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Abstract

We study basic questions of wavelet decompositions associated
with multiresolution analysis. A rather complete analysis of mul-
tiresolution associated with the solution of a refinement equation is
presented. The notion of extensibility of a finite set of Laurent poly-
nomials is shown to be central in the construction of wavelets by
decomposition of spaces. Two examples of extensibility, first over the
torus and then in complex space minus the coordinate axes are dis-
cussed. In each case we are led to a decomposition of the fine space in
a multiresolution analysis as a sum of the adjacent coarse space plus
an additional space spanned by the multiinteger translates of a finite
number of pre-wavelets. Several examples are provided throughout
to illustrate the general theory.

§1. Introduction

In this paper we record and refine some important new advances for
multivariate wavelet decomposition. A resolution of this problem depends on
certain matrix theory questions over the ring of multivariate Laurent series.

Let s be a positive integer and let IRs be the s-dimensional real space
equipped with the norm | · | given by

|x| :=
( s∑

j=1

|xj |2
)1/2

for x = (x1, . . . , xs) ∈ IRs.

By a function on IRs we mean a complex-valued Lebesgue measurable function
on IRs. By a sequence on ZZs we mean a mapping from ZZs to C|| . An element
of ZZs is called a multiinteger. For 1 ≤ p ≤ ∞, we denote by Lp = Lp(IRs) the
Banach space of all functions f on IRs for which

‖f‖p :=
(∫

IRs
|f(x)|p dx

)1/p

<∞.
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We observe that L2 is a Hilbert space with the usual inner product given by

〈f, g〉 :=
∫
IRs

f(x)g(x) dx.

Analogously, denote by `p = `p(ZZs) the Banach space of all sequences a on
ZZs for which

‖a‖p :=
( ∑
α∈ZZs

|a(α)|p
)1/p

<∞.

For α ∈ ZZs we let τα be the shift operator given by ταf = f(· − α), where f
can be a function on IRs or a sequence on ZZs. For α ∈ ZZs, we call f(· − α)
an integer translate of f .

Following Mallat [26], we say that a sequence (Vj)j∈ZZ of closed subspaces
of Lp(IRs) forms a multiresolution approximation of Lp(IRs), if it satisfies the
following conditions:

(R1) Vj ⊂ Vj+1 for all j ∈ ZZ.
(R2) f ∈ Vj =⇒ f(· − 2−jα) ∈ Vj for all j ∈ ZZ and α ∈ ZZs.
(R3) f ∈ Vj ⇐⇒ f(2·) ∈ Vj+1.
(R4) There is an isomorphism from `p onto V0 which commutes with shift

operators.
(R5) ∩j∈ZZVj = {0}.
(R6) ∪j∈ZZVj is dense in Lp(IRs).
The case p = 2 is particularly interesting, since L2(IRs) is a Hilbert

space. Let Wj be the orthogonal complement of Vj in Vj+1. Then L2(IRs) can
be decomposed as an orthogonal sum of Wj (j ∈ ZZ). It follows from (R3)
that

f ∈Wj ⇐⇒ f(2·) ∈Wj+1.

Hence any function ψ ∈W0 has the following property: For j, k ∈ ZZ, j 6= k,

〈ψ(2j · −α), ψ(2k · −β)〉 = 0 for all α, β ∈ ZZs. (1.1)

Following Battle [3], we call such a function a pre-wavelet . If, in addition,
ψ satisfies (1.1) for j = k and α 6= β, then ψ is called a wavelet . A main
problem in multiresolution analysis is to find pre-wavelets in W0 such that
their multiinteger translates form an unconditional basis for W0. If they are
wavelets, then their integer translates actually form an orthogonal basis for
W0. In such a case, L2(IRs) has an orthogonal basis of wavelets.

The wavelet decomposition problem has been investigated by Meyer [27]
and Mallat[26] for the case s = 1. Daubechies [17] has given a construction of
smooth compactly supported wavelets. Dahmen and Micchelli [16] using re-
sults of [7] provided some improvement of [17] and gave an alternative deriva-
tion of Daubechies’ theorem. Chui and Wang [8–9] considered a cardinal spline
approach to wavelets in one variable. Chui and Wang [10], and independently
Micchelli [28], provided a comprehensive study of univariate pre-wavelet de-
compositions. Moreover, in the multivariate case, Micchelli connected wavelet
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decompositions to the fundamental result of Quillen and Suslin in algebraic
geometry which states that projective modules over polynomial rings are free.

An important example of a refinable function is a box spline, see [5] for
its definition. This fact was discovered by Dahmen and Micchelli [15] and
used as a basis for the line average subdivision scheme for computing box
spline surfaces, see also Cohen, Lyche and Riesenfield [11]. Riemenschneider
and Shen in a recent paper [29] provided wavelet decompositions based on
box splines, see also [28].

This paper treats in detail the algebraic problems associated with wavelet
decomposition of the spaces which comprise a multiresolution analysis. The
central idea is to represent the space V1 on the “fine scale” as a sum of V0 on
the “coarse scale” and 2s−1 additional spaces spanned by pre-wavelets. Before
we undertake this task we provide very general conditions for the existence of
a multiresolution analysis based on a solution to a refinement equation studied
extensively in [7].

To this end, we introduce certain Banach spaces which are convenient and
natural in the study of multiresolution analysis. Essential to our point of view
about decompositions of spaces are algebraic and Fourier analytical issues
concerning spaces generated by multiinteger translates of a fixed number of
functions. For this purpose we draw upon results from our recent paper [21]
on this subject. This allows use to develop criteria for change of bases and
Gram-Schmidt orthogonalization in these spaces.

We couple these facts with the algebra of Laurent series associated with
the refinement equation to solve the wavelet decomposition problem. As we
shall demonstrate, the essential notion in this regard is what we call exten-
sibility of a finite set of Laurent series. The extensibility of a set of Laurent
series associated with the coarse space V0 determines the existence of a wavelet
decomposition of V1.

There are two instances in which extensibility can be decided for Laurent
polynomials. The first case, over the torus, depends on certain topological
considerations, which will be described elsewhere, and the second case, over
(C|| \{0})s requires the use of the celebrated Quillen-Suslin theorem. Numer-
ous examples, of both a specific as well as a general nature, are provided
throughout to highlight important aspects of the general theory.

Finally, we remark that much of what we develop here applies to mul-
tiresolution analysis based on general lattices. In a future publication this
important extension will be addressed.

§2. Multiresolution Analysis

Multiresolution analysis can be built on the multiinteger shifts of scales
of a suitable function φ. We will address this important technique in some
generality next. Specifically, we discuss in this section the possible conditions
on φ under which one can construct from φ a multiresolution approximation
of Lp(IRs) (1 ≤ p ≤ ∞).
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We find it convenient to work in the following setting. Given a function
φ on IRs, set

φ◦ :=
∑

α∈ZZs

|φ(· − α)|.

Then φ◦ is a 1-periodic function. Define

|φ|p := ‖φ◦‖Lp([0,1)s).

For 1 ≤ p ≤ ∞, let Lp = Lp(IRs) be the linear space of all functions φ for
which |φ|p < ∞. Equipped with the norm | · |p, Lp becomes a Banach space.
Clearly, ‖φ‖p ≤ |φ|p, and |φ|q ≤ |φ|p for 1 ≤ q ≤ p ≤ ∞. This shows that

Lp ⊂ Lp

and
Lp ⊂ Lq for 1 ≤ q < p ≤ ∞.

The space L∞ has already appeared in [28]. Also, note that L1 = L1. There
are several subspaces of Lp which are important in what follows. For instance,
if φ ∈ Lp is compactly supported, then φ ∈ Lp (1 ≤ p ≤ ∞). Also, we say
that a function φ ∈ Lp decays exponentially fast, if there are constants C > 0
and q, 0 < q < 1, such that

‖φ(·+ α)‖Lp([0,1)s) ≤ Cq|α| for all α ∈ ZZs.

If φ ∈ Lp decays exponentially fast, then φ ∈ Lp. We denote by Ep the
subspace of Lp which consists of all exponentially decaying functions. Fur-
thermore, we observe that if there are constants C > 0 and δ > 0 such that

|φ(x)| ≤ C(1 + |x|)−s−δ for all x ∈ IRs,

then φ ∈ L∞.
Given a function φ ∈ Lp and a sequence a ∈ `∞, the semi-discrete con-

volution product φ∗′a is, by definition, the sum
∑

α∈ZZs φ(·−α)a(α). We also
denote by φ∗′ the mapping a 7→ φ∗′a, a ∈ `∞. The following theorem shows
that φ∗′ maps `p to Lp and maps `1 to Lp.

Theorem 2.1. If φ ∈ Lp(IRs), then

|φ∗′a|p ≤ |φ|p‖a‖1

and
‖φ∗′a‖p ≤ |φ|p‖a‖p.

Proof: The first inequality follows from the observation that

(φ∗′a)◦ ≤ ‖a‖1φ◦.
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The second inequality is obvious for p = ∞. In the case 1 ≤ p < ∞, we let
I := ‖φ∗′a‖p and express Ip as follows:

Ip =
∑

β∈ZZs

∫
[0,1)s+β

∣∣(φ∗′a)(x)∣∣p dx =
∫

[0,1)s

∑
β∈ZZs

∣∣(φ∗′a)(x+ β)
∣∣p dx.

Fix x for the moment. Let c be the sequence
(
φ(x+ β)

)
β∈ZZs . Then

(φ∗′a)(x+ β) = (a∗c)(β),

where a∗c denotes the discrete convolution product of a and c. By a discrete
version of Young’s inequality , we have ‖a∗c‖p ≤ ‖a‖p||c‖1 (see, e.g., [18,
Theorem 6.18]). It follows that∑

β∈ZZs

∣∣(φ∗′a)(x+ β)|p = ‖a∗c‖p
p ≤ ‖a‖p

p‖c‖
p
1 = ‖a‖p

p(φ
◦(x))p.

Consequently, we have

Ip ≤ ‖a‖p
p

∫
[0,1)s

(
φ◦(x)

)p
dx = ‖a‖p

p|φ|pp,

as desired.

We denote by Sp(φ) the image of `p(ZZs) under the mapping φ∗′. The
integer translates of φ are said to be `p-stable if there exists a constant Cp > 0
such that

‖φ∗′a‖p ≥ Cp‖a‖p for all a ∈ `p.

In such a case, φ∗′ is an isomorphism from `p onto Sp(φ), and the integer
translates of φ form an unconditional basis for Sp(φ).

A function φ ∈ Lp is said to be refinable, if it satisfies a refinement
equation

φ =
∑

α∈ZZs

b(α)φ(2 · −α) (2.1)

for some sequence b ∈ `1(ZZs). The sequence b is called the mask of the
refinement equation.

For j ∈ ZZ we denote by σj the scaling operator given by

σjf = f(2j ·) for all functions f on IRs.

We are now in a position to state the main result of this section.

Theorem 2.2. Let φ ∈ Lp(IRs) (1 ≤ p < ∞), V0 = Sp(φ) and Vj = σj(V0).
If φ is refinable and has `p-stable integer translates, then (Vj)j∈ZZ forms a
multiresolution approximation of Lp(IRs).
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Proof: Using the discrete version of Young’s inequality, we see that (R1)
holds, because φ is refinable and b ∈ `1(ZZs). (R2) and (R3) follow from
the definition of Vj . (R4) is a consequence of `p-stability. Indeed, φ∗′ is an
isomorphism from `p onto V0, which commutes with shift operators. (R5) will
be proved in the following theorem, while (R6) is a consequence of Theorem 2.4
and Theorem 2.5, which will be proved later.

Theorem 2.3. Let φ ∈ Lp(IRs) (1 ≤ p < ∞), V0 = Sp(φ) and Vj = σj(V0).
If φ has `p-stable integer translates, then ∩j∈ZZVj = {0}.

Proof: For f ∈ ∩j∈ZZVj , we have f(2j ·) ∈ V0; hence there is a sequence a ∈ `p
(a depends on j) such that f(2jx) = (φ∗′a)(x) (x ∈ IRs). But φ has `p-stable
integer translates, so there exists a constant Cp > 0 such that

‖a‖p ≤ C−1
p

(∫
IRs

|f(2jx)|p dx
)1/p = C−1

p 2−js/p‖f‖p. (2.2)

It is easily seen that for all x ∈ IRs,

|f(2jx)| = |(φ∗′a)(x)| ≤ ‖a‖∞φ◦(x) ≤ ‖a‖pφ
◦(x).

It follows that
|f(x)|p ≤ ‖a‖p

p|φ◦(2−jx)|p.

Let r > 0. Integrating both sides of the above inequality on the ball

Br := {x ∈ IRs : |x| ≤ r},

we obtain∫
Br

|f(x)|p dx ≤ ‖a‖p
p

∫
Br

|φ◦(2−jx)|p dx ≤ 2js‖a‖p
p

∫
2−jBr

|φ◦(x)|p dx.

This together with the estimate for ‖a‖p given in (2.2) yields∫
Br

|f(x)|p dx ≤ C−p
p ‖f‖p

p

∫
2−jBr

|φ◦(x)|p dx.

Note that φ◦ is 1-periodic and belongs to Lp on [0, 1)s. Letting j → ∞ in
the above inequality, with r fixed, we get

∫
Br
|f(x)|p dx = 0. This shows that

f = 0, since r can be any positive real number.

Remark 2.1. In the case p = ∞, Theorem 2.3 may fail to hold. For example,
let φ be the characteristic function of [0, 1) ⊂ IR and let V0 = S∞(φ), Vj =
σj(V0). Then 1 ∈ Vj for all j ∈ ZZ.

The Fourier-Laplace transform of a function f is, by definition, the func-
tion given by

f̂(z) :=
∫
IRs

f(x)e−iz·xdx (z ∈ C|| s),
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where for z = (z1, . . . , zs) ∈ C|| s and x = (x1, . . . , xs) ∈ IRs,

z · x :=
s∑

j=1

zjxj .

Restricted to IRs, f̂ becomes the Fourier transform of f . For later use, we
denote the s-torus T s as the set{

(z1, . . . , zs) ∈ C|| s : |z1| = · · · = |zs| = 1
}
.

The following theorem was first proved in [7] under the additional condi-
tions that φ is a compactly supported continuous function.

Theorem 2.4. If φ ∈ L1 is refinable, then∑
α∈ZZs

φ(· − α) = φ̂(0). (2.3)

Proof: Taking Fourier transforms on both sides of the refinement equation
(2.1), we obtain

φ̂(ξ) = 2−sp(e−iξ/2)φ̂(ξ/2) (ξ ∈ IRs) (2.4)

where
p(z) =

∑
α∈ZZs

b(α)zα (z ∈ T s)

is the symbol of the sequence b. It follows from (2.4) that

φ̂(ξ) =
k∏

j=1

(
2−sp(e−iξ/2j

)
)
φ̂(ξ/2k). (2.5)

If |p(1)| < 2s, then choosing ξ = 0 in (2.4), we obtain φ̂(0) = 0. Moreover,
|p(1)| < 2s implies that for any fixed ξ ∈ IRs and sufficiently large j,

|2−sp(e−iξ/2j

)| < 1.

Thus, letting k →∞ in (2.5), we obtain φ̂(ξ) = 0. This is true for any ξ ∈ IRs,
hence φ = 0.

Now suppose |p(1)| ≥ 2s. Choosing ξ = 2k+1βπ in (2.5), where β ∈
ZZs\{0}, we obtain

φ̂(2k+1βπ) = (2−sp(1))kφ̂(2βπ).

It follows that
|φ̂(2βπ)| ≤ |φ̂(2k+1βπ)|.
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Letting k → ∞ in the above inequality and applying the Riemann-Lebesgue
lemma, we obtain

φ̂(2βπ) = 0 for all β ∈ ZZs\{0}. (2.6)

We claim that (2.6) implies (2.3). When φ ∈ L1 is compactly supported,
this was proved by Strang and Fix [34] using the Poisson summation formula.
In general, consider the Fourier series expansion of the 1-periodic function∑

α∈ZZs φ(· − α) in L1([0, 1)s):∑
α∈ZZs

φ(x− α) ∼
∑

β∈ZZs

c(β)ei2πβ·x, x ∈ [0, 1)s.

The Fourier coefficients are

c(β) =
∫

[0,1)s

∑
α∈ZZs

φ(x− α)e−i2πβ·x dx

=
∫
IRs

φ(x)e−i2πβ·x dx = φ̂(2πβ).

Therefore (2.6) implies (2.3).

According to this theorem, if φ ∈ Lp is refinable, then
∑

α∈ZZs φ(·−α) is a
constant. If, in addition, φ has `p-stable integer translates, then this constant
must be nonzero. This fact will be proved in Theorem 3.5. After normalization
we may assume that

∑
α∈ZZs φ(·−α) = 1. Thus the property (R6) follows from

the following theorem.

Theorem 2.5. If φ ∈ Lp (1 ≤ p <∞) and
∑

α∈ZZs φ(·−α) = 1, then for any
f ∈ Lp,

‖f −
∑

α∈ZZs

ah(α)φ(h−1 · −α)‖p → 0 as h→ 0, (2.7)

where

ah(α) = ah(f, α) := h−s

∫
hα+[0,h)s

f(x) dx =
∫

[0,1)s

f
(
h(x+ α)

)
dx. (2.8)

Proof: In the proof of this theorem, we denote by |x| the maximum norm of
x, i.e., |x| = max1≤j≤s |xj | for x = (x1, . . . , xs) ∈ IRs. Assume first that f is a
continuous function supported on a cube {x ∈ IRs : |x| ≤ r} for some r > 0.
Let

εh(f) := ‖f −
∑

α∈ZZs

ah(α)φ(h−1 · −α)‖p. (2.9)

Since
∑

α∈ZZs φ(· − α) = 1, we have

εh(f) = hs/p‖gh‖p, (2.10)
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where
gh(x) :=

∑
α∈ZZs

(
f(hx)− ah(α)

)
φ(x− α) (x ∈ IRs).

To estimate ‖gh‖p, we write

‖gh‖p
p =

∫
IRs

|gh(x)|p dx =
∑

β∈ZZs

∫
[0,1)s

|gh(x+ β)|p dx.

Let N be a positive integer. From (2.8) we see that for x ∈ [0, 1)s and |β−α| <
N ,

|f
(
h(x+ β)

)
− ah(α)|

≤
∫

[0,1)s

∣∣f(
h(x+ β)

)
− f

(
h(y + α)

)∣∣dy ≤ ω(f,Nh),

where ω(f, ·) is the modulus of continuity of f :

ω(f, t) := sup
|y|≤t

‖f − f(· − y)‖∞.

In general, we have

|f
(
h(x+ β)

)
− ah(α)| ≤ 2‖f‖∞ for all x ∈ [0, 1)s and α, β ∈ ZZs.

It follows that for x ∈ [0, 1)s and all β ∈ ZZs,

|gh(x+ β)| ≤
∑

|α−β|<N

+
∑

|α−β|≥N

|f(h(x+ β))− ah(α)||φ(x+ β − α)|

≤ω(f,Nh)φ◦(x) + 2‖f‖∞φ◦N (x),

where
φ◦N :=

∑
|α|≥N

|φ(· − α)|.

Let M be the least integer bigger than h−1r + 1. Since the cardinality
of the set {β ∈ ZZs : |β| < 2M} does not exceed a constant times h−s, we
obtain∑
|β|<2M

∫
[0,1)s

|gh(x+ β)|p dx ≤ C1h
−s

[
ω(f,Nh)|φ|p + ‖f‖∞‖φ◦N‖Lp([0,1)s)

]p

(2.12)
for some constnat C1 > 0.

For |β| ≥ 2M , we have

gh(x+ β) =
∑

α∈ZZs

(f(h(x+ β))− ah(α))φ(x+ β − α)

= −
∑

α∈ZZs

ah(α)φ(x+ β − α)

= −
∑

|α|≤M

ah(α)φ(x+ β − α),
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noting that f(h(x+ β)) = 0 for x ∈ [0, 1)s and |β| ≥ 2M , and ah(α) = 0 for
|α| > M . It follows that for |β| ≥ 2M and x ∈ [0, 1)s,

|gh(x+ β)| ≤ ‖f‖∞
∑

|α|≤M

|φ(x+ β − α)|.

Hence ∑
|β|≥2M

|gh(x+ β)|p ≤ ‖f‖p
∞

∑
|β|≥2M

[ ∑
|α|≤M

|φ(x+ β − α)|
]p
. (2.13)

Observe that

{β ∈ ZZs : |β| ≥ 2M} =
⋃

|γ|≤2M

(
γ + 4M(ZZs\{0})

)
.

Let γ be fixed, |γ| ≤ 2M . Since 1 ≤ p <∞, we have that for x ∈ [0, 1)s,∑
β∈γ+4M(ZZs\{0})

[ ∑
|α|≤M

|φ(x+ β − α)|
]p

≤
[ ∑
β∈γ+4M(ZZs\{0})

∑
|α|≤M

|φ(x+ β − α)|
]p ≤ (φ◦M (x))p,

noting that |β| ≥ 2M and |α| ≤ M imply |β − α| ≥ M . Thus there exists a
constant C2 > 0 such that for all x ∈ [0, 1)s,∑

|β|≥2M

[ ∑
|α|≤M

|φ(x+ β − α)|
]p

≤
∑

|γ|≤2M

∑
β∈γ+4M(ZZs\{0})

[ ∑
|α|≤M

|φ(x+ β − α)|
]p

≤C2h
−s(φ◦M (x))p,

where we have used again the fact that the cardinality of the set {γ ∈ ZZs :
|γ| ≤ 2M} does not exceed a constant times h−s. This together with (2.13)
gives the following estimate:∑

|β|≥2M

∫
[0,1)s

|gh(x+ β)|p dx ≤ C2‖f‖p
∞h

−s‖φ◦M‖p
Lp([0,1)s). (2.14)

We choose N in such a way that N ≤ M . Then φ◦M (x) ≤ φ◦N (x) for all
x ∈ [0, 1)s.

Now (2.12) and (2.14) together tell us that there exists a constant C > 0
such that

‖gh‖p
p =

∑
β∈ZZs

∫
[0,1)s

|gh(x+ β)|p dx

≤ Cph−s
[
ω(f,Nh)|φ|p + ‖f‖∞‖φ◦N‖Lp([0,1)s)

]p
.
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This together with (2.10) yields

εh(f) ≤ C
(
ω(f,Nh)|φ|p + ‖f‖∞‖φ◦N‖Lp([0,1)s)

)
. (2.15)

Let us now choose N to be the integer part of 1/
√
h. When h > 0 is sufficiently

small, we indeed have M ≥ h−1r ≥ N . From (2.15) we conclude that

lim
h→0+

εh(f) = 0.

This proves (2.7) for compactly supported continuous functions f .
Now let f be an arbitrary function in Lp. By Theorem 2.1, it follows from

the definition (2.9) of εh(f) that

εh(f) ≤ ‖f‖p + hs/p‖φ∗′ah‖p ≤ ‖f‖p + hs/p|φ|p‖ah‖p.

From the definition (2.8) of ah(f, α) and Hölder’s inequality we see that

‖ah‖p ≤ h−s/p‖f‖p,

and so we obtain
εh(f) ≤ ‖f‖p(1 + |φ|p).

Hence for any g ∈ C0(IRs), the space of compactly supported continuous
functions on IRs, we have

εh(f) ≤ εh(g) + εh(f − g) ≤ εh(g) + ‖f − g‖p(1 + |φ|p).

Since C0(IRs) is dense in Lp(IRs) (1 ≤ p <∞), we conclude easily that εh(f)
converges to 0 as h goes to 0 for any f ∈ Lp (1 ≤ p <∞).

Remark 2.2. L∞-approximation by the integer translates of a function on IR
was first investigated by Schoenberg [33]. For the case s > 1, L2-approximation
was studied by Strang and Fix [34] using Fourier analysis. See also [13] and
[6] for Lp-approximation by the integer translates of a compactly supported
function on IRs. When φ does not have compact support, L∞-approximation
was recently studied by Light and Cheney [25], while Lp-approximation (1 ≤
p ≤ ∞) was investigated by Jia and Lei [20].

§3. Symbol Calculus

In this section we establish some basic properties of symbol calculus and
apply them to the study of stability of the integer translates of a function.

Given a sequence a, let ã(z) be its symbol, or its discrete Fourier trans-
form:

ã(z) =
∑

α∈ZZs

a(α)zα. (3.1)
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With some abuse of terminology, we call the series in (3.1) a Laurent series.
If a ∈ `1(ZZs), then the symbol ã(z) is a continuous function of z on the torus
T s. The sequence a can be recovered from ã through the inversion formula:

a(α) =
∫

[0,1)s

ã(ei2πξ)e−i2πα·ξ dξ, α ∈ ZZs. (3.2)

Let B be the set of all functions of the form (3.1) with ‖a‖1 <∞. Normed by
‖ã‖ := ‖a‖1, B is a commutative Banach algebra, with pointwise multiplica-
tion. If f ∈ B and f(z) 6= 0 for every z ∈ T s, then by Wiener’s lemma (see
e.g., [32, p.266]) 1/f is also in B.

If a is a sequence decaying exponentially fast, i.e., for some constants
C > 0 and q between 0 and 1,

|a(α)| ≤ Cq|α| for all α ∈ ZZs,

then ã(z) is a holomorphic function of z in a neighborhood of T s. Conversely,
if f is a holomorphic function in a neighborhood of T s, then f = ã for some
exponentially decaying sequence a. Let H be the set of all functions holomor-
phic in a neighborhood of T s. Then H is a subalgebra of B. If f ∈ H and
f(z) 6= 0 for every z ∈ T s, then 1/f is also in H.

If a is a finitely supported sequence, then ã(z) is a Laurent polynomial,
which is defined on (C|| \{0})s. The set of all Laurent polynomials is denoted
by P. Then P is a subalgebra of H. If p is a Laurent polynomial which does
not vanish on (C|| \{0})s, then 1/p is also a Laurent polynomial. To see this,
we observe that for some β ∈ ZZs, zβp(z) is a polynomial. The polynomial
z1 · · · zs vanishes on the zero set of zβp(z); hence by Hilbert Nullstellensatz,
zβp(z) divides (z1 · · · zs)n for some integer n > 0. This shows that p(z) must
have the form λzα, where λ ∈ C|| \{0} and α ∈ ZZs. Thus 1/p(z) = λ−1z−α is
also a Laurent polynomial.

Given f ∈ Lp(IRs) and g ∈ Lq(IRs) (1 ≤ p ≤ ∞, 1/p + 1/q = 1), we
denote by c(f, g) the sequence on ZZs given by

c(f, g)(α) :=
∫
IRs

f(x)g(x− α) dx =
∫
IRs

f(x+ α)g(x) dx. (3.3)

Theorem 3.1. For 1 ≤ p, q ≤ ∞, 1/p + 1/q = 1, the following inequalities
hold:

‖c(f, g)‖1 ≤ |f |p|g|q (3.4)

and
‖c(f, g)‖p ≤ ‖f‖p|g|q. (3.5)

Proof: We have

‖c(f, g)‖1 ≤
∑

α∈ZZs

∑
β∈ZZs

∫
[0,1)s+β

|f(α+ x)||g(x)| dx

=
∫

[0,1)s

∑
α∈ZZs

∑
β∈ZZs

|f(α+ β + x)||g(x+ β)| dx.
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By the definition of f◦ and g◦, the double sum under the above integral sign
equals f◦(x)g◦(x), hence it follows that

‖c(f, g)‖1 ≤
∫

[0,1)s

f◦(x)g◦(x) dx ≤ |f |p|g|q.

This proves (3.4).
To prove (3.5) we shall use the converse of Hölder’s inequality (see, e.g.,

[18, p.181]). For two sequences a and b on ZZs, let

〈a, b〉 :=
∑

α∈ZZs

a(α)b(α).

For any finitely supported sequence b, we have

〈c(f, g), b〉 = 〈f, g∗′b〉,

hence by Theorem 2.1 it follows that

|〈c(f, g), b〉| ≤ ‖f‖p‖g∗′b‖q ≤ ‖f‖p|g|q‖b‖q.

This proves (3.5).

Denote by [f, g](z) the symbol of the sequence c(f, g):

[f, g](z) :=
∑

α∈ZZs

c(f, g)(α)zα. (3.6)

If f, g ∈ L2, then c(f, g) ∈ `1 by Theorem 3.1, and hence [f, g] ∈ B. If f, g ∈ E2,
then one can easily see that c(f, g) is an exponentially decaying sequence, so
[f, g] ∈ H. If f, g ∈ L2 are compactly supported, then c(f, g) is a finitely
supported sequence, hence [f, g](z) is a Laurent polynomial and [f, g] ∈ P.

From the definition of [f, g] we see that {φ(· − α)}α∈ZZs forms an or-
thonormal basis for S2(φ) if and only if

[φ, φ](z) = 1 for all z ∈ T s.

Moreover, a function f ∈ L2 is orthogonal to S2(φ) if and only if

[f, φ](z) = 0 for all z ∈ T s.

Furthermore, if φ, ψ ∈ L2 and a, b ∈ `1, then

[φ∗′a, ψ∗′b](z) = ã(z)[φ, ψ](z)̃b(z) for all z ∈ T s. (3.7)

Theorem 3.2. For f, g ∈ L2,

[f, g](e−iξ) =
∑

α∈ZZs

f̂(ξ + 2πα)ĝ(ξ + 2πα) for all ξ ∈ IRs.
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Proof: This is a standard application of the Poisson summation formula.
However, since f and g are in L2, we have to be careful about its proof. For
ξ ∈ IRs, using the dominated convergence theorem, we have

[f, g](e−iξ) =
∑

α∈ZZs

∫
IRs

f(x+ α)e−iα·ξ g(x) dx

=
∑

α∈ZZs

∑
β∈ZZs

∫
[0,1)s

f(x+ α+ β)e−iα·ξ g(x+ β) dx

=
∫

[0,1)s

f1(x)g1(x) dx,

where
f1(x) :=

∑
α∈ZZs

f(x+ α)e−i(x+α)·ξ

and g1 is defined in the same way. Since f1 is a 1-periodic function and is
square-integrable on [0, 1)s, it has a Fourier series expansion

f1(x) ∼
∑

β∈ZZs

a(β)ei2πβ·x.

where the Fourier coefficients a(β) are given by

a(β) =
∫

[0,1)s

f1(x)e−i2πβ·x dx = f̂(ξ + 2πβ).

In the same fashion the Fourier series expansion of g1 is

g1(x) ∼
∑

β∈ZZs

ĝ(ξ + 2πβ)ei2πβ·x.

Consequently, by Parseval’s identity, we have∫
[0,1)s

f1(x)g1(x) dx =
∑

α∈ZZs

f̂(ξ + 2πα)ĝ(ξ + 2πα),

as desired.

Theorem 3.3. The integer translates of φ ∈ L2 are `2-stable if and only if
one of the following conditions holds:

(i)
∑

α∈ZZs |φ̂(ξ + 2πα)|2 > 0 for all ξ ∈ IRs.
(ii) [φ, φ](z) > 0 for all z ∈ T s.
(iii) There exists g ∈ S1(φ) such that

〈g, φ(· − α)〉 = δ0α for all α ∈ ZZs. (3.8)
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Proof: The function

ρ : ξ 7→
∑

α∈ZZs

|φ̂(ξ + 2πα)|2 (ξ ∈ IRs)

is a 2π-periodic function. By Theorem 3.2, ρ(ξ) = [φ, φ](e−iξ), hence ρ is
continuous. Suppose that ρ(ξ0) = 0 for some ξ0 ∈ IRs. Then for any given
ε > 0 there exists δ, 0 < δ < π, such that |ξ − ξ0| < δ implies |ρ(ξ)| < ε. Let

h(ξ) :=
{

1, if |ξ − ξ0 − 2πα| < δ for some α ∈ ZZs;
0, elsewhere.

Then h is a 2π-periodic function and is square-integrable on [0, 2π)s. Hence
h(ξ) = ã(e−iξ) for some a ∈ `2. Let f := φ∗′a. The Fourier transform of f is

f̂(ξ) = ã(e−iξ)φ̂(ξ) = h(ξ)φ̂(ξ).

It follows that∫
IRs

|f̂(ξ)|2 dξ =
∫
IRs

|h(ξ)|2|φ̂(ξ)|2 dξ =
∫

[0,2π)s

|h(ξ)|2ρ(ξ) dξ. (3.9)

From the definition of h we see that h(ξ) 6= 0 implies ρ(ξ) < ε. Hence it follows
from (3.9) that

‖f‖22 = (2π)−s‖f̂‖22 ≤ (2π)−sε2
∫

[0,2π)s

|h(ξ)|2 dξ = ε2‖a‖22.

This shows that the integer translates of φ are `2-unstable, since ε > 0 can be
arbitrary small. In other words, `2-stability implies the condition (i).

By Theorem 3.2, (i) and (ii) are equivalent. Let us prove that (ii) implies
(iii). If (ii) holds, then by Wiener’s lemma, there exists c ∈ `1 such that

c̃(z) = 1/[φ, φ](z) (z ∈ T s). (3.10)

Let g = φ∗′c. Then by (3.7),

[g, φ](z) = c̃(z)[φ, φ](z) = 1 for all z ∈ T s.

From (3.3) and (3.6) we see that this is equivalent to (3.8). Therefore (ii)
implies (iii).

Finally, assume that g ∈ S1(φ) satisfies (3.8). Since φ ∈ L2, by The-
orem 2.1 we have g ∈ L2. If f = φ∗′a for some a ∈ `2(ZZs), then by the
dominated convergence theorem, we deduce from (3.8) that

a(α) = 〈f, g(· − α)〉. (3.11)

Applying Theorem 3.1 to f and g, we obtain

‖a‖2 ≤ ‖f‖2|g|2.

This shows that the integer translates of φ are `2-stable.

The following theorem is an application of Theorem 3.3.
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Theorem 3.4. Let φ be a function in E2 having `2-stable integer translates.
If a is a sequence in `2 such that f := φ∗′a is also in E2, then the sequence
a actually decays exponentially fast. In particular, if φ ∈ E2 satisfies the
refinement equation (2.1) with mask b and has `2-stable integer translates,
then the mask b decays exponentially fast.

Proof: Since φ has `2 stable integer translates, by Theorem 3.3, [φ, φ](z) > 0
for all z ∈ T s. But φ ∈ E2, hence [φ, φ] is in H, so is 1/[φ, φ]. This shows that
the sequence c given by (3.10) decays exponentially fast. Let g := φ∗′c. Then
g ∈ E2. By Theorem 3.3, this g satisfies (3.11). Now that both f and g are
in E2, hence by (3.11) we conclude that the sequence a decays exponentially
fast.

The following theorem extends Theorem 3.3 to the case in which φ ∈ Lp

(1 ≤ p ≤ ∞).

Theorem 3.5. Let φ ∈ Lp (1 ≤ p ≤ ∞). Then φ has `p-stable integer
translates if and only if

sup
α∈ZZs

|φ̂(ξ + 2πα)| > 0 for all ξ ∈ IRs. (3.12)

Proof: Suppose that for some ξ ∈ IRs, φ̂(ξ + 2πα) = 0 for all α ∈ ZZs. We
wish to prove that the integer translates of φ are `p-unstable. By considering
the function x 7→ e−iξ·xφ(x) (x ∈ IRs) if necessary, we may assume without
loss of generality that φ̂(2πα) = 0 for all α ∈ IRs. With the help of the Poisson
summation formula, this assumption implies that∑

α∈ZZs

φ(· − α) = 0 (3.13)

(see the proof of Theorem 2.4). Thus the desired result for the case p = ∞
has been already established.

Let us now fix p, 1 ≤ p <∞. The sequence e : α 7→ 1 (α ∈ ZZs) is not in
`p(ZZs), so we have to truncate e as follows. For each integer n > 0, let en be
the sequence on ZZs given by

en(α) =
{

1, if |α| ≤ n;
0, otherwise.

To prove that the integer translates of φ are `p-unstable, it suffices to show
that

‖φ∗′en‖p/‖en‖p → 0 as n→∞. (3.14)

To this end, we first truncate φ as follows. For each integer N > 0, let φN be
the function on IRs given by

φN (x) =
{
φ(x), if |x| ≤ N ;
0, otherwise.
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Then we set
ψ := φN + ψN ,

where ψN is the function on IRs given by

ψN (x) :=
{ ∑

α∈ZZs(φ− φN )(x− α), if x ∈ [0, 1)s;
0, otherwise.

It follows from the construction of ψN that

|ψN |p ≤ |φ− φN |p.

Hence we have

|φ− ψ|p = |φ− φN − ψN |p ≤ |φ− φN |p + |ψN |p ≤ 2|φ− φN |p. (3.15)

This together with Theorem 2.1 gives the following estimate:

‖(φ− ψ)∗′en‖p ≤ |φ− ψ|p‖en‖p ≤ 2|φ− φN |p‖en‖p.

Therefore we obtain

‖φ∗′en‖p/‖en‖p ≤ ‖ψ∗′en‖p/‖en‖p + 2|φ− φN |p. (3.16)

By the dominated convergence theorem, |φ − φN |p → 0 as N → ∞. Thus it
remains to estimate ‖ψ∗′en‖p/‖en‖p. For this purpose, we first observe that
ψ is compactly supported:

ψ(x) = 0 for |x| > N. (3.17)

Second, by (3.13), we see from the construction of ψ that∑
α∈ZZs

ψ(· − α) =
∑

α∈ZZs

(φN + ψN )(· − α) =
∑

α∈ZZs

φ(· − α) = 0. (3.18)

Let n > N and consider ψ∗′en. By (3.17) and (3.18), we have∑
α∈ZZs

en(α)ψ(x− α) = 0 for |x| > n+N or |x| < n−N.

It follows that

‖ψ∗′en‖p
p =

∫
n−N≤|x|≤n+N

∣∣ ∑
α∈ZZs

en(α)ψ(x− α)
∣∣p dx

≤
∑

n−N≤|β|≤n+N

∫
β+[0,1)s

|ψ◦(x)|p dx.
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The cardinality of the set {β ∈ ZZs : n−N ≤ |β| ≤ n+N} does not exceed
C1n

s−1N , where C1 > 0 is a constant. Thus the above estimate yields

‖ψ∗′en‖p
p ≤ C1n

s−1N |ψ|pp.

Furthermore, there exists a constant C2 > 0 such that

‖en‖p
p =

∑
|α|≤n

1 ≥ C2n
s.

Thus we get the following estimate:

‖ψ∗′en‖p/‖en‖p ≤
(
(C1N)/(C2n)

)1/p|ψ|p. (3.19)

Note that by (3.15) we have

|ψ|p ≤ |φ|p + 2|φ− φN |p. (3.20)

Choose N to be the integer part of
√
n. Then we conclude from (3.19) and

(3.20) that
‖ψ∗′en‖p/‖en‖p → 0 as n→∞.

This verifies (3.14), so that the necessity part of the theorem has been proved.
Let us now assume that φ ∈ Lp satisfies (3.12). To prove that φ has

`p-stable integer translates, we assume first that φ ∈ L∞. In this case, Theo-
rem 3.3 is applicable; hence there exists g ∈ S1(φ) satisfying (3.8). By Theo-
rem 2.1, we have g ∈ L∞. If f = φ∗′a for some sequence a ∈ `p, then (3.11)
holds because of (3.8). Applying Theorem 3.1 to f and g, we obtain

‖a‖p ≤ ‖f‖p|g|q ≤ ‖f‖p|g|∞.

Thus the integer translates of φ are `p-stable.
To deal with the case φ ∈ Lp (1 ≤ p < ∞), we smooth φ by convolving

it with the function χ given by

χ(x) := e−π|x|2 , x = (x1, . . . , xs) ∈ IRs,

where |x|2 =
∑s

j=1 |xj |2. Note that ‖χ‖1 = 1 and

χ̂(ξ) = e−|ξ|
2/(4π), ξ ∈ IRs,

(see, e.g., [18, Proposition 8.24]). In particular, χ̂(ξ) is positive everywhere.
Now, ρ := φ∗χ is in L∞, because |ρ|∞ ≤ |φ|p|χ|q, where 1/p + 1/q = 1.
Moreover, since χ̂ never vanishes, ρ also satisfies (3.12). By what has been
proved, ρ has `p-stable integer translates. For any sequence a ∈ `p(ZZs), by
Young’s inequality, we have

‖ρ∗′a‖p = ‖χ∗(φ∗′a)‖p ≤ ‖χ‖1‖φ∗′a‖p = ‖φ∗′a‖p.

This shows that φ also has `p-stable integer translates.

Remark 3.1. Since the condition (3.12) does not involve p, we may drop the
qualifier `p- henceforth. In what follows, we say that a function φ ∈ L1 has
stable integer translates, if φ satisfies the conditions (3.12).
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§4. Stability

When s > 1, one has to find more than one functions to construct a
pre-wavelet basis. Thus it is natural to consider the stability of the integer
translates of several functions.

Let φ1, . . . , φn be functions in Lp(IRs). These functions give rise to a
linear mapping

Lφ1,...,φn : (a1, . . . , an) 7→
n∑

j=1

φj∗′aj , a1, . . . , an ∈ `p.

By Theorem 2.1, Lφ1,...,φn is a bounded linear mapping from (`p)n into Lp.
The image of (`p)n under the mapping Lφ1,...,φn

is denoted by Sp(φ1, . . . , φn).
The integer translates φj(·−α) (α ∈ ZZs; j = 1, . . . , n) are said to be `p-stable
if there exists a positive constant Cp such that

‖Lφ1,...,φn
(a1, . . . , an)‖p ≥ Cp

n∑
j=1

‖aj‖p.

Recently, Jia and Micchelli [21] gave a necessary and sufficient condition
for stability of integer translates of a finite number of compactly supported
continuous functions. The following theorem extend their result to functions
in L2.

Theorem 4.1. Let φ1, . . . , φn ∈ L2. Then the integer translates of φ1, . . . , φn

are `2-stable if and only if one of the following conditions holds:
(i) For any ξ ∈ IRs, the sequences

(
φ̂j(ξ+2πα)

)
α∈ZZs (j = 1, . . . , n) are

linearly independent.
(ii) The matrix

(
[φj , φk](z)

)
1≤j,k≤n

is positive definite for every z ∈ T s.

(iii) There exist g1, . . . , gn ∈ S1(φ1, . . . , φn) such that

〈gj , φk(· − α)〉 = δjkδ0α for 1 ≤ j ≤ k ≤ n and α ∈ ZZs. (4.1)

Moreover, if φ1, . . . , φn ∈ E2 have `2-stable integer translates, a1, . . . , an ∈ `2,
and if

∑n
j=1 φj∗′aj ∈ E2, then all the sequences aj actually decay exponen-

tially fast.

Proof: If, for some ξ ∈ IRs, the sequences
(
φ̂j(ξ + 2πα)

)
α∈ZZs (j = 1, . . . , n)

are linearly dependent, then there exist constants rj (j = 1, . . . , n), not all
zero, such that

n∑
j=1

rj φ̂j(ξ + 2πα) = 0 for all α ∈ ZZs.

Let φ :=
∑n

j=1 rjφj . Then by Theorem 3.3, the integer translates of φ are `2-
unstable. It follows that the integer translates of φ1, . . . , φn are `2-unstable.
This proves that `2-stability implies (i).
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By Theorem 3.2, the matrix
(
[φj , φk](e−iξ)

)
1≤j,k≤n

is the Gram matrix

of the elements
(
φ̂j(ξ + 2πα)

)
α∈ZZs ∈ `2, hence (i) implies (ii).

If the matrix Φ(z) :=
(
[φj , φk](z)

)
1≤j,k≤n

is nonsingular for every z ∈ T s,
then its inverse matrix exists and has its all entries in B. Choose bjk ∈ `1

(j, k = 1, . . . , n) such that the matrix
(
b̃jk(z)

)
1≤j,k≤n

is the inverse of Φ(z).
Let

gj :=
n∑

k=1

φk∗′bjk.

Then gj ∈ S1(φ1, . . . , φn) (j = 1, . . . , n). By Theorem 2.1 we have gj ∈ L2.
We claim that gj satisfy (4.1). Indeed, for 1 ≤ j,m ≤ n, it follows from (3.7)
and the above definition of gj that

[gj , φm](z) =
n∑

k=1

b̃jk(z)[φk, φm](z) = δjm for all z ∈ T s.

Thus (ii) implies (iii).
Now let us prove that (iii) implies `2-stability. Given a1, . . . , an ∈ `2, let

f :=
∑n

j=1 aj∗′φj . Then f ∈ L2. It follows from (4.1) that

aj(α) = 〈f, gj(· − α)〉 for all α ∈ ZZs. (4.2)

Consequently, by Theorem 3.1 we have

‖aj‖2 ≤ |gj |2‖f‖2 (j = 1, . . . , n).

In other words, φ1, . . . , φn have `2-stable integer translates.
Finally, if in addition, φ1, . . . , φn ∈ E2 and f :=

∑n
j=1 φj∗′aj ∈ E2, then

all the above sequences bjk decay exponentially fast. Hence all the functions
gj are in E2. But f is also in E2, therefore by Theorem 3.1 it follows from
(4.2) that the sequences aj decay exponentially fast.

The following theorem gives a criterion for `p-stability. Its proof is clear
from those of Theorem 3.5 and Theorem 4.1.

Theorem 4.2. Let φ1, . . . , φn ∈ Lp (1 ≤ p ≤ ∞). Then the integer translates
of φ1, . . . , φn are `p-stable if and only if the conditions (i) of Theorem 4.1 holds.

Remark 4.1. Again, by Theorem 4.2, we may drop the qualifier `p- for stabil-
ity of the integer translates of several functions. In what follows, we say that
φ1, . . . , φn ∈ L1 have stable integer translates, if they satisfy the condition (i)
of Theorem 4.1.

Suppose that φ1, . . . , φn ∈ L2 have stable integer translates. Let

ψ1, . . . , ψm ∈ V := S1(φ1, . . . , φn).
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We are interested in the conditions under which the integer translates of
ψ1, . . . , ψm form an unconditional basis for V . Since ψj ∈ S1(φ1, . . . , φn),
there are sequences ajk ∈ `1 (j = 1, . . . ,m; k = 1, . . . , n) such that

ψj =
n∑

k=1

φk∗′ajk (j = 1, . . . ,m). (4.3)

Denote by A(z) the m×n matrix
(
ãjk(z)

)
. Taking Fourier transform of both

sides of (4.3), we obtain

ψ̂j(ξ) =
n∑

k=1

ãjk(e−iξ)φ̂k(ξ). (4.4)

Thus, if the matrix A(z) has rank less than m for some z ∈ T s, or if φ1, . . . , φn

have unstable integer translates, then for some ξ ∈ IRs the sequences(
ψ̂j(ξ + 2πα)

)
α∈ZZs (j = 1, . . . ,m)

are linearly independent; hence, by Theorem 4.1, the integer translates of
ψ1, . . . , ψm are unstable. Moreover, if m < n, then V 6= S1(ψ1, . . . , ψm), for
otherwise, by the same reason, the integer translates of φ1, . . . , φn would be
unstable. Thus m = n is a necessary condition for

{ψj(· − α) : j = 1, . . . ,m;α ∈ ZZs}

to be an unconditional basis for V .

Theorem 4.3. Suppose that φ1, . . . , φn ∈ L2 have stable integer translates.
Let m = n and let ψ1, . . . , ψn be the functions given in (4.3) with all the
sequences ajk ∈ `1. Then the following conditions are equivalent:

(i) ψ1, . . . , ψn have stable integer translates.
(ii) The matrix A(z) :=

(
ajk(z)

)
is nonsingular for every z ∈ T s.

(iii) Sp(φ1, . . . , φn) = Sp(ψ1, . . . , ψn) for all p, 1 ≤ p ≤ 2.
(iv) Sp(φ1, . . . , φn) = Sp(ψ1, . . . , ψn) for some p, 1 ≤ p ≤ 2.

Proof: If the matrix A(z) is singular for some z = e−iξ ∈ T s, then from
(4.4) we see that the sequences

(
ψ̂j(ξ+ 2πα)

)
α∈ZZs (j = 1, . . . , n) are linearly

dependent. Hence by Theorem 4.1, the integer translates of ψ1, . . . , ψn are
unstable. This shows that (i) implies (ii).

If (ii) holds, then
(
A(z)

)−1 exists for every z ∈ T s and has all its entries
in B. In other words, there exist bjk ∈ `1(ZZs) (j, k = 1, . . . , n) such that(
b̃jk(z)

)
=

(
A(z)

)−1. From (4.4) we deduce that

φ̂j(ξ) =
n∑

j=1

b̃jk(e−iξ)ψ̂k(ξ) for all ξ ∈ IRs.
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This shows that φj ∈ S1(ψ1, . . . , ψn) (j = 1, . . . , n), from which (iii) follows.
Evidently, (iii) implies (iv).

Finally, if (iv) holds, then ψ1, . . . , ψn must have stable integer translates,
for otherwise φ1, . . . , φn would have unstable integer translates.

Theorem 4.4. Suppose that φ1, . . . , φn ∈ L2 have stable integer translates.
Then there exist ψ1, . . . , ψn ∈ V := S1(φ1, . . . , φn) such that

(i) ψ1 = φ1,
(ii) S1(φ1, . . . , φj) = S1(ψ1, . . . , ψj) (j = 2, . . . , n)

and
(iii) The spaces S2(ψj) (j = 1, . . . , n) are mutually orthogonal.

Thus S2(φ1, . . . , φn) is the orthogonal sum of the spaces S2(ψj) (j = 1, . . . , n).
If φ1, . . . , φn ∈ E2, then ψ1, . . . , ψn can be chosen to be functions in E2.
Furthermore, if φ1, . . . , φn are compactly supported, then ψ1, . . . , ψn can be
so chosen that they are also compactly supported.
Proof: The proof proceeds by induction on n. The case n = 1 is trivial.
Suppose that the theorem is true for n and we wish to establish it for n+ 1.
Let φ1, . . . , φn+1 ∈ L2 have stable integer translates. By induction hypothesis,
there exist ψ1, . . . , ψn satisfying (i), (ii) and (iii). By Theorem 4.3, it follows
from (ii) that ψ1, . . . , ψn have stable integer translates. In particular,

[ψj , ψj ](z) > 0 for every z ∈ T s.

Moreover, for 1 ≤ j, k ≤ n, j 6= k,

[ψj , ψk](z) = 0 for every z ∈ T s. (4.5)

We claim that there exist sequences aj ∈ `1(ZZs) (j = 1, . . . , n) such that the
function

ψn+1 := φn+1 −
n∑

j=1

ψj∗′aj (4.6)

is orthogonal to every S2(ψj). Using symbol calculus, we see that this is equiv-
alent to

[ψn+1, ψj ](z) = 0 for all z ∈ T s.

Substituting the expression (4.6) for ψn+1 in the above equation and taking
(4.5) into account, we get

[φn+1, ψj ](z) = ãj(z)[ψj , ψj ](z). (4.7)

Since [ψj , ψj ](z) > 0 for every z ∈ T s, by Wiener’s lemma, there exists aj ∈ `1
such that (4.7) holds. With these aj (j = 1, . . . , n), the function given in (4.6)
is what we desired.

If all φ1, . . . , φn+1 ∈ E2, then the symbols [φn+1, ψj ](z) and [ψj , ψj ](z)
appearing in (4.7) are functions in H. Since [ψj , ψj ](z) > 0 for all z ∈ T s,



Construction of pre-wavelets 23

ãj(z) = [φn+1, ψj ](z)/[ψj , ψj ](z) is also a function in H. Therefore the se-
quences aj (j = 1, . . . , n) actually decay exponentially fast. Thus the function
ψn+1 as given in (4.6) is in E2.

Suppose now that all φ1, . . . , φn, φn+1 are compactly supported. By in-
duction hypothesis, there are compactly supported functions ψ1, . . . , ψn sat-
isfying the condition (i), (ii) and (iii). Since ψj are compactly supported
(j = 1, . . . , n), [ψj , ψj ](z) are Laurent polynomials in z. There exist finitely
supported sequences cj such that c̃j(z) = [ψj , ψj ](z). Let c = c1∗c2∗ · · · ∗cn.
Then c is also a finitely supported sequence and

c̃(z) =
n∏

j=1

c̃j(z) > 0 for all z ∈ T s.

Let

ψn+1 :=
(
φn+1 −

n∑
j=1

ψj∗′aj)∗′c,

where aj ∈ `1 are defined by (4.7). Then ψn+1 is orthogonal to S2(φ1, . . . , φn).
By the induction hypothesis we see from the construction of ψn+1 that

ψn+1 ∈ S1(ψ1, . . . , ψn, φn+1) = S1(φ1, . . . , φn, φn+1).

Moreover, since c̃(z) > 0 for all z ∈ T s, by Wiener’s Lemma we have

φn+1 ∈ S1(ψ1, . . . , ψn+1).

This shows that

S1(ψ1, . . . , ψn+1) = S1(φ1, . . . , φn+1).

We claim that ψn+1 is compactly supported. Indeed, ψn+1 can be rewritten
as

ψn+1 = φn+1∗′c−
n∑

j=1

ψj∗′(aj∗c),

whereas

(ãj∗c)(z) = ãj(z)
n∏

k=1

c̃k(z) = [φn+1, ψj ](z)
∏
k 6=j

[ψk, ψk](z)

are Laurent polynomials in z. This shows that aj∗c are finitely supported
sequences (j = 1, . . . , n). It follows that ψn+1 is compactly supported.

Remark 4.2. Note that the above proof is essentially the Gram-Schmidt
orthogonalization method.
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§5. Linear Independence

Linear independence of integer translates of functions is a concept closely
related to stability. We shall see later that this concept plays an important
role in constructing a pre-wavelet basis using box splines.

Denote by `(ZZs) the linear space of all sequences on ZZs. Let φ1, . . . , φn

be compactly supported functions on IRs. These functions give rise to a linear
mapping Lφ1,...,φn defined on (`(ZZs))n as follows:

Lφ1,...,φn : (a1, . . . , an) 7→
n∑

j=1

∑
α∈ZZs

aj(α)φj(· − α), for a1, . . . , an ∈ `(ZZs).

Denote by S(φ1, . . . , φn) the image of
(
`(ZZs))n under the mapping Lφ1,...,φn

.
We say that the translates φj(·−α) (α ∈ ZZs, j = 1, . . . , n) are (algebraically)
linearly independent if the mapping Lφ1,···,φn

is injective.
Algebraic linear independence for integer translates of one function was

investigated in [12]. It was later pointed out in [30] that this problem is related
to the structure of closed shift invariant subspaces of the sequence space `(ZZs)
equipped with the pointwise convergence topology, as was studied in [24].
Recently, Jia and Micchelli [21] proved the following theorem, which provides
a necessary and sufficient condition for the algebraic linear independence of
the integer translates of a finite number of functions.

Theorem 5.1. Let φ1, . . . , φn be compactly supported distributions. Then
the integer translates of φ1, . . . , φn are algebraically linearly independent if
and only if for any ξ ∈ C|| s, the sequences(

φ̂j(ξ + 2πα)
)
α∈ZZs (j = 1, . . . , n)

are linearly independent.

From this theorem and Theorem 4.2 we see that linear independence
implies stability, but the converse is not true.

Example 5.1. Let

φ(x) :=

{ 1, if 0 ≤ x < 1;
1/2, if 1 ≤ x < 2;
0, elsewhere.

Then the integer translates φ(· − α) (α ∈ ZZ) are stable but not linearly
independent.

Note that φ satisfies the refinement equation

φ =
∑
j∈ZZ

b(j)φ(2 · −j),

where the mask b is given by

b̃(z) = (z + 1)(z2 + 2)/(z + 2).

Thus the mask b is not finitely supported, even though φ is compactly sup-
ported. However, if φ has linearly independent integer translates and satisfies
the refinement equation (2.1), then the mask b must be finitely supported.
This follows from the following theorem, which was proved in [4].
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Theorem 5.2. Let φ1, . . . , φn be compactly supported functions having lin-
early independent integer translates, and let a1, . . . , an be sequences on ZZs.
If the function

∑n
j=1 φj∗′aj is compactly supported, then all the sequences

a1, . . . , an must be finitely supported.

Note that if the integer translates of φ are mutually orthogonal, then they
are linearly independent. Hence a refinable function having orthogonal integer
translates has a finitely supported mask. This special case of Theorem 5.2 was
already observed in [17] and [16].

Suppose that φ1, . . . , φn are compactly supported functions having lin-
early independent integer translates. Let ψ1, . . . , ψm ∈ J := S(φ1, . . . , φn).
Assume that they are also compactly supported. Since ψj ∈ S(φ1, . . . , φn),
there are sequences ajk (j = 1, . . . ,m; k = 1, . . . , n) such that

ψj =
n∑

k=1

φk∗′ajk (j = 1, . . . ,m). (5.1)

By Theorem 5.2, all the sequences ajk are finitely supported. Denote by A(z)
the m× n matrix

(
ãjk(z)

)
.Then the entries of A(z) are Laurent polynomials.

We see that if m > n, then the integer translates of ψ1, . . . , ψn are linearly
dependent. Ifm < n, then J 6= S(ψ1, . . . , ψm). In the casem = n, the following
theorem gives an analog of Theorem 4.3.

Theorem 5.3. Suppose that φ1, . . . , φn are compactly supported functions
having linearly independent integer translates. Let m = n and ψ1, . . . , ψn

be the compactly supported functions as given in (5.1). Then the following
conditions are equivalent:

(i) ψ1, . . . , ψn have linearly independent integer translates.
(ii) The matrix A(z) :=

(
ajk(z)

)
is nonsingular for every z ∈ (C|| \{0})s.

(iii) S(φ1, . . . , φn) = S(ψ1, . . . , ψn).

Proof: The proof is almost identical to that of Theorem 4.3. We only need to
point out that if A(z) satisfies the condition (ii), then det(A(z)) is a Laurent
polynomial which vanishes nowhere on (C|| \{0})s. Hence by Hilbert Nullstel-
lensatz, det(A(z)) is of the form rzα, where r ∈ C|| \{0} and α ∈ ZZs. This
shows that all the entries of the inverse of A(z) are Laurent polynomials.

§6. Pre-Wavelet Decomposition

Let φ be a refinable function in L2 having stable integer translates. Let
V0 := S2(φ), Vj := σj(V0) (j ∈ ZZ) and let Wj be the orthogonal complement
of Vj in Vj+1. Recall that a function in W0 is a pre-wavelet. In this section we
shall give a necessary and sufficient condition for W0 to have an unconditional
basis consisting of the integer translates of certain pre-wavelets.

Let E = Es be the set of all extreme points of the unit cube [0, 1]s, i.e.,

E = Es := {(ν1, . . . , νs) : νj = 0 or 1 for all j}.
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This set affects a decomposition of the lattice ZZs into 2s sublattices 2ZZs +µ
(µ ∈ E). It is convenient to use E as an index set.

Suppose that φ satisfies the refinement equation (2.1) with b ∈ `1(ZZs)
as its mask. Let p(z) be the symbol b̃(z). The sequence b gives rise to 2s

sequences bν (ν ∈ E) as follows:

bν(β) := b(ν + 2β), β ∈ ZZs. (6.1)

Let
pν(z) := b̃ν(z) =

∑
β∈ZZs

b(ν + 2β)zβ . (6.2)

Then pν ∈ B. Correspondingly, we set

φν := φ(2 · −ν). (6.3)

It follows from (6.1) and (6.3) that

φ =
∑
ν∈E

φν∗′bν . (6.4)

Let (p1, . . . , pn) be an n-tuple of elements of B. We say that (p1, . . . , pn) is
extensible over B, if there exist n2 elements pjk ∈ B (j, k = 1, . . . , n) such that
p1k = pk for all k and the matrix P (z) :=

(
pjk(z)

)
is nonsingular for all z ∈ T s.

Note that if (p1, . . . , pn) is extensible, then pjk (j = 2, . . . , n; k = 1, . . . , n)
can be chosen to be Laurent polynomials. Let us verify this fact. Given a
Laurent series p(z) =

∑
α∈ZZs a(α)zα and a positive integer N , we denote by

p(N)(z) the partial sum
∑

|α|≤N a(α)zα. Since a ∈ `1(ZZs), p(N)(z) converges
to p(z) uniformly on T s as N goes to ∞. Let P (N)(z) be the matrix obtained
from P (z) =

(
bjk(z)

)
through replacing pjk(z) by p(N)

jk (z) (j = 2, . . . , n; k =
1, . . . , n). Thus if P (z) is nonsingular for every z ∈ T s, then for sufficiently
large N , P (N)(z) is nonsingular for every z ∈ T s.

The following theorem shows that the existence of a pre-wavelet basis for
W0 is equivalent to the extensibility of the 2s-tuple (pν)ν∈E over B.

Theorem 6.1. There exist 2s − 1 functions ψµ ∈ V1 (µ ∈ E\{0}) such that
their integer translates form an unconditional basis for W0 if and only if the
2s-tuple (pν)ν∈E is extensible over B, where pν (ν ∈ E) are as given in (6.2).
If φ ∈ E2 and (pν)ν∈E is extensible over B, then ψµ can be chosen to be
functions in E2. Furthermore, if φ is compactly supported, then ψµ can be
chosen to be compactly supported.

Proof: Let φν be as given in (6.3). Since the integer translates of φ are stable,
so are the integer translates of φν (ν ∈ E). If one can find 2s − 1 functions
ψµ ∈ V1 (µ ∈ E\{0}) such that their integer translates form an unconditional
basis for W0, then with ψ0 := φ, the integer translates of ψµ (µ ∈ E) form an
unconditional basis for V1. Each ψµ is of the form

ψµ =
∑
ν∈E

φν∗′bµν ,
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where bµν are sequences in `1(ZZs). In particular, b0ν = bν for all ν ∈ E. Let
pµν(z) := b̃µν(z). Then

p0ν(z) = b̃0ν(z) = b̃ν(z) = pν(z).

Moreover, by Theorem 4.3, the matrix P (z) :=
(
pµν(z)

)
µ,ν∈E

is nonsingular
for every z ∈ T s. This proves the necessity.

Suppose conversely that (pν)ν∈E is extensible over B. Then we can find
Laurent polynomials pµν (µ ∈ E\{0}, ν ∈ E) such that with p0ν = pν for
all ν ∈ E the matrix P (z) :=

(
pµν(z)

)
µ,ν∈E

is nonsingular for every z ∈ T s.
Each pµν(z) is the symbol of some sequence bµν ∈ `1(ZZs). Moreover, when
µ ∈ E\{0}, the sequences bµν are finitely supported. Set

ρµ :=
∑
ν∈E

φν∗′bµν .

Since P (z) is nonsingular for every z ∈ T s, by Theorem 4.3 the integer trans-
lates of ρµ (µ ∈ E) are stable. Furthermore, by Theorem 4.4 we can find
functions ψµ ∈ V1 (µ ∈ E) such that (i)ψ0 = ρ0, (ii) the spaces S2(ψµ)
(µ ∈ E) are mutually orthogonal and (iii) V1 is the sum of the spaces S2(ψµ)
(µ ∈ E). It follows that W0 is the orthogonal sum of S2(ψµ) (µ ∈ E\{0}).
This proves the sufficiency.

If, in addition, φ ∈ E2, then all ρµ ∈ E2 (µ ∈ E). Invoking Theorem 4.4,
we conclude that ψµ can be chosen to bo functions in E2.

Finally, if φ is compactly supported, then all ρµ are compactly supported,
so we can appeal to Theorem 4.4 again.

The following example illustrates Theorem 6.1.

Example 6.1. Let φ be the function on IR2 which has value 1 at the origin,
is piecewise linear and is zero outside the hexagon{

(x1, x2) ∈ IR2 : max{|x1|, |x2|, |x1 − x2|} ≤ 1
}
.

Then φ satisfies the refinement equation (2.1) with mask b given by

b̃(z) = 1 + (z1 + z−1
1 + z2 + z−1

2 + z1z2 + z−1
1 z−1

2 )/2,

where z = (z1, z2) ∈ (C|| \{0})2. Since s = 2, we have

E = E2 = {(0, 0), (1, 0), (0, 1), (1, 1)}.

Let bν (ν ∈ E) be the sequences as given in (6.1) and let pν(z) be the symbol
b̃ν(z). Then

p0,0(z) = 1,

p0,1(z) = (1 + z−1
2 )/2,

p1,0(z) = (1 + z−1
1 )/2,

p1,1(z) = (1 + z−1
1 z−1

2 )/2.
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The 4-tuple
(
pν(z)

)
ν∈E

is extensible over the ring of Laurent polynomials in
z1 and z2. Indeed, the matrix

1 (1 + z−1
1 )/2 (1 + z−1

2 )/2 (1 + z−1
1 z−1

2 )/2
0 1 0 0
0 0 1 0
0 0 0 1


has

(
p0,0(z), p1,0(z), p0,1(z), p1,1(z)

)
as its first row and has determinant 1.

Let φν (ν ∈ E) be as given in (6.3). Then the above discussion shows that the
integer translates of φ, φ1,0, φ0,1 and φ1,1 form an unconditional basis for V1.

Now we can use the Gram-Schmidt orthogonalization as described in
Theorem 4.4 to construct a pre-wavelet basis forW0. Let c and aν (ν ∈ E\{0})
be the sequences given by

c̃(z) = [φ, φ](z)

and
ãν(z) = [φν , φ](z).

Set
ψν := φν∗′c− φ∗′aν , ν ∈ E\{0}.

Then by Theorem 4.4,
{
ψν(· − α) : ν ∈ E\{0}, α ∈ ZZs

}
is an unconditional

basis for W0. The sequences c and aν can be easily found out:

[φ, φ](z) = (6 + z1 + z−1
1 + z2 + z−1

2 + z1z2 + z−1
1 z−1

2 )/12,

[φ1,0, φ](z) = (5 + 5z1 + z−1
2 + z1z2)/48,

[φ0,1, φ](z) = (5 + 5z2 + z−1
1 + z1z2)/48,

[φ1,1, φ](z) = (5 + 5z1z2 + z1 + z2)/48.

§7. Wavelet Decomposition

Once a pre-wavelet basis is obtained, one can construct a wavelet basis
from it by orthogonalization. However, if the integer translates of a given
function φ already form an orthonormal basis for V0 = S2(φ), then it would
be more convenient to construct wavelets directly from φ.

Let φ be a function in L2(IRs) having orthonormal integer translates.
Suppose that φ satisfies the refinement equation (2.1) with b as its mask. For
ν ∈ E, let bν be the sequences given by (6.1), and let φν be the functions
given by (6.3). We wish to find 2s functions ψµ ∈ L2 (µ ∈ E) such that
ψ0 = φ and the integer translates of ψµ (µ ∈ E) form an orthonormal basis
for V1 := σ1(V0). Each ψµ is of the form

ψµ =
∑
ν∈E

φν∗′bµν , (7.1)

where bµν ∈ `1(ZZs). Let pµν(z) be the symbol b̃µν(z).
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Theorem 7.1. The set {ψµ(· − α) : α ∈ ZZs, µ ∈ E} forms an orthonormal
basis for V1 if and only if

(
2−s/2pµν(z)

)
µ,ν∈G

is a unitary matrix for every

z ∈ T s.

Proof: Let
Φ(z) :=

(
[φµ, φν ](z)

)
µ,ν∈E

,

Ψ(z) :=
(
[ψµ, ψν ](z)

)
µ,ν∈E

,

and
B(z) :=

(
b̃µν(z)

)
µ,ν∈E

.

Then (7.1) together with (3.7) yields

Ψ(z) = B(z)Φ(z)B∗(z), (7.2)

where B∗(z) denotes the complex conjugate of the matrix B(z). Since the
integer translates of φ are orthonormal, we have

Φ(z) = 2−sI for all z ∈ T s, (7.3)

where I is the identity matrix. The integer translates of ψµ (µ ∈ E) form an
orthonormal basis for V1 if and only if

Ψ(z) = I for all z ∈ T s.

By (7.2) and (7.3), this is equivalent to

2−sB(z)B∗(z) = I,

that is,
(
2−s/2pµν(z)

)
µ,ν∈E

is a unitary matrix for every z ∈ T s.

Theorem 7.1 reduces the wavelet decomposition problem to the following
matrix problem: Given pν ∈ B (ν ∈ E) satisfying∑

ν∈E

|pν(z)|2 = 1 for all z ∈ T s,

find pµν ∈ B (µ, ν ∈ E) such that p0ν = pν for all ν ∈ E and
(
pµν(z)

)
µ,ν∈E

is a unitary matrix for every z ∈ T s. This problem is solvable for the case
in which s ≤ 3 and all pν are real-valued functions. Here we shall describe a
solution given by Riemenschneider and Shen in [29]. Their solution is based
on considering mappings η on E with the following property(

η(µ) + η(ν)
)
· (µ+ ν) is odd for all µ 6= ν. (7.4)

They essentially proved the following theorem, in which E is viewed as the
additive group (ZZ2)s with ZZ2 being the additive group of integers modulo 2.
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Theorem 7.2. If η is a mapping on E satisfying the condition (7.4), and
if xν (ν ∈ E) are real numbers such that

∑
ν∈E x

2
ν = 1, then the matrix(

(−1)η(µ)·νxν−µ

)
µ,ν∈E

is an orthogonal matrix.

Proof: For µ, τ ∈ E, let

Iµτ :=
∑
ν∈E

(−1)η(µ)·νxν−µ(−1)η(τ)·νxν−τ . (7.5)

Then
Iµµ =

∑
ν∈E

x2
ν = 1 for all µ ∈ E.

It remains to prove Iµτ = 0 for µ 6= τ . Since 2µ = 0 for all µ ∈ E, we have

Iµτ =
∑
ν∈E

(−1)(η(µ)+η(τ))·νxν+µxν+τ .

Changing the indices from ν to ν − µ− τ in the above sum, we obtain

Iµτ =
∑
ν∈E

(−1)(η(µ)+η(τ))·(ν−µ−τ)xν−µxν−τ . (7.6)

It follows from (7.5) and (7.6) that

2Iµτ =
∑
ν∈E

(−1)(η(µ)+η(τ))·ν[
1 + (−1)(η(µ)+η(τ))·(µ+τ)

]
xν−µxν−τ .

Since the mapping η satisfies the condition (7.4), we have Iµτ = 0, as desired.

Riemenschneider and Shen have found the mappings η satisfying the
condition (7.4) for s ≤ 3. They already pointed out that when s > 3, there is
no mapping η satisfying the condition (7.4). For s = 1 one may choose η to
be the identity mapping. The mapping η given in [29] is

(0, 0) 7→ (0, 0)
(0, 1) 7→ (0, 1)

(1, 0) 7→ (1, 1)
(1, 1) 7→ (1, 0)

(7.7)

for s = 2 and in the case of s = 3 is

(0, 0, 0) 7→ (0, 0, 0) (1, 0, 0) 7→ (1, 1, 0)

(0, 1, 0) 7→ (0, 1, 1) (1, 1, 0) 7→ (1, 0, 0)

(0, 0, 1) 7→ (1, 0, 1) (1, 0, 1) 7→ (0, 0, 1)

(0, 1, 1) 7→ (0, 1, 0) (1, 1, 1) 7→ (1, 1, 1).
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Let us take a closer look into the case of s = 3. Number the elements of E3 as
follows: For µ = (µ1, µ2, µ3) ∈ E3 let k(µ) := µ1 + 2µ2 + 4µ3. Write xk(µ) for
xµ. With the mapping η as above the matrix

(
(−1)η(µ)·νxν−µ

)
µ,ν∈E

becomes



x0 x1 x2 x3 x4 x5 x6 x7

x1 −x0 −x3 x2 x5 −x4 −x7 x6

x2 x3 −x0 −x1 −x6 −x7 x4 x5

x3 −x2 x1 −x0 x7 −x6 x5 −x4

x4 −x5 x6 −x7 −x0 x1 −x2 x3

x5 x4 x7 x6 −x1 −x0 −x3 −x2

x6 x7 −x4 −x5 x2 x3 −x0 −x1

x7 −x6 −x5 x4 −x3 x2 x1 −x0


. (7.8)

Similar orthogonal matrices have also appeared in [23, p.31] and [36], where
the orthogonal matrices were derived from the multiplication table for the
Cayley algebra (see, e.g., [22, p.227]).

Theorem 7.3. Let φ be a real and symmetric function in L2(IRs) satisfying
the refinement equation (2.1). Suppose that {φ(· − α) : α ∈ ZZs} is an
orthonormal basis for V0. Let η be a mapping on E satisfying the condition
(7.4) and η(0) = 0. Then with

ψµ :=
∑

α∈ZZs

(−1)η(µ)·αb(α− µ)φ(2 · −α)

for each µ ∈ E, the set {ψµ(· − α) : α ∈ ZZs, µ ∈ E} is an orthonormal basis
for V1.

Proof: Since φ is real and symmetric, the mask b in the refinement equation
(2.1) is real and symmetric. Let bν , pν and φν (ν ∈ E) be as given in (6.1),
(6.2) and (6.3), respectively. Then pν(z) = b̃ν(z) are real for every z ∈ T s.
Since {φ(· − α) : α ∈ ZZs} is an orthonormal basis for V0, the equation (6.4)
implies that

1 = [φ, φ](z) =
∑
ν∈E

|pν(z)|2[φν , φν ](z) = 2−s
∑
ν∈E

|pν(z)|2.

This shows that ∑
ν∈E

|pν(z)|2 = 2s for all z ∈ T s. (7.9)

For µ ∈ E, we rewrite ψµ as

ψµ =
∑
ν∈E

φν∗′bµν ,

where
bµν(β) = (−1)η(µ)·νbν−µ(β), β ∈ ZZs.
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It follows that
pµν(z) := b̃µν(z) = (−1)η(µ)·νpν−µ(z). (7.10)

By Theorem 7.2, (7.9) and (7.10) together imply that
(
2−s/2pµν(z)

)
is a real

orthogonal matrix for every z ∈ T s. By Theorem 7.1, we conclude that the
integer translates of ψµ (µ ∈ E) form an orthonormal basis for V1.

Let now φ be a function in E2(IRs) having stable integer translates. Then
the function P : z 7→ [φ, φ](z) is in H and is positive on T s. It follows
that 1/

√
P is also in H. Thus 1/

√
P (z) is the symbol of some exponentially

decaying sequence c:
1/

√
P (z) = c̃(z). (7.11)

Set
ρ := φ∗′c. (7.12)

Then by (3.7)

[ρ, ρ](z) = c̃(z)[φ, φ](z)c̃(z) = 1 for all z ∈ T s.

Hence the integer translates of ρ form an orthonormal basis for V0.
Suppose that φ satisfies the refinement equation (2.1) with b as its mask.

Then the Fourier transform of φ satisfies the following equation:

φ̂(2θ) = 2−sQφ(θ)φ̂(θ), (7.13)

where
Qφ(θ) = b̃(e−iθ) =

∑
α∈ZZs

b(α)e−iα·θ.

It follows from (7.11) and (7.12) that

ρ̂(θ) = φ̂(θ)/
√
Pφ(θ), (7.14)

where
Pφ(θ) := [φ, φ](e−iθ).

Now (7.13) and (7.14) yield the following equation for the Fourier transform
of ρ:

ρ̂(2θ) = 2−sQφ(θ)
√
Pφ(θ)/Pφ(2θ) ρ̂(θ).

This shows that ρ satisfies the refinement equation

ρ =
∑

α∈ZZs

a(α)ρ(2 · −α), (7.15)

where
ã(e−iθ) = Qφ(θ)

√
Pφ(θ)/Pφ(2θ).
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Thus the mask a in (7.15) can be computed using the following formula:

a(α) :=
1

(2π)s

∫
[−π,π)s

√
Pφ(θ)
Pφ(2θ)

Qφ(θ)eiα·θ dθ.

Example 7.1. Let φ be the same function as in Example 6.1. The functions
Pφ and Qφ were computed in [29]:

Pφ(θ) = 1/2 +
(
cos(θ1) + cos(θ2) + cos(θ1 + θ2)

)
/6, θ = (θ1, θ2) ∈ IR2.

Qφ(θ) = 1 +
(
cos(θ1) + cos(θ2) + cos(θ1 + θ2)

)
/2, θ = (θ1, θ2) ∈ IR2.

§8. Extensibility

We have seen the importance of extensibility in wavelet analysis. In this
section we shall elaborate this point in more details.

Let R be a commutative ring with identity and let Rn be the free R-
module of rank n. We say that an element (p1, . . . , pn) ∈ Rn is extensible
over R if (p1, . . . , pn) is the first row of some n × n invertible matrix over
R. An element (p1, . . . , pn) ∈ Rn is called a unimodular row, if there exist
q1, . . . , qn ∈ R such that

n∑
i=1

piqi = 1.

Thus unimodularity is a necessary condition for (p1, . . . , pn) to be extensible
over R. However, in general, unimodularity is not sufficient for extensibility.

Example 8.1. For a positive integer n, let Sn−1 be the (n − 1)-dimensional
sphere {

(x0, . . . , xn−1) ∈ IRn :
n−1∑
j=0

x2
j = 1

}
.

Let R be the ring of all real-valued continuous functions on Sn−1. Consider
the functions pk ∈ R given by

pk(x) := xk (k = 0, 1, . . . , n− 1).

Then (p0, . . . , pn−1) is a unimodular row. But (p0, . . . , pn−1) is extensible over
R only if n = 1, 2, 4, 8. This comes from Adam’s Theorem (see [1]). However,
it is shown in [23, p.38] that (p0, . . . , pn−1) is extensible over the ring of all
complex-valued continuous functions on Sn−1.

A commutative ring with identity is said to have the unimodular row
property, if for every n, every unimodular row in Rn is extensible over R.
Such a ring is called a Hermite ring in [23]. It is well known that if every
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finitely generated projective R-module is free, then R has the unimodular
row property (see [31, Theorem 4.51]).

The famous Quillen-Suslin theorem says that if R is a polynomial ring
over a field, then every finitely generated projective R-module is free. In par-
ticular, a polynomial ring over a field has the unimodular row property. The
Quillen-Suslin theorem is also true for Laurent polynomial rings (see [35] and
[23, Corollary 4.10]). Note that a row (p1(z), . . . , pn(z)) of Laurent polyno-
mials is unimodular if and only if p1(z), . . . , pn(z) have no common zeros in
(C|| \{0})s. Thus we may state the Quillen-Suslin theorem in the following form:

Theorem (Quillen-Suslin). Let p1(z), . . . , pn(z) be Laurent polynomials
with complex coefficients which have no common zeros in (C|| \{0})s. Then the
n-tuple (p1, . . . , pn) is extensible over P.

The Quillen-Suslin theorem can be used to derive the following theorem
about pre-wavelet decomposition.

Theorem 8.1. Let φ be a compactly supported function in L2(IRs). Let
W0 = W0(φ) be the orthogonal complement of V0 := S2(φ) in V1 := σ1(V0).
Suppose that φ is refinable and has linearly independent integer translates.
Then there exists 2s − 1 compactly supported pre-wavelets ψµ (µ ∈ E\{0})
such that their integer translates form an unconditional basis for W0(φ).

Proof: Suppose that φ satisfies the refinement equation (2.1) with mask b.
Then by Theorem 5.2 the sequence b is finitely supported. Let bν and pν

(ν ∈ E) be as defined in (6.1) and (6.2). Taking Fourier-Laplace transform of
both sides of the refinement equation (2.1), we obtain

φ̂(ξ) = 2−sb̃(e−iξ/2)φ̂(ξ/2) (ξ ∈ C|| s).

By the definition of pν , it follows from the above equation that

φ̂(ξ + 2πα) = 2−s
(∑
ν∈E

e−iξ·ν/2pν(e−iξ)
)
φ̂(ξ/2) (α ∈ ZZs).

If pν (ν ∈ E) have a common zero in (C|| \{0})s, say z = e−iξ (ξ ∈ C|| s), then
φ̂(ξ + 2πα) = 0 for all α ∈ ZZs, which contradicts the hypothesis that φ has
linearly independent integer translates. This shows that (pν) (ν ∈ E) do not
have common zeros in (C|| \{0})s. By the Quillen-Suslin theorem, (pν)ν∈E is
extensible over P. Therefore, by Theorem 6.1, we can find 2s − 1 compactly
supported functions ψµ ∈ W0 (µ ∈ E\{0}) such that their integer translates
form an unconditional basis for W0.

Theorem 8.1 has a nice application to box splines. Let us first recall the
definition of box splines. Given an s×n integer matrix of rank s ≤ n, the box
spline B(·|X) is defined by the equation∫

IRs
f(x)B(x|X) dx =

∫
[0,1]n

f(Xt) dt, for all f ∈ C(IRs).
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For example, if

X =
(

1 0 1
0 1 1

)
,

then B(·|X) is just a multiinteger shift of the hat function as given in Example
6.1. Any box spline is refinable (see [11], [15]). Let x1, . . . , xn denote the
columns of X. Then B(·|X) satisfies the refinement equation (2.1) with mask
b given by

b̃(z) = 2−n+s
n∏

j=1

(1 + zxj

). (8.1)

Concerning the stability and linear independence, we have the following the-
orem, which was proved in [12], [14] and [19].

Theorem 8.2. The following conditions are equivalent:
(i) The matrix X is unimodular, i.e., every s × s submatrix of X has

determinant −1, 0 or 1.
(ii) The box spline B(·|X) has linearly independent integer translates.
(iii) The box spline B(·|X) has stable integer translates.

Combining Theorem 8.1 and Theorem 8.2 together, we obtain the follow-
ing result about the pre-wavelet decomposition of box splines.

Theorem 8.3. If φ is a box spline B(·|X) with X being unimodular, then
there is a pre-wavelet basis for W0(φ).

Finally, we give an example to illustrate Theorem 8.3.

Example 8.2. Let

X =
(

1 1 0 0 1
0 0 1 1 1

)
.

Then B(·|X) satisfies the refinement equation (1.1) with mask b given by

b̃(z) = 2−3(1 + z1)2(1 + z2)2(1 + z1z2).

The Laurent polynomials as defined in (6.2) are easily computed:

p0,0(z) = (1 + z1 + z2 + 5z1z2)/8,
p1,0(z) = (2 + 4z2 + 2z1z2)/8,
p0,1(z) = (2 + 4z1 + 2z1z2)/8,
p1,1(z) = (5 + z1 + z2 + z1z2)/8.

It is easily seen that (pν(z))ν∈E is extensible over the Laurent polynomial
ring. Indeed, the matrix

p0,0(z) p1,0(z) p0,1(z) p1,1(z)
1 0 0 0
1 4 0 1
1 0 4 1
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has determinant −8 for all z ∈ C|| s. A pre-wavelet basis can be constructed as
was done in Section 6.

We end the paper with the following comment, which is useful for ex-
plicit pre-wavelet decompositions. Suppose

(
p1(z), . . . , pn(z)

)
, z ∈ C|| s and(

q1(ζ), . . . , qm(ζ)
)
, ζ ∈ C|| t are extensible by means of the matrices P (z) and

Q(ζ), respectively. Then the tensor product element(
p1(z), . . . , pn(z)

)
×

(
q1(ζ), . . . , qm(ζ)

)
:=

(
p1(z)q1(ζ), . . . , pn(z)qm(ζ)

)
is extensible by means of the tensor product matrix

P (z)×Q(ζ) =

 p11(z)Q(ζ) . . . p1n(z)Q(ζ)
...

. . .
...

pn1(z)Q(ζ) . . . pnn(z)Q(ζ)

 ,

since
det

(
P (z)×Q(ζ)

)
= detP (z) detQ(ζ).

This observation was implicitly used in [2] to reduce multivariate decompo-
sition to a tensor product construction based on univariate wavelets. Specifi-
cally, if φ(t), ψ(t), t ∈ IR is a pre-wavelet pair where φ satisfies a refinement
equation with mask b, set

ψ0(t) = φ(t), ψ1(t) = ψ(t), t ∈ IR

and introduce the multivariate functions

ψe(x1, . . . , xs) :=
s∏

j=1

ψej (xj), e ∈ Es; x = (x1, . . . , xs) ∈ IRs,

then φ(x) = ψ0(x) satisfies a refinement equation with tensor product mask

b(α) = b(α1) · · · b(αs), α = (α1, . . . , αs) ∈ ZZs

and the remaining 2s − 1 functions
{
ψe : e ∈ Es\{0}

}
form a pre-wavelet

basis.
Coupled with Theorem 7.3 various explicit wavelet decompositions can

be constructed.
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