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We propose a novel computational method known as RVM-LPQ that combines the Relevance Vector Machine (RVM) model and
Local Phase Quantization (LPQ) to predict PPIs from protein sequences. �e main improvements are the results of representing
protein sequences using the LPQ feature representation on a Position Speci�c Scoring Matrix (PSSM), reducing the in	uence of
noise using a Principal Component Analysis (PCA), and using a Relevance Vector Machine (RVM) based classi�er. We perform
5-fold cross-validation experiments on Yeast and Human datasets, and we achieve very high accuracies of 92.65% and 97.62%,
respectively, which is signi�cantly better than previous works. To further evaluate the proposed method, we compare it with the
state-of-the-art support vector machine (SVM) classi�er on the Yeast dataset.�e experimental results demonstrate that our RVM-
LPQmethod is obviously better than the SVM-basedmethod.�epromising experimental results show the e�ciency and simplicity
of the proposed method, which can be an automatic decision support tool for future proteomics research.

1. Introduction

Proteins are crucial molecules that participate in many
cellular functions in an organism. Typically, proteins do
not perform their roles individually, so detection of PPIs
becomes more and more important. Knowledge of PPIs can
provide insight into the molecular mechanisms of biological
processes and lead to a better understanding of practicalmed-
ical applications. In recent years, various high-throughput
technologies, such as yeast two-hybrid screening methods
[1, 2], immunoprecipitation [3], and protein chips [4], have
been developed to detect interactions between proteins. Until
now, a large quantity of PPI data for di�erent organisms
has been generated, and many databases, such as MINT [5],
BIND [6], and DIP [7], have been built to store protein
interaction data. However, these experimental methods have
some shortcomings, such as being time-intensive and costly.

In addition, the aforementioned approaches su�er from high
rates of false positives and false negatives. For these reasons,
predicting unknown PPIs is considered a di�cult task using
only biological experimental methods.

As a result, a number of computational methods have
been proposed to infer PPIs from di�erent sources of infor-
mation, including phylogenetic pro�les, tertiary structures,
protein domains, and secondary structures [8–16]. However,
these approaches cannot be employed when prior knowledge
about a protein of interest is not available. With the rapid
growth of protein sequence data, the protein sequence-based
method is becoming the most widely used tool for predicting
PPIs. Consequently, a number of protein sequence-based
methods have been developed for predicting PPIs. For exam-
ple, Bock and Gough [17] used a support vector machine
(SVM) combined with several structural and physiochem-
ical descriptors to predict PPIs. Shen et al. [18] developed
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a conjoint triad method to infer human PPIs. Martin et
al. [19] used a descriptor called the signature product of
subsequences and an expansion of the signature descriptor
based on the available chemical information to predict PPIs.
Guo et al. [20] used the SVM model combined with an
autocorrelation descriptor to predict Yeast PPIs. Nanni and
Lumini [21] proposed a method based on an ensemble of
K-local hyperplane distances to infer PPIs. Several other
methods based on protein amino acid sequences have been
proposed in previous work [22, 23]. In spite of this, there
is still space to improve the accuracy and e�ciency of the
existing methods.

In this paper, we propose a novel computational method
that can be used to predict PPIs using only protein sequence
data. �e main improvements are the results of representing
protein sequences using the LPQ feature representation on
a Position Speci�c Scoring Matrix (PSSM), reducing the
in	uence of noise by using a Principal Component Analysis
(PCA), and using a Relevance Vector Machine (RVM) based
classi�er. More speci�cally, we �rst represent each protein
using a PSSM representation. �en, a LPQ descriptor is
employed to capture useful information from each protein
PSSM and generate a 256-dimensional feature vector. Next,
dimensionality reduction method PCA is used to reduce the
dimensions of the LPQ vector and the in	uence of noise.
Finally, the RVMmodel is employed as the machine learning
approach to carry out classi�cation. �e proposed method
was executed using two di�erent PPIs datasets: Yeast and
Human. �e experimental results are found to be superior to
SVM and other previous methods, which prove that the pro-
posed method performs incredibly well in predicting PPIs.

2. Materials and Methodology

2.1. Dataset. To verify the proposed method, two publicly
available datasets are used in our study. �e datasets are
Yeast and Human that were obtained from the publicly
available Database of Interaction Proteins (DIP) [24]. For
better implementation, we selected 5594 positive protein
pairs to build the positive dataset and 5594 negative protein
pairs to build the negative dataset from the Yeast dataset.
Similarly, we selected 3899 positive protein pairs to build the
positive dataset and 4262 negative protein pairs to build the
negative dataset from the Human dataset. Consequently, the
Yeast dataset contains 11188 protein pairs and the Human
dataset contains 8161 protein pairs.

2.2. Position Speci�c Scoring Matrix. A Position Speci�c
Scoring Matrix (PSSM) is an � × 20 matrix � = {���: � =1 ⋅ ⋅ ⋅�, � = 1 ⋅ ⋅ ⋅ 20} for a given protein, where � is the
length of the protein sequence and 20 represents the 20 amino
acids [28–33]. A score ��� is allocated for the �th amino acid
in the �th position of the given protein sequence in the PSSM.
�e score��� of the position of a given sequence is expressed

as ��� = ∑20�=1 �(�, 	) × 
(�, 	), where �(�, 	) is the ratio of
the frequency of the 	th amino acid appearing at position � of
the probe to be the total number of probes and 
(�, 	) is the
value of Dayho� ’s mutation matrix [34] between the �th and

	th amino acids [35–37]. As a result, a high score represents a
largely conserved position and a low score represents aweakly
conserved position [38–40].

PSSMs are used to predict protein folding patterns,
protein quaternary structural attributes, and disul�de con-
nectivity [41, 42]. Here, we also use PSSMs to predict PPIs.
In this paper, we used the Position Speci�c Iterated BLAST
(PSI-BLAST) [43] to create PSSMs for each protein sequence.
�e �-value parameter was set as 0.001, and three iterations
were selected for obtaining broadly and highly homologous
sequences in the proposed method. �e resulting PSSMs can
be represented as 20-dimensional matrices. Each matrix is
composed of � × 20 elements, where � is the total number
of residues in a protein. �e rows of the matrix represent the
protein residues, and the columns of the matrix represent the
20 amino acids.

2.3. Local Phase Quantization. Local Phase Quantization
(LPQ) has been described in detail in the literature [44]. �e
LPQ method is based on the blur invariance property of the
Fourier phase spectrum [45–47]. It is an operator used to
process spatial blur in textural features of images. �e spatial
invariant blurring of an original image (�) apparent in an
observed image �(�) can be expressed as a convolution, given
by � (�) =  (�) ∗ ℎ (�) , (1)

where ℎ(�) is the function of the spread point of the blur, ∗
represents two-dimensional convolutions, and � is a vector of

coordinates [�, �]�. In the Fourier domain, this amounts to� (�) = � (�) ⋅ � (�) , (2)

where �(�), �(�), and �(�) are the discrete Fourier trans-
forms (DFT) of the blurred image �(�), the original image(�), and ℎ(�), respectively, and � is a vector of coordinates[�, V]�. According to the characteristic of the Fourier trans-
form, the phase relations can be expressed as∠� (�) = ∠� (�) + ∠� (�) . (3)

When the spread point function ℎ(�) is the center of sym-
metry, meaning ℎ(�) = ℎ(−�), the Fourier transform of ℎ(�)
always has a real value. As a result, its phase can be expressed
as a two-valued function, given by

∠� (�) = {{{0 if �(�) ≥ 0� if �(�) < 0. (4)

�is means that ∠� (�) = ∠� (�) . (5)

�e shape of the point spread function ℎ(�) is similar to
the Gaussian or Sin function. �is ensures that �(�) ≥ 0
and ∠�(�) = ∠�(�) at low frequencies, which means that
the phase characteristics are due to blur invariance. �e
local phase information can be extracted using the two-
dimensional DFT in LPQ. In other words, a short-term
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Fourier transform (STFT) computed over a rectangular � ×�neighborhood�� at each pixel position� of an image(�)
is represented by� (�, �) = ∑

�∈	�
 (� − �) �−�2
��� = !���, (6)

where !� is the basis vector of the two-dimensional DFT
at frequency � and � is another vector containing all �2
image samples from ��. Using LPQ, the Fourier coe�cients

of four frequencies are calculated: �1 = [", 0]�, �2 = [0, "]�,�3 = [", "]�, and �4 = [", −"]�, where " is a small enough
number to satisfy ℎ(�) ≥ 0. As a result, each pixel point can
be expressed as a vector, given by��� = [� (�1, �) , � (�2, �) , � (�3, �) , � (�4, �)] ,�� = [Re {���} , Im {���}]� . (7)

�en, using a simple scalar quantizer, the resulting vectors are
quantized, given by


� (�) = {{{1, if �� (�) ≥ 00, otherwise, (8)

where ��(�) is the �th component of ��. A�er quantization,�� becomes an eight-bit binary number vector, and each

component of �� is assigned a weight of 2�. As a result,
the quantized coe�cients are represented as integer values
between 0 and 255 using binary coding

LPQ (�) = 7∑
0

� (�) 2�. (9)

Finally, a histogram of these integer values from all image
positions is composed and used as a 256-dimensional feature
vector in classi�cation. In this paper, the PSSM matrixes
of each protein from the Yeast and Human datasets were
converted to 256-dimensional feature vectors using this LPQ
method.

2.4. Principal Component Analysis. Principal Component
Analysis (PCA) is widely used to process data and reduce
the dimensions of datasets. In this way, high-dimensional
information can be projected to a low-dimensional subspace,
while retaining the main information. �e basic principle of
PCA is as follows.

A multivariate dataset can be expressed as the following
matrix �:

� = (� (1)...� (�)) ,
� (-) = [�1 (-) , . . . , � (-)] , (- = 1, . . . , �) ,

(10)

where / is the number of variables and � is the number of
samplings of each variable. PCA closely related to singular

value decomposition (SVD) of matrix and the singular value
decomposition of matrix � as follows:� = ∑

�=1
"�3�4�� , (11)

where 4� represent feature vector of ��� and 3� represent
feature vector of ��� and "� is singular value. If there are5 linear relationships between / variables, then 5 singular
values are zero. Any line of � can be expressed as feature
vector (
1, 
2, . . . , 
�):�� (-) = �∑

�=1
"�3�4� = �∑

�=1
6� (-) 
�, (12)

where 6�(-) = �(-)
� is projection �(-) on 
�, feature vector(
1, 
2, . . . , 
�) is load vector, and 6�(-) is score.
When there is a certain degree of linear correlation

between the variables of matrix, then the projection of �nal
several load vectors of matrix � will be enough small for
resulting from measurement noise. As a result, the principal
decomposition of matrix � is represented by� = 61
�1 + 62
�2 + ⋅ ⋅ ⋅ + 6�
�� + 7, (13)

where 7 is error matrix and can be ignored. �is does
not bring about the obvious loss of useful information of
data. In this paper, for the sake of reducing the in	uence
of noise and improving the prediction accuracy, we reduce
the dimensionality of the Yeast dataset from 256 to 180 and
dimensionality of the Human dataset from 256 to 172 in the
proposed method by using Principal Component Analysis.

2.5. Relevance Vector Machine. �e characteristics of the
Relevance Vector Machine have been described in detail in
the literature [48]. For binary classi�cation problems, assume

that the training sample sets are {��, -�}	�=1, �� ∈ 9� is
the training sample, -� ∈ {0, 1} represents the training
sample label, -� represents the testing sample label, and -� =�� + :�, where �� = !�;(��) = ∑	�=1 !�>(��, ��) + !0 is
the model of classi�cation prediction; :� is additional noise,
with a mean value of zero and a variance of ?2, where:� ∼ �(0, ?2), -� ∼ �(��, ?2). Assuming that the training
sample sets are independent and identically distributed, the
observation of vector - obeys the following distribution [49–
51]:� (- | �, !, ?2) = (2�?2)−	/2 exp [− 12?2 DDDD- − ;!DDDD2] , (14)

where ; is de�ned as follows:

; = (1 	 (�1, �1) ⋅ ⋅ ⋅ 	 (�1, �	)... ... ⋅ ⋅ ⋅ ...1 	 (�	, �1) . . . 	 (�	, �	)) . (15)

�e RVMuses sample label - to predict the testing sample
label -∗, given by� (-∗ | -) = ∫� (-∗ | !, ?2) � (!, ?2 | -) G!G?2. (16)
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Figure 1: �e 	ow chart of the proposed method.

To make the value of most components of the weight vector! zero and to reduce the computational work of the kernel
function, the weight vector ! is subjected to additional
conditions. Assuming that !� obeys a distribution with a

mean value of zero and a variance of H−1� , the mean !� ∼�(0, H−1� ), �(! | ") = ∏	�=0�(!� | "�), where " is a hyper-
parameters vector of the prior distribution of the weight
vector !. Hence,� (-∗ | -)= ∫� (-∗ | !, ", ?2) � (!, ", ?2 | -) G!G" G?2,

� (-∗ | !, ", ?2) = �(-∗ | � (�∗; !) , ?2) . (17)

Because �(!, ", ?2 | -) cannot be obtained by an integral, it
must be resolved using a Bayesian formula, given by� (!, ", ?2 | -) = � (! | ", ?2, -) � (", ?2 | -) ,

� (! | ", ?2, -) = � (- | !, ?2) � (! | ")� (- | ", ?2) . (18)

�e integral of the product of �(- | ", ?2) and �(! | ") is
given by

� (- | ", ?2) = (2�)−	/2 |Ω|−1/2 exp(−-�Ω−1-2 ) ,
Ω = ?2N + ;O−1;�, O = diag ("0, "1, . . . , "	) ,� (! | ", ?2, -)

= (2�)−(	+1)/2 |Σ|−1/2 exp(−(! − �)� (! − �)2 ) ,
Σ = (?−2;�; + O)−1 ,� = ?−2Σ;�-.

(19)

Because �(", ?2 | -) ∝ �(- | ", ?2)�(")�(?2) and �(", ?2 |-) cannot be solved by means of integration, the solution

is approximated using the maximum likelihood method,
represented by("��, ?2��) = argmax

�,�2
� (- | ", ?2) . (20)

�e iterative process of "�� and ?2�� is as follows:"new� = R�S2� ,
(?2)new = DDDD- − ;SDDDD2� − ∑	�=0 S� ,R� = 1 − "�∑�, �,

(21)

where∑ �, � is �th element on the diagonal of Σ and the initial

value of " and ?2 can be determined via the approximation
of "�� and ?2�� by continuously updating using formula (21).
A�er enough iterations, most of "� will be close to in�nity,
the value of the corresponding parameters in !� will be
zero, and other "� values will be close to �nite. �e resulting
corresponding parameters �� of "� are now referred to as the
relevance vector.

2.6. Procedure of the Proposed Method. In the paper, our
proposed method contains three steps: feature extraction,
dimensionality reduction using PCA, and sample classi�ca-
tion. �e feature extraction step contains two steps: (1) each
protein from the datasets is represented as a PSSM matrix
and (2) the PSSM matrix of each protein is expressed as a
256-dimensional vector using the LPQmethod. Dimensional
reduction of the original feature vector is achieved using
the PCA method. Finally, sample classi�cation occurs in two
steps: (1) the RVM model is used to carry out classi�cation
based on the datasets from Yeast and Human whose features
have been extracted and (2) the SVM model is employed to
execute classi�cation on the dataset of Yeast. �e 	ow chart
of the proposed method is displayed in Figure 1.

2.7. Performance Evaluation. To evaluate the feasibility and
e�ciency of the proposed method, �ve parameters, the
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accuracy of prediction (Ac), sensitivity (Sn), speci�city (Sp),
precision (Pe), andMatthews’s correlation coe�cient (MCC),
were computed. �ey are represented as follows:

Ac = TP + TN

TP + FP + TN + FN
,

Sn = TP

TP + TN
,

Sp = TN

FP + TN

Pe = TP

FP + TP
,

MCC

= (TP × TN) − (FP × FN)√(TP + FN) × (TN + FP) × (TP + FP) × (TN + FN) ,

(22)

where TP, TN, FP, and FN represent true positives, true
negatives, false positives, and false negatives, respectively.
True positives stand for the number of true interacting pairs
correctly predicted. True negatives are the number of true
noninteracting pairs predicted correctly. False positives stand
for the number of true noninteracting pairs falsely predicted,
and false negatives are the number of true interacting pairs
falsely predicted to be noninteracting pairs. Moreover, a
Receiver Operating Curve (ROC) was created to evaluate the
performance of our proposed method.

3. Results and Discussion

3.1. Performance of the Proposed Method. To avoid the over-
�tting in the prediction model and to test the reliability of
our proposed method, we used 5-fold cross-validation in
our experiment. More speci�cally, the whole dataset was
divided into �ve parts; four parts were employed for training
model, and one part was used for testing. Five models were
gained from theYeast andHuman datasets using thismethod,
and each model was executed alone in the experiment. For
the sake of ensuring fairness, the related parameters of the
RVM model were set up the same for the two di�erent
datasets, Yeast and Human. Here, the Gaussian function was
selected as the kernel function with the following parameters:

width = 0.6, initapla = 1/�2, and beta = 0, where width
represents the width of the kernel function, � is the number
of training samples, and the value of beta was de�ned as zero,
which represents classi�cation. �e experimental results of
the prediction models of the RVM classi�er combined with
Local Phase Quantization and the Position Speci�c Scoring
Matrix and Principal Component Analysis based on the
protein sequence information from the two datasets are listed
in Tables 1 and 2.

Using the proposed method on the Yeast dataset, we
achieved the results of average accuracy, sensitivity, precision,
and MCC of 96.25%, 92.63%, 92.67%, and 87.27%. �e stan-
dard deviations of these criteria values were 0.95%, 0.55%,
1.40%, and 1.61%, respectively. Similarly, we also obtained
good results of average accuracy, sensitivity, precision, and
MCC of 97.92%, 99.187%, 96.77%, and 95.95% on theHuman

Table 1: 5-fold cross-validation results shownby using our proposed
method on the Yeast dataset.

Testing set Ac (%) Sn (%) Pe (%) MCC (%)

1 92.76 92.73 92.79 86.56

2 93.79 93.27 93.41 88.34

3 91.28 92.12 90.43 84.08

4 92.27 92.02 92.50 85.72

5 93.17 93.02 93.32 87.27

Average 92.65 ± 0.95 92.63 ± 0.55 92.67 ± 1.40 86.40 ± 1.61

Table 2: 5-fold cross-validation results shown by using our pro-
posed method on the Human dataset.

Testing set Ac (%) Sn (%) Pe (%) MCC (%)

1 98.10 98.99 97.25 96.27

2 97.67 99.49 96.02 95.45

3 97.37 99.25 95.55 94.87

4 97.24 98.96 95.72 94.63

5 99.26 99.22 99.31 98.54

Average 97.92 ± 0.81 99.18 ± 0.21 96.77 ± 1.57 95.95 ± 1.58

dataset. �e standard deviations of these criteria values were
0.81%, 0.21%, 1.57%, and 1.58%, respectively.

It can be seen from Tables 1 and 2 that the proposed
method is accurate, robust, and e�ective for predicting PPIs.
�e better performance for predicting PPIs may be attributed
to the feature extraction of the proposed method. �is
approach is novel and e�ective, and the choice of the classi�er
is accurate.�e proposed feature extractionmethod contains
three data processing steps. First, the PSSM matrix not only
describes the order information for the protein sequence but
also retains su�cient prior information; thus, it is widely
used in other proteomics research. As a result, we converted
each protein sequence to a PSSM matrix that contains all
the useful information from each protein sequence. Second,
because Local Phase Quantization has the advantage of
blur invariance in the domain of image feature extraction,
information can be e�ectively captured from the PSSMsusing
the LPQ method. Finally, while meeting the condition of
maintaining the integrity of the information in the PSSM,
we reduced the dimensions of each LPQ vector and reduced
the in	uence of noise using Principal Component Analysis.
Consequently, the sample information that was extracted
using the proposed feature extractionmethod is very suitable
for predicting PPIs.

3.2. Comparison with the SVM-Based Method. Although
our proposed method achieved reasonably good results on
the Yeast and Human datasets, its performance must be
further validated against the state-of-the-art support vector
machine (SVM) classi�er. More speci�cally, we compared
the classi�cation performances between SVM and RVM
model on the Yeast dataset using the same feature extraction
method. �e LIBSVM tool (available at https://www.csie.ntu
.edu.tw/∼cjlin/libsvmtools/) was employed to carry out clas-
si�cation in SVM. Two corresponding parameters of SVM,
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Table 3: 5-fold cross-validation results shown by using our proposed method on the Yeast dataset.

Testing set Ac (%) Sn (%) Sp (%) MCC (%)

SVM + PSSM + LPQ

1 85.96 84.77 87.13 75.86

2 84.18 82.86 85.43 73.33

3 85.52 84.10 86.97 75.22

4 85.29 84.12 86.47 74.91

5 85.76 86.16 88.45 75.55

Average 85.34 ± 0.69 84.40 ± 1.20 86.89 ± 1.09 74.97 ± 0.98

RVM + PSSM + LPQ

1 92.76 92.73 92.79 86.56

2 93.79 93.27 93.41 88.34

3 91.28 92.12 90.43 84.08

4 92.27 92.02 92.50 85.72

5 93.17 93.02 93.32 87.27

Average 92.65 ± 0.95 92.63 ± 0.55 92.67 ± 1.40 86.40 ± 1.61
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Figure 2: Comparison of ROCcurves performed betweenRVMand
SVM on the Yeast dataset.

4 and �, are optimized using a grid search method. In the
experiment, we set 4 = 0.7 and � = 0.6 and used a radial
basis function as the kernel function.

�e prediction results of the SVM and RVMmethods on
Yeast dataset are shown in Table 3, and the ROC curves are
displayed in Figure 2. From Table 3, the prediction results of
the SVMmethod achieved 85.34% average accuracy, 84.40%
average sensitivity, 86.89% average speci�city, and 74.97%
average MCC, while the prediction results of the RVM
method achieved 92.65% average accuracy, 92.63% average
sensitivity, 92.67%, average speci�city, and 86.40% average
MCC. From these results, we can see that the RVM classi�er
is signi�cantly better than the SVM classi�er. In addition, the
ROC curves were analyzed in Figure 2, showing that the ROC
curve of the RVM classi�er is signi�cantly better than that of
the SVM classi�er.�is clearly proves that the RVM classi�er
of the proposed method is an accurate and robust classi�er
for predicting PPIs. �e increased classi�cation performance
of the RVM classi�er compared with the SVM classi�er can
be explained by two reasons: (1) the obvious advantage of
RVM is that the computational work of the kernel function
is greatly reduced and (2) RVM overcomes the shortcoming

of the kernel function being required to satisfy the condition
of Mercer. Due to these reasons, the RVM classi�er of
our proposed method is signi�cantly better than the SVM
classi�er. At the same time, it has been proven that the
proposed method can yield highly accurate PPI predictions.

3.3. Comparison with Other Methods. In addition, a number
of PPI prediction methods based on protein sequences have
been proposed. To prove the e�ectiveness of our proposed
method, we compared the prediction ability of our pro-
posed method, which uses an RVM model combined with a
Position Speci�c Scoring Matrix, Local Phase Quantization,
and Principal Component Analysis, with existing methods
on Yeast and Human datasets. It can be seen from Table 4
that the average prediction accuracy of the �ve di�erent
methods is between 75.08% and 89.33% for Yeast dataset.
�e prediction accuracies of these methods are lower than
that of the proposed method, which is 92.65%. Similarly, the
precision and sensitivity of our proposed method are also
superior to those of the other methods. At the same time,
Table 5 shows the average prediction accuracy between the six
di�erent methods and the proposed method on the Human
dataset. From Table 5, the prediction accuracies yielded by
the other methods are between 89.3% and 96.4%. None of
these methods obtains higher prediction accuracy than our
proposed method. From Tables 4 and 5, it can be observed
that the proposedmethod yielded obviously better prediction
results compared to other existing methods based on ensem-
ble classi�ers. All these results prove that the RVM classi�er
combined with Local Phase Quantization and the Position
Speci�c Scoring Matrix and Principal Component Analysis
can improve the prediction accuracy relative to current state-
of-the-art methods. Our method improves predictions by
using a correct classi�er and a novel extraction method that
captures the useful evolutionary information.

4. Conclusion

Knowledge of PPIs is becoming increasinglymore important,
which has prompted the development of computational
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Table 4: Predicting ability of di�erent methods on the Yeast dataset.

Model Testing set Ac (%) Sn (%) Pe (%) MCC (%)

Guo et al.’s work [20]
ACC 89.33 ± 2.67 89.93 ± 3.60 88.77 ± 6.16 N/A

AC 87.36 ± 1.38 87.30 ± 4.68 87.82 ± 4.33 N/A

Zhou et al.’s work [25] SVM + LD 88.56 ± 0.33 87.37 ± 0.22 89.50 ± 0.60 77.15 ± 0.68

Yang et al.’s work [26]

Cod1 75.08 ± 1.13 75.81 ± 1.20 74.75 ± 1.23 N/A

Cod2 80.04 ± 1.06 76.77 ± 0.69 82.17 ± 1.35 N/A

Cod3 80.41 ± 0.47 78.14 ± 0.90 81.66 ± 0.99 N/A

Cod4 86.15 ± 1.17 81.03 ± 1.74 90.24 ± 1.34 N/A

You et al.’s work [27] PCA-EELM 87.00 ± 0.29 86.15 ± 0.43 87.59 ± 0.32 77.36 ± 0.44

e proposed method RVM 92.65 ± 0.95 92.63 ± 0.55 92.67 ± 1.40 86.40 ± 1.61

Table 5: Predicting ability of di�erent methods on the Human
dataset.

Model Ac (%) Sn (%) Pe (%) MCC (%)

LDA + RF [28] 96.4 94.2 N/A 92.8

LDA + RoF [28] 95.7 97.6 N/A 91.8

LDA + SVM [28] 90.7 89.7 N/A 81.3

AC + RF [28] 95.5 94.0 N/A 91.4

AC + RoF [28] 95.1 93.3 N/A 91.0

AC + SVM [28] 89.3 94.0 N/A 79.2

e proposed method 97.92 99.18 96.77 95.95

methods. �ough many approaches have been developed
to solve this problem, the e�ectiveness and robustness of
previous prediction models can still be improved. In this
study, we explore a novel method using an RVM classi�er
combined with Local Phase Quantization and a Position
Speci�c ScoringMatrix. From the experimental results, it can
be seen that the prediction accuracy of the proposed method
is obviously higher than those of previous methods. It is a
very promising and useful support tool for future proteomics
research. �e main improvements of the proposed method
come from adopting an e�ective feature extraction method
that can capture useful evolutionary information. Moreover,
the results showed that PCA signi�cantly improves the
prediction accuracy by integrating the useful information and
reducing the in	uence of noise. In addition, the experimental
results show that the RVM model is suitable for predicting
PPIs. In conclusion, the proposed method is an e�cient,
reliable, and powerful prediction model and can be a useful
tool for future proteomics research.
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