that this pattern uses the concept of an executor (exec) represented
by process A2. An executor receives a name and afterward triggers that name.
The executor always immediately responds and decouples the triggering of the
subject received in a parallel thread, thus not blocking the original caller. The
executor workaround is needed, because a process b.0 + c.0 + (b.0 | c.0) cannot
be derived from the π-calculus grammar given. If we just specify b.c.0 to denote
that both names, b and c should be triggered, the semantic is incorrect. For
example image a more complicated construct. The preconditions of process B
are extended so that he has to wait additionally on a name b1. This could be
written as B = b1.b.τB .B′. The name b1 has not yet been triggered, so the
process b.c.0 could not yet trigger the name c. Process C that only has c as
a precondition cannot start execution. This is clearly not the intention of the
multi–choice pattern.

Synchronizing Merge. The triggers for activating a process D can either come
from B or C as well as from B and C. If B and C are executed in parallel, D
has to wait on d1 and d2, otherwise only for d1 or d2.

B = τB .d1.0
C = τC .d2.0
D = d1.τD.D′+

d2.τD.D′+
d1.d2.τD.D′

B

C

D
d1

d2

This pattern has no synchronization problem. Even if process C is able to
signal d2 earlier than B can signal d1, the process C is blocked until B has
signaled d1. This confirms with the reduction rules of the π-calculus. Note that
the semantics of this pattern does not describe how a runtime actually decides
which summation of D is chosen.
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Multi-merge. Process D can be triggered arbitrary times by incoming triggers
from B or C. Each time D gets triggered, a new copy of D is created by repli-
cation.

B = τB .d.0
C = τC .d.0
D =!d.τD.D′

B

C

D
d

Note that by using the replication operator to create multiple copies of a
process D, all processes that are triggered by D must also support replication
and so on. This also refers to all other patterns that create multiple copies by
replication.

Discriminator. The discriminator pattern activates τD by triggering D2 if pro-
cess D1 receives either d1, d2 or d3. After D2 has activated τD it waits for the
triggers h from the remaining incoming branches of D1. Finally D2 resets the
discriminator by using recursion.

A = τA.d1.0
B = τB .d2.0
C = τC .d3.0
D = (vh, exec)(D1 | D2)
D1 = d1.h.0 | d2.h.0 | d3.h.0
D2 = h.exec.h.h.D | exec.τD.D′

A

C

D

d1
d2B
d3

The process definitions A, B and C are trivial. The process definition D
that represents the discriminator is split into two parts D1 and D2 with two
fresh names h and exec. D1 waits in parallel for all incoming triggers d1, d2

and d3. If a trigger is received, D1 anonymizes the trigger by signaling h to
D2. Afterward process D1 waits for the remaining triggers. If another process
signals a name that D1 has already received, the signaling process is blocked.
The process D2 waits for an incoming name h and afterward executes τD in
parallel, achieved through an internal trigger exec. This is needed due to the
decoupling of the subsequent actions represented by D′. Afterward it waits for
the remaining triggers from D1 and then resets itself by the use of recursion.
Note that all processes that are called by D′ must have the capability of multiple
execution.

A generic discriminator with m incoming control triggers is defined by:

D = (vh, exec)((
m∏

i=1

di.h.0) | h.exec.{h}m−1
1 .D | exec.τD.D′).

The generic discriminator uses the product operator
∏

from 1 to m to denote
m different incoming triggers. After receiving the first h trigger, it uses the
sequence operators {} to wait on m − 1 anonymized incoming triggers. Those
operators are just notational sugar; they have to be expanded before the process
can be executed.
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Example: Discriminator. To illustrate the discriminator, one possible evolution2

of the system defined by A, B, C, D1 and D2 is given:

DISC = A | B | C | (vh, exec)(D1 | D2) .

The processes are defined initially as given in the discriminator paragraph.
The evolution of DISC begins with either A, B or C signaling a name to D1.
We start with A signaling name d1 to process D1:

DISC −→ DISC1 = B | C | (vh, exec)(D11 | D2) .

The process A has vanished as no more prefixes other than 0 exist after
signaling the name d1. The process D1 has evolved to D11 and is defined by
D11 = h.0 | d2.h.0 | d3.h.0. Immediately after, a communication between D11

and D2 is possible:

DISC1 −→ DISC2 = B | C | (vh, exec)(D12 | D21) .

D11 signals the name h to D2 and evolves to D12 = d2.h.0 | d3.h.0. The left
hand component has vanished as it reached inaction. The process D2 evolves to
D21 = exec.h.h.D | exec.τD.D′. Now exec can be triggered inside D21:

DISC2 −→ DISC3 = B | C | (vh, exec)(D12 | D22) .

D22 is given by D22 = h.h.D | D′. Note that the right hand side of D22 now
only consists of D′. We can assume D′ to be 0 in our example. So the right hand
side of D22 vanishes. Now process B can trigger d2 and D12 can trigger h:

DISC2 −→ DISC3 = C | (vh, exec)(D13 | D23) .

Process B vanishes after triggering d2. D12 evolves to D13 = d3.h.0. Process
D23 is given by D23

=

h .D. Finally process C can trigger d3:

DISC3 −→ DISC4 = D .

Process C vanishes after triggering d3. D13 vanishes after receiving d3 and
triggering h. The only process now left is D which resets the discriminator
through recursion. To make the discriminator work another time, we need new
processes that trigger d1, d2 and d3 again. A, B and C could also declared
replicative, e.g. A =!τA.d1.0, etc. We could further trace other evolutions of the
system described, e.g. starting with d2 or d3.

N-out-of-M-Join. The n-out-of-m join generalizes the discriminator by executing
the activity τD after n out of m triggers have arrived at process D. After the
remaining triggers have been received, D resets itself by recursion.

D = (vh, exec)((
m∏

i=1

di.h.0) | {h}n
1 .exec.{h}m

n+1.D | exec.τD.D′)

The n-out-of-m-join simply expands the middle expression of the generic
discriminator by waiting for m incoming triggers in a sequence. The remaining
triggers are then counted from n + 1 to m.
2 We use the π-calculus semantics of reduction for this example, see [22].
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4.3 Structural Patterns

Structural patterns show restrictions on workflow languages, as for instance that
arbitrary loop are not allowed or that only one final node should be present. The
π-calculus easily handles both of the following patterns.

Arbitrary Cycles. Arbitrary cycles are inherently given by the event based ap-
proach. The only thing that must be taken care of is the re–instantiation of
processes that execute repeatedly.

A =!a.τA.b.0
B =!b.τB .c.0
C =!c.τC(a.0 + d.0)
D = d.τD.D′

A B C D
b c d

a

The re-instantiation is modeled using the replication operator for all processes
that could be executed more than once (A, B, C). Process C must decide if the
loop is called another time by triggering a or to continue by triggering d. If
arbitrary cycles are allowed in a workflow definition, the formal reasoning will
be much more difficult.

Implicit Termination. The implicit termination pattern terminates a sub–process
if no other activities can be made active. The π-calculus contains the special sym-
bol 0 for this purpose. As 0 is the only final termination symbol of the π-calculus
grammar, each (sub)–process must finally have an implicit termination.

4.4 Multiple Instance Patterns

Multiple instance patterns create several copies of workflow activities. A trivial
pattern uses no synchronization whereas more advanced patterns synchronize
the created copies afterward.

Multiple Instances without Synchronization. Any amount of multiple copies of a
process B can easily spawn from a process A by replication.

A = τA.!b.0
B =!b.τB .B′

A B
b *

A recursive definition for A could be A = τA.A1 with A1 = b.A1 + 0. This
notation explicitly states that A1 can spawn of new copies of B or stop execution.

Multiple Instances with a priori Design Time Knowledge. When the number of
copies of B is known at design time and the copies have to be synchronized
before the execution of τC , the following pattern is used (the example shows
three copies of B).
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A = τA.b.b.b.0
B =!b.τB .c.0
C = c.c.c.τC .C ′

A B
b * C

c

For n design time copies, the pattern is as follows:

A | B | C ≡ τA.{b}n
1 .0 | !b.τB .c.0 | {c}n

1 .τC .C ′ .

Multiple Instances with a priori Runtime Knowledge. This pattern is runtime
dependent like the synchronizing merge. At design time it can be modeled that
A can spawn of an unknown number of processes B and only after A has finished
creating the processes, τB gets activated by receiving a start trigger each. After
all copies of B have finished, the name initially passed to A is triggered. The
pattern needs a fresh name start private to A and B to work: (vstart)(A | B).
Note that this pattern uses defined processes for recursion.

A = (vrun)τA.A1(c) | run.!start.0
A1(x) = (vy)b 〈y〉 .y 〈x〉 .A1(y) + run.x.0

B = !b(y).y(x).start.τB .y.x.0
C = c.τC .C ′

A B
b * C

c

This pattern works like a dynamic linked list:

A Bi CB2 B1...
bi b2 b1 c

Initially A holds the name of the next process, that is c. An arbitrary number
of processes B can be inserted between A and C using recursion. The created
copies are started by triggering run in A which results in triggering start in
all copies of B. Each copy of B triggers his predecessor after finishing τB . The
initial predecessor is passed as a parameter to A; it is the name of the trigger
that is activated after all copies of B have successfully executed τB . This pattern
is a special case of the multiple instances without a priori runtime knowledge;
an example is given later on.

Multiple Instances without a priori Runtime Knowledge. This pattern is much
the same as the preceding one, with the difference that copies of B could be
created all the time and start immediately.

A = τA.A1(c)
A1(x) = (vy)b 〈y〉 .y 〈x〉 .A1(y) + x.0

B = !b(y).y(x).τB .y.x.0
C = c.τC .C ′

A B
b * C

c

The only difference is the removal of the start and run triggers as well as
the depending process parts.
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Example: Multiple Instances without a priori Runtime Knowledge. We derive a
trace of the multiple instances without a priori runtime knowledge pattern. The
example shows how the recursive structure of the processes is build up while
creating instances and how it is broken down while completing.

The process A is initialized with the link to the process that should be exe-
cuted after all copies of B have been completed. That is c in our case:

A = τA.A1(c) .

Process A calls process A1 with c as a parameter. A1 has the choice between
creating a copy of the process B or call the final process, that is c:

A1(c) = (vy)b 〈y〉 .y 〈c〉 .A1(y) + c.0 .

We suppose process A1 to create a new copy of process B. Therefore the
left part of A1 is executed: (vy1)b 〈y1〉 .y1 〈c〉 .A1(y1). First, a fresh name y1

is generated. We enumerate y with a subscript to mark different fresh names.
The name y1 is sent to process B which creates a new copy of itself through
replication. Afterward, A1 sends the name of the predecessor (that is c) to the
new copy of process B. A1 then calls itself with the fresh name y1 as a parameter.
Thereby the fresh name y1 acts as the new predecessor. The processes A1 and
B now look like:

A1(y1) = (vy2)b 〈y2〉 .y2 〈y1〉 .A1(y2) + y1.0

B =!b(y).y(x).τB .y.x.0 | τB .y1.c.0︸ ︷︷ ︸
1st copy

.

The process A1 now has again the choice between creating a new copy of the
process B or call the previous created process by y1. Note that the 1st copy of
B is already executing τB . We choose to create yet another copy of B:

A1(y2) = (vy3)b 〈y3〉 .y3 〈y2〉 .A1(y3) + y2.0

B =!b(y).y(x).τB .y.x.0 | τB .y1.c.0︸ ︷︷ ︸
1st copy

| τB .y2.y1.0︸ ︷︷ ︸
2nd copy

.

This is continued until A1 decides to call the previous fresh name that was
created; that is the parameter of A1. In our example this is y2. We suppose the
τB of the copies of B to have been finished by now. So a communication between
A1 and B by y2 could take place; otherwise we had to wait until the τB of the
second copy has finished:

A1(y2) = 0

B =!b(y).y(x).τB .y.x.0 | y1.c.0︸ ︷︷ ︸
1st copy

| y1.0︸︷︷︸
2nd copy

.

Now the second copy of B has reduced to y1.0. A communication between
the second and first copy by y1 is now possible:

A1(y2) = 0

B =!b(y).y(x).τB .y.x.0 | c.0︸︷︷︸
1st copy

| 0︸︷︷︸
2nd copy

.
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The second copy of B has reached inaction. The first copy can trigger the name
c that references to the process that should be executed after all copies of B
have finished. Thereafter the first copy reaches inaction. If we suppose A1 as the
only source of names b than no further communication is possible. The multiple
instances without a priori runtime knowledge pattern is completed.

4.5 State Based Patterns

State based patterns capture implicit behavior of processes that is not based
on the current case rather than the environment or other parts of the process.
Some of the following patterns require the existence of an external process that
represents the environment. This process is used as a source for external events.
We denote the environmental process with the special process identifier E . The
names that are triggered from within E are marked with a subscripted env, as
for instance aenv denotes an environmental trigger.

Deferred Choice. A deferred choice is much like the exclusive choice with the
distinction that the choice if τB or τC get executed is not made explicit in A
rather than by the environment. The environment is modeled as an external
process E that signals either the name benv or cenv but not both. The moment
of choice is thereby as late as possible. Afterward the successful process signals
the name kill to the other process which leads to the empty process 0. B and
C must share a fresh name kill: (vkill)(B | C)

A = τA.(b.0 | c.0)
B = b.(benv.kill.τB .B′ + kill.0)
C = c.(cenv.kill.τC .C ′ + kill.0)

A

B

C

b

c

benv

cenv

Interleaved Parallel Routing. The interleaved parallel routing or unordered set
is achieved by non–determinism in the π-calculus. A, B and C share two fresh
names (vx, y)(A | B | C) of which x is used to trigger B and C in any order.
The name y is used to signal the complete execution of the triggered process.
After all activities have been executed, the control is again at A.

A = τA.x.y.x.y.A′

B = x.τB .y.0
C = x.τC .y.0 A C

c
B

b

A B
b

C
c

OR

Milestone. A milestone is a test for a process A, if another parallel process B is
in a given state. Thereby the two parallel processes share a private name check
which returns either true (represented by the special name >) if the condition
holds or false (⊥) if not. A process definition M(x) is used as a memory cell that
keeps the condition. It is called by a private name m with (vm)(B):
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A =check(x).([x = >]τA1.A
′ + [x = ⊥]τA2.A

′′)
B =M(⊥) | b.m 〈>〉 .τB .m 〈⊥〉 .B′

M(x) =m(x).M(x) + check 〈x〉 .M(x) .

4.6 Cancellation Patterns

The cancellation pattern describe the withdrawal of one or more processes that
represent workflow activities.

Cancel Activity. The cancel activity pattern allows a process, that is waiting to
get triggered, to be canceled. This pattern is modeled by the optional reception of
a cancel trigger from an external environment process E with (vcancel)(A | E):

A | E ≡ a.τA.A′ + cancel.0 | !τE .cancel.0 .

Note that currently executed activities represented by τ could not be canceled
due to the unobservability of τ .

Cancel Case. The cancel case pattern cancels a whole workflow instance. This is
equal to Cancel Activity with the exception that all remaining processes receive
a global cancel trigger.

5 Conclusion

In this paper, we introduced a formal semantics for workflow patterns, which
is based on the π-calculus. All of the documented workflow patterns from [9]
have been formalized with concise and unambiguous expressions. Based on the
execution semantics of the π-calculus, the behavior of each workflow pattern has
been defined precisely.

However, this paper is not to be understood as the formal semantics of the
workflow patterns. Other notations, like Workflow Nets [25] or YAWL [12] use
different approaches from Petri nets to transition systems to realize a formal
specified behavior for some or all of the workflow patterns. Rather, this paper
can be seen as a foundation for using modern process algebra in the workflow
domain. The π-calculus supports mobility, communication and change. While it
has not yet been shown how mobility can actually enrich the workflow domain,
requirements like flexibility and reaction to change are ever more challenging [1].
Since the π-calculus was designed to model such highly dynamic systems, it
might offer new ways to face the challenges in the workflow domain. As a starting
point, this paper showed that the π-calculus is indeed able to handle all of the
behavioral workflow requirements given by workflow patterns.

Based on the formalizations presented in this paper, further research has
to be made. The π-calculus could be used as a formal foundation for graphical
notations. Furthermore, formalized workflows can opening the door for reasoning
on workflow process structures.
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