

Using the SafeArchive System:

TRAC-Based Auditing of LOCKSS

Micah Altman; Institute for Quantitative Social Science, Harvard University; Cambridge, M.A., U.S.A.

Jonathan Crabtree; Odum Institute, University of North Carolina, Chapel Hill; Chapel Hill, N.C., U.S.A.

Abstract
The goals of SafeArchive are to make distributed

replication easier, and to automate compliance with formal

replication and storage policies. In this article, we describe the

process of automated archival policy auditing in detail. First,

we provide an overview of the SafeArchive system and we

describe how a curator can use the tools to generate an archival

policy schema and monitor it, simply. Second we identify

specific TRAC criteria that can be verified automatically, and

additional criteria that can be supported through integrated

documentation. Third, we discuss the technical implementation

of the system including the policy schema; how information used

in the auditing process is obtained from a set of LOCKSS peers

without modifying the LOCKSS trust model or configuration;

and how the software is organized into components.

The Need for Policy-Based Replication
Verified geographically-distributed replication of content is

an essential component of any comprehensive digital

preservation plan. This requirement has emerged as a necessity

for recognition and certification as a trusted repository – in order

to be fully trusted, an organization must have a managed process

for creating, maintaining, and verifying multiple geographically

distributed copies of its collections. This requirement has been

embodied in Trustworthy Repositories Audit & Certification

(TRAC), an emerging ISO standard, and in other best practices

[1]. Furthermore, an organizationally distributed, collaborative

approach is required to minimize threats from internal attack,

economic failure, and organizational failure [2].

The LOCKSS (Lots of Copies Keeps Stuff Safe) system [3]

has been widely adopted by libraries and archives for replication

and preservation. LOCKSS is simple to install and administer

(in part because it is a self-contained system), has minimal

hardware requirements, and can readily replicate content on

existingweb-sites. Each LOCKSS peer (a.k.a. “cache”)

independently harvests content from content owners – and the

peers collaborate to check the integrity of the content, and to

repair caches that lose or corrupt previously harvested content.

The peer-to-peer (P2P) model that LOCKSS employs,

along with careful attention to security in its design, make it

resistant to operator error, outside attacks,. insider attacks, and

the failure of a single institution. Like many P2P designs,

however, it provides no way for peers to make credible resource

commitments to each other; to ensure that peers always preserve

new content from a particular source; or to ensure that a

minimum number of copies are made of a particular collection.

Furthermore, although LOCKSS provides low-level

verification of the integrity of content across caches, it does not

support the auditing required by archival standards such as

TRAC. For example, there is no supported mechanism for a

content owner or the owner of a participating LOCKSS peer to

determine how many copies of an item are replicated in the

network, or how frequently these are verified. Nor is it possible

for a content owner to easily determine what caches harvest their

content, or the completeness and freshness of such replication.

Overview of the SafeArchive System
The SafeArchive system fills this gap by coordinating and

auditing existing groups of locks peers. Without requiring a

single authority, this allows a group of institutions to establish

actionable and mutually verifiable policies governing the

replication of content of interest to those institutions. This

solution provides the reliability of a top-down replication system

with the resilience of a peer-to-peer model.

The SafeArchive system is an open source and available at:

www.safearchive.org

SafeArchive is based on a prototype [2] developed by the

Data-PASS partners [4,5], and funded by the Library of

Congress This prototype established feasibility and the core

operational use cases for the system. The SafeArchive has been

completely rewritten and redesigned for production use.

Abstractly, the system is designed to create a virtual

overlay network on top of a peer-to-peer replication network, to

support provisioning, monitoring, and TRAC-based auditing

(Fig 1.):

Figure 1. Conceptual diagram of Institutional Use of SafeArchive

Archiving 2011 Final Program and Proceedings 165

Operationally, users of the system can: (1) Analyze any

LOCKSS network; (2) check that collections are replicated,

valid, and up-to-date; (3) create formal replication policies; (4)

and audit the network for current and historical TRAC

compliance. With the next release, scheduled for this summer,

the SafeArchive system will also be able to automatically

manage and repair a LOCKSS network based on a specified

replication policy.

Furthemore,the SafeArchive system is designed to

collaborate with the Dataverse Network [6] system. Curators

who store content in Dataverse can easily expose content for

replication by LOCKSS and SafeArchive through a simple

graphical interface.

Institutionally, the SafeArchive enables memory

institutions and preservation collaborations to formalize their

replication policies and inter-archival replication commitments;

represent these in machine-readable form; and to continuously

audit any set of public or private LOCKSS hosts for compliance.

How the SafeArchive System Works
Generally speaking, the system coordinates six activities:

(1) Collaborating institutions agree on a replication

policy. This records the resource commitments,

descriptions of the collections to be preserved, and

desired replication guarantees (such as number of

copies, frequency of verification, and freshness of

content).

(2) Institutions make collections of content (“archival

units”) available through the web, e.g. as web pages or

through the Dataverse Network.

(3) LOCKSS caches harvest the collections from their

original source repositories, using standard protocols

such as HTTP or OAI-PMH.

(4) LOCKSS caches coordinate peer-to-peer to monitor

and maintain the integrity of the network. Caches

repair content that is corrupted and restore content

when hosts are replaced.

(5) SafeArchive monitors network, assesses it against the

stated replication policy, and produces an audit trail.

The system also allerts collaborating when formal

policies are not met.

(6) In future, SafeArchive will also coordinate harvesting

of the locks caches by “inviting” members of the

network to harvest content that is under-replicated.

This will be used to automatically configure a network

based on a policy schema, to reconfigure and repair

the network as the number of participating caches,

collections and institutions changes intentionally or

unintentionally.

The SafeArchive system is designed to give curators the

ability to easily define preservation policy, examine the content

of the preservation network, and generate regular audit reports

that support TRAC compliance. The tools are designed to be

easy to use and once initial configurations are complete the

system provides automated reports of policy compliance. And

all changes to the policy schema instance and the machine-

readable audit reports are versioned and stored permanently – so

that there is complete history of compliance.

Using the System
The The SafeArchive system can be configured to audit

existing LOCKSS caches that are either standalone (public) or

configured in a Private LOCKSS Network (PLN). In compliance

with the LOCKSS trust model the system requires local

LOCKSS owners to allow access, and limits access to the

minimum required. To allow the SafeArchive system the ability

to audit the local caches owners must provide authentication

information (and allow network access, if blocked by a firewall).

The LOCKSS system supports creation of limited-privilege non-

accounts for this auditing purpose. In no case, can SafeArchive

cause content to be deleted from a cache or perform “super-

user” operations.

Once the SafeArchive system has been provided the

location and authentication information of LOCKSS caches to

be audited, curators can specify the policies their organizations

would like to monitor for compliance. The curator begins by

answering a web-based questionnaire that is designed to

automatically populate the machine-readable policy schema.

(Alternatively, the curator can use a standard XML authoring

tool to create a policy schema instance.)

As a part of this survey the curator defines the frequency of

automated reporting. The reports are delivered using a user-

friendly template and provide a simple view of policy

compliance. A detailed machine-readable audit report is also

available for automated processing.

The reports contains both “audit” summaries that reflect

compliance with archival policy, and “operational” information

that can be used for diagnostics and performance analysis.

Table 1: Example Report Fragments

Preservation Network Summary

Mean Up Time for Hosts 37d:7h:18m:44s
Number of Hosts Reachable 7
Number of Hosts NOT Reporting 0
Number of Unique AUs 6
Total Number of Replicates 34
Total Disk Space in Use 2.28 TB
Total Disk Space Free 19.7 TB

Verified Replicates

ID AU Name Verified
Replicates

Conforms
to Policy

1 ICPSR 0 FALSE

2 IQSS Dataverse

5 TRUE

3 Odum Dataverse

4 TRUE

4 Roper Collection 5 TRUE

166 ©2011 Society for Imaging Science and Technology

 For example, the sample audit report fragments in Table 1

shows segments of the report sent to administrators and

archivists to monitor their preservation network. The audit

report fragment shows that all archival units are within the

parameters expected by the policy, except one. This archival

unit, which is the process of verification, does not yet have any

verified copies and fails the minimum replication requirements.

The operational report fragment shows (among other things) the

amount of content held by the network and the amount of

storage space available.

Table 2 provides more detailed descriptions of the

categories of information available in the reports:

Table 2: SafeArchive Report Information

Category Explanation
Versioning Provides date and version

information for reports and related
policy schema.

Collection
Replication
Policies

Reports conformance with
replication policies (number of
replicas, verification, freshness, and
distribution requirements)

Host Storage
Policies

Reports whether storage provided
by caches meets institutional
commitments to the network

Network
Operations
Summary

Summarizes size of content held in
network, available storage,
andoverall availability of caches.

LOCKSS
Diagnostics

Shows behavior of each
participating cache, including crawl
and poll behavior

Aligning Replication Policies and TRAC
There are two different ways in which the system aligns

with and supports TRAC: In this section we identify TRAC

criteria that can be verified automatically, and additional criteria

that can be supported through integrated documentation.

First, proper use of SafeArchive can provide evidence of

TRAC compliance. Because the system automatically audits

(and in the future, will reconfigure the network) for compliance

with collection integrity, replication and freshness guarantees it

provides supporting evidence for compliance with the general

TRAC areas of archival storage & preservation (B4);

independent audit mechanisms (B2); appropriate system

infrastructure (C1); and disaster planning and recover (C3).

Specifically, Table 3 shows the direct evidence of

compliance produced in the audit trail:

Table 3: Trac Criteria Directly Supported by SafeArchive

Trac Criterion SafeArchive Support
B.4.4 SafeArchive uses LOCKSS

mechanisms to continually monitor
integrity. SafeArchive audit trails
document integrity failures.

B.2.12, B4.5 SafeArchive audit trails document
replication actions taken to
decrease risk and repair actions
made to restore collection integrity.

B.6.4 SafeArchive design ensures that
access to replicated collections is
restricted to hosts that have
demonstrated the ability to access
the original content.

C1.1 SafeArchive is built on Linux, and
on a well-supported set of open-
source components. It functions on
well-supported operating systems
and core infrastructural software.

C1.2 SafeArchive audit trails
demonstrate that sufficient backup
storage is being provided by
multiple institutions.

C1.3 The audit trail demonstrates that
the number, distribution, and
freshness of copies meets policy.

C1.4 LOCKSS mechanisms
automatically synchronize copies
of digital objects.

C1.5 LOCKSS mechanisms detect bit
corruption and loss. SafeArchive
audit trail demonstrates the
frequency of verification of content.

C1.6 SafeArchive provides tools for
generating automatic reports and
alerts if data is corrupted or lost.

C3.1-4 SafeArchive replication contributes
to disaster planning and recovery.

Second, TRAC-relevant documentation describing the

participants in a SafeArchive network can be included in the

SafeArchive policy, as documentation. The policy schema

includes “hooks” which can be used to document properties

(either directly or by reference to external documentation) that

are relevant to a TRAC assessment, and to link this

documentation to specific TRAC elements.

This second type of documentation is not auditable by the

SafeArchive system. Instead it is included so that the policy

instance is a complete self-contained document about the

replication network. This aids participants in the replication

network in fully understanding the trustworthiness of the system

and the institutions hosting it.

For example, the host portion of the policy schema can be

used to document the system security of hosts in the network;

and the Network portion may be used to document the

Archiving 2011 Final Program and Proceedings 167

preservation mission of the organization running SafeArchive.

Table 4 provides more specific recommendations for

documentation that can be included in a SafeArchive policy:

Table 4: Recommended Documentation Elements

Trac Criterion Where to Document in SafeArchive
Policy

A1-A4 Institutions should document the
organizational infrastructure of the
Virtual Organization running
SafeArchive in the Network sections
of the policy document.

A5 Institutions may document terms
specific to a particular collection in the
Archival Unity section for that
collection

B2.5, B2.7,
B5.2

Institutions may provide
documentation on naming, identifiers,
and other context for a particular
collection in the Archival Unit section
for that collection

C1.7-C1.10 Institutions may provide
documentation on system setup,
maintenance and other system
information for each LOCKSS cache
in the Host section of the policy, for
each host in the network.

Technical Details
 In this section we describe technical details of the system,

including the policy schema, mechanisms for collecting

information about the LOCKSS network, and software

components that make up the system.

Policy Schema Examples
The policy schema is comprised of three sections. The first

section of the schema defines the Network. It groups

information that can be used to identify and describe network

components. The required fields in this group are network name,

description and contact. Additional information used to

document network level TRAC compliance is recommended.

This can also specify minimum requirements for archival

replication across the network, which supplements the

replication requirements in the Archival Unit section.

The second section of schema defines the participating

Hosts. This includes identification and contact information for

the participating LOCKSS caches; and the storage commitment

that the owner of the host has made to the network. In addition

these fields can record operating parameters; and can contain

TRAC documentation related to that host.

The final section of the schema defines the Archival Units

(collections of content) that are replicated and monitored by the

system. An example of this section is shown in Figure 2, below.

This section records identification information and references to

the LOCKSS plugins that are to harvest that collection. This

section also contains the replication policies for that collection,

including: update frequency, storage commitment by the

network to the collection, and the number of desired replicas.

Optionally, this section can contain documentation about

terms of use of the collection, and other TRAC documentation

relevant to the content.

<archivalUnits>

 <au au_id="edu|harvard|iq|dvn|lockss|plugin|DVNOAIPlugin>

 <auIdentity>

 <name>ICPSR</name>

 </auIdentity>

 <auCapabilities>

 <numberReplicates min="3"/>

 <verificationFrequency maxDays="21"/>

 <replicationDuration maxDays="21"/>

 <updateFrequency minDays="7"/>

 <storageRequired max_size="2000"/>

 </auCapabilities>

 <auTerms/>

 </au>

Figure 2. Sample from a SafeArchive policy schema

For ease of creation, SafeArchive includes a tool that

creates the schema through an online questionnaire and probes

of participating caches.

Auditing LOCKSS Caches
Information used in the auditing process is obtained

directly from a set of LOCKSS peers, without violating the

LOCKSS trust model or requiring additional patches to the

LOCKSS installation. We summarize the details in this section.

The SafeArchive system includes a network monitoring

component responsible for monitoring each cache participating

in the network. The workhorse of the monitoring component is

the Cache Status Extractor, which interrogates each LOCKSS

cache to collect all of the information necessary to support

policy reporting and auditing. Data collected by the Extractor is

stored in the Network Monitor database tables. And the

frequency of extractor activity is controlled by cron (automatic)

and console (manual) services provided by the Network

Monitor. The Extractor gather information on caches. and the

archival units they contain. The extractor also collects

information on harvests and polls performed by the LOCKSS

caches as part of their normal operation. These data will be used

later to verify that preservation policies have been met.

The Cache Status Extractor retrieves information through a

standard HTTP servlet request provided by LOCKSS. In order

to access the servlet, the system requires an account with limited

privileges on each cache. This account and password is created

using supported LOCKSS mechanisms, and is used only to

gather information. This information is returned in XML format,

or in plain text.

The Extractor uses LOCKSS-specific business logic to

summarize and translate the raw results so that it can be more

easily used in locks results. For example, since the LOCKSS

system uses dynamic polling, the process of determining the

number of verified collections is somewhat complex. In some

case many replicas of a collection may exist but may not

168 ©2011 Society for Imaging Science and Technology

actually have been verified at the time of an audit. To determine

which archival units have actually been verified, the Extractor

collects information about all of the polls in which a LOCKSS

cache has participated, and then analyzes this polling data to

determine when a particularly Archival Unit has been agreed to

by a sufficient number of caches.

Finally the Cache Status Extractor places both raw and

processed information (via EJB) into MYSQL tables for use by

other system components. The action of these components is

described in the next section.

System Components

The SafeArchive software is written primarily in Java using

EJB, Glassfish, and JSF; is backed by a MySQL database; and

runs under Linux. The Eclipse BIRT system is used as a

framework for report generation. The entire system is organized

into a set of semi-independent components, shown in Figure 3:

Figure 3. Components of the current system

Gathering information on the network is accomplished by

the Network Monitor component. In this section we describe

how other components of the system act on this information to

provide auditing, reporting, and reconfiguration.

The Audit Schema manager is the heart of the auditing

functionality. The Audit Schema manager facilitates creation

and editing of formal policies posing a series of preservation

requirements questions to the archive manager through a web

interface. Information gathered through the Network Monitor

are used to provide reasonable default values and to pre-

populate selections. The output of this interview is a well-

defined preservation policy rule set, expressed in XML that

specifies formally the policies to be audited. This output is

versioned and placed into a secure UNIX file system for use by

other tools and inspection at a future occasion.

The Audit Schema component also provides a schema

comparison tool. This tool compares the schematize policy with

the actual state of the preservation network (as determined by

the Network Monitor), and produces a set of machine-readable

“diffs” that enumerate all differences between the actual and

desired states.

The Report Generator component creates formatted audit

reports and operational reports. High-level policy reports can be

generated either directly from the Network Monitor data or from

the “diffs” produced. This template is stored in an XML design

format. More detailed operational reports are generated directly

from the Network Monitor data, using a read-only EJB

connection, and the BIRT report generator framework. Reports

can be generated on-demand through a “console” service, and

generated automatically through a “cron” service.

Two additional components are in development, as

illustrated in figure 4:

Figure 4. Components in Planning

At present, if content needs to be retrieved from the system,

it must be retrieved directly from one of the participating caches

holding that content using LOCKSS-native mechanisms. The

LOCKSS management tool will coordinate the location of an

appropriate cache and the restoration of content from it.

The preservation enforcer component will allow the system

to make "adjustment" requests to individual LOCKSS caches.

These will invite caches to start or discontinue harvesting

particular content using the standard LOCKSS administrative

interface. While this requires a higher level of privileges that

simple monitoring of the network, the privileges are still limited.

All invitations to stop and start harvesting are auditable by the

cache owners, and the system can never be used to delete

existing content on the caches. Thus the LOCKSS trust model is

honored. We are working with the LOCKSS team to fine-tune

an appropriate set of permissions and interface mechanisms.

Summary
The SafeArchive system provides a way to ensure that

replicated collections are both institutionally and geographically

distributed and to allow for the development of increasingly

measurable and auditable trusted repository requirements.

Designed as a virtual overlay network on LOCKSS, the system

provides the auditability and reliability of a top-down replication

Archiving 2011 Final Program and Proceedings 169

system with the resilience of a peer-to-peer model. This enables

any library, museum, or archive to audit that its content is being

replicated across an existing LOCKSS network in conformance

with documented archival policies; and to allow groups of

collaborating institutions to automatically and verifiably

replicate each others’ content consistent with a set of expressed

commitments. The result is that archives can more easily

collaborate to preserve content through geographically and

institutionally replication; which mitigates against technical and

organizational threats to preservation.

Acknowledgements
The project is a collaborative effort of the Data-PASS

Partners: The International Consortium for Political and Social

Research, U. Michigan; The Roper Center for Public Opinion

Research, Research at the University of Connecticut, the

Howard W. Odum Institute at the University of North Carolina-

Chapel Hill, NARA, and the Institute of Quantitative Social

Science, Harvard University. It is managed through the Institute

of Quantitative Social Science, and works in collaboration with

the LOCKSS project at Stanford University.

The project is sponsored by the Institute of Museum and

Library Services (IMLS), under award #LG-05-09-0041-09.

References
[1] RLG-National Archives and Records Administration Task Force,

Trustworthy Repositories Audit and Certification: Criteria and

Checklist (TRAC) Ver 1.0 (Chicago, IL: Center for Research

Libraries http://www.crl.edu/PDF/trac.pdf). (2007)

[2] Micah Altman ; Bryan Beecher,; Jonathan Crabtree; Leonid

Andreev, Ed Bachman, Adam Buchbinder , Steve Burling, Patrick

King, Marc Maynard, “A Prototype Platform for Policy-Based

Archival Replication”, Against The Grain v. 21(2). Pgs. 44-47.

(2009)

[3] Vicky Reich & David S. H. Rosenthal, 2001. "LOCKSS: A

Permanent Web Publishing and Access System", D-Lib Magazine

7(6).

[4] Altman, M., Adams, M., Crabtree, J., Donakowski, D., Maynard, M.,

Pienta, A., & Young, C. (2009). "Digital preservation through

archival collaboration: The Data Preservation Alliance for the

Social Sciences." The American Archivist. 72(1). Pgs. 169-182.

(2009).

[5] Myron Gutmann, Abrahamson, M, Adams, M.O., Altman, M, Arms,

C., Bollen, K., Carlson, M., Crabtree, J., Donakowski, D., King,

G., Lyle, J., Maynard, M., Pienta, A., Rockwell, R, Timms-Ferrara

L., Young, C.. "From Preserving the Past to Preserving the Future:

The Data-PASS Project and the challenges of preserving digital

social science data", Library Trends 57(3). Pgs. 315-337. (2009)

[6] Merce Crosas., “The Dataverse Network: An Open-Source

Application for Sharing, Discovering and Preserving Data”, D-Lib

Magazine 17(1/2). (2011)

Author Biography
Micah Altman (Ph.D. California Institute of Technology) is Senior

Research Scientist in the Institute for Quantitative Social Science in the

Faculty of Arts and Sciences at Harvard University and Archival

Director of the Henry A. Murray Research Archive. Dr. Altman conducts

research in social science informatics, social science research

methodology, and American politics, focusing on the intersection of

information, technology, and politics; and on the dissemination,

preservation, and reliability of scientific knowledge.

JONATHAN CRABTREE is Assistant Director for Archives and

Information Technology at the Odum Institute for Research in Social

Science at University of North Carolina, Chapel Hill. Crabtree joined

the institute 15 years ago and is responsible for designing and

maintaining the technology infrastructure that supports the institute’s

wide array of services. He is also completing an advanced degree in the

School of Information & Library Science at UNC

170 ©2011 Society for Imaging Science and Technology

