
Using the Script MIB for
Policy-based Configuration Management

P. Martinez, M. Brunner, J. Quittek F. Strauß, J. Schönwälder, S. Mertens, T. Klie
Network Laboratories Computer Science Department
NEC Europe Ltd. Technical University Braunschweig
Adenauerplatz 6 M̈uhlenpfordtstraße 23
69115 Heidelberg, Germany 38106 Braunschweig, Germany
{brunner,quittek}@ccrle.nec.de {strauss,schoenw,mertens,tklie}@ibr.cs.tu-bs.de

Abstract
The IETF has developed several specifications for policy-based configuration man-
agement. In addition, an infrastructure for distributed management by delegation has
been specified. This paper combines key concepts developed in these two efforts and
proposes a policy-based configuration management architecture built upon the dis-
tributed management infrastructure. Two prototype implementations for managing
differentiated services are discussed and evaluated.

Keywords
Policy-based Management, Distributed Management, Script MIB, Jasmin

1 Introduction

Policy-based management approaches for the Internet are getting close to maturity.
Configuring a high number of routers, bridges, or servers by generic rules instead
of individual configuration appears to be less complex, less error-prone and more
flexible. This paper focusses on configuration management based on Internet Engi-
neering Task Force (IETF) standards. An overview of further approaches to policy-
based management can be found in [1]. The IETF has defined a policy framework
[2] consisting of management interfaces for entering policies, repositories for storing
policies, policy decision points (PDPs) for evaluating policies, and policy enforce-
ment points (PEPs) for enforcing policy decisions.

Based on this framework, the IETF standardized a policy core information model
(PCIM [3], PCIMe [4]) that can be used when entering policies, when storing them
in repositories, and when evaluating them at PDPs. For the transfer of policy deci-
sions between PDP and PEP the protocol COPS-PR (Common Open Policy Service
for Policy Provisioning) [5] was standardized. The structure of configuration in-
formation carried by COPS-PR is defined in Policy Information Bases (PIBs). The
language for defining PIBs has been standardizes as the Structure of Policy Provi-
sioning Information (SPPI [6]).

In parallel to these efforts to standardize policy-based management, the IETF has
created standards for distributing management functions in a network. The motiva-
tion was to move from centralized to weakly or strongly distributed management en-

vironments in order to improve scalability and flexibility [7]. The IETF Script MIB
[8] allows to send management scripts to distributed mid-level managers. Execu-
tion of these delegated management scripts can be controlled either by a higher-level
manager or by means of other management functions.

In this paper, we look at a PDP as a mid-level manager which generates concrete
device configurations from a set of more abstract policy rules. In particular, we
explore how the existing distributed management infrastructure as defined by the
Script MIB can be used to control the distribution and execution of policy rules in a
network with multiple PDPs, each realized by an instance of the Script MIB. In the
extreme case, one can imagine a network where all policy-enabled devices contain a
local Script MIB agent acting as PDP.

Our approach is related to the work of the IETF SNMPconf working group. This
working group defines a new low-level imperative language for expressing policies
in terms of sequences of simple statements that manipulate MIB objects. In addition,
they define a MIB for transporting policies written in this new language via SNMP
from a repository to a PDP at a managed node. The PDP can be combined with a
PEP, such that the managed node evaluates and enforces all policies locally, but also
the PDP can use SNMP for configuring other, remote PEPs.

While there are certainly benefits to be expected from defining the SNMPconf
language, we believe that defining a MIB for the transfer of policies is needless,
because the Script MIB already offers all means required to do so. We prove this
by implementing two different solutions of Script MIB policy transfer. They were
developed in parallel at the NEC Network Laboratories in Heidelberg and at the
Technical University Braunschweig.

The first solution is closely related to the SNMPconf approach. Policies are
defined as programs. These are downloaded as ’scripts’ via the Script MIB and then
executed by a common Script MIB runtime engine. The runtime acts as a PDP and
sends configuration information to a local or remote PEP.

The second solution builds upon the Policy Core Information Model (PCIM) [3].
Policies are not defined as programs, but as groups of PCIM objects. Such policies
stored in a repository are downloaded using the Script MIB directly to managed
nodes. There, an interpreter for this special kind of ’scripts’ combines PDP and PEP
functionality.

Section2 introduces the background needed to understand the rest of this paper.
Section3 introduces an architecture for policy-based configuration management us-
ing the Script MIB. It also introduces two different approaches to implement a policy
engine. Sections4 and5 describe the two approaches in more detail. An evaluation
of the two approaches is provided in Section6 before we conclude in Section7.

2 Background

This section introduces core concepts of the IETF policy framework and the IETF
distributed management standards. It also briefly reviews core concepts of the Dif-
ferentiated Service (DiffServ) architecture which has been used as an example appli-
cation domain in our prototype implementations.

2.1 Policy Framework

The methodology of policy-based network management was developed within the
IETF in the context of the Integrated Services model [2], where it was proposed to
use a policy framework for the management of admission control to reservations of
network resources. The approach however is independent of the particular service
model and soon it was recognized that it can equally be applied in a Differentiated
Services [9] environment and provides help in the application of IPsec. Moreover, it
can be applied favorably to other more general management problems.

Unfortunately, there is no generic IETF policy framework architecture fully
agreed upon and specified. But the key functional blocks seem to be commonly
recognized: policy management application, policy repository, policy decision point
(PDP) and policy enforcement point (PEP), as shown in Figure1 a).

The policy management application provides the interface to the network admin-
istrator to create and deploy policies, store them in the repository and monitor the
status of the policy-managed environment. This application performs a simple val-
idation that checks for potential policy conflicts. The policy repository is a storage
that is used for policy retrieval performed by the policy decision points. Access to
the database is accomplished by a repository access protocol.

The policy decision point is the point where policy decisions are made. It per-
forms the functions of retrieving and interpreting policies, detecting policy conflicts,
receiving policy decision requests from PEPs, and returning policy decisions to them.
Triggers to evaluate one or more policy rules can be events, polling, and explicit sys-
tem/component requests. Please note that the IETF policy framework does not in-
clude triggers explicitly. Only conditions (including timer conditions) are included.
However, for an implementation of the framework, triggers are a common choice.

The PDP makes policy decisions based on policy conditions that are formed of
boolean expressions that may refer to network element attributes. If a condition is
evaluated to be true, the according action is executed, which typically (re)configures
target elements to enforce the policy. If it is necessary it will translate policy rules
into more specific parameters that the PEP could understand. A PDP may control
multiple PEPs but each PEP is controlled by one PDP.

The PEP is the target entity that hosts the network elements where policy deci-
sions are actually enforced. It is the target of a policy action being executed when
the rule condition evaluates to true. The separation of PEP and PDP (and also of
the policy repository) is a logical one based on functionality, and not necessarily a
physical separation. PEP and PDP may be combined and co-located.

The IETF framework suggests LDAP [10] as the protocol for repository access
and COPS/COPS-PR as the protocol for policy decision transfer. Other mechanisms
such as HTTP, FTP, or SNMP may be used as well. However, no protocols are
suggested for the communication between the policy management application and
the PDPs or among cooperating PDPs. In general, no implementation details such as
distribution, platform, protocols or language are prescribed.

The applicability of a policy can be specified by assigning a role to it. The
concept of role is central to the design of the entire policy framework. A role is a
type of attribute that is used to select one or more policies for a set of entities and/or

components from among a much larger set of available policies. The idea behind
roles is simple. A policy administrator assigns each resource one or more roles,
and then specifies the policies for each of these roles. The policy framework is then
responsible for configuring each of the resources associated with a role in such a way
that it behaves according to the policies specified for that role.

Policy Management
Application

Policy Decision
Point (PDP)

Policy Enforcement
Point (PEP)

Configuration & Monitoring
(HTTP, CLI, COPS-PR, SNMP, ...)

Monitoring & Control

Policy Upload

Policy Download

Policy
Repository

a) IETF policy framework

Higher-Level
Manager

Distributed Manager

Management Agent

Configuration & Monitoring

(Executing Scripts)

(Managed Objects)

Monitoring & Control

(SNMP, ...)

(SNMP)

Script Download
(SNMP, FTP, HTTP, ...)

Script Upload

Script
Repository

b) distributed MbD

Figure 1: Architectures of the IETF policy framework and of distributed manage-
ment by delegation.

2.2 Distributed Management by Delegation

The delegation of management functions is a well known technique for the creation
of scalable and flexible management systems [11]. The IETF Script MIB [8] inte-
grates this approach into the Internet management framework [7, 12].

The Script MIB provides capabilities to (i) transfer management scripts to dis-
tributed managers, (i) initiate and terminate the execution of management scripts,
(iii) transfer arguments, (iv) monitor and control running management scripts, (v)
transfer results and error indications produced by management scripts.

The key components and their interactions are summarized in Figure1 b). The
Script MIB is implemented on the distributed manager and used by a higher-level
manager to monitor and control the execution of delegated management scripts. The
higher-level manager can monitor and control script execution via SNMP. The dis-
tributed manager can download scripts from a script repository using FTP or HTTP.
Access to the management agents is subject to the management scripts, also here,
SNMP plays an important role.

It should be noted that the Script MIB itself makes no assumption about the
format of management scripts and supports arbitrary programming languages and
multiple execution environments. Since Figures1 a) and b) look very similar, it is
reasonable to investigate how the two approaches can be combined and integrated.

2.3 Differentiated Services

As an example of an application domain for our system we regard the configuration
of DiffServ nodes. According to the DiffServ architecture [9], traffic entering a net-
work is classified and conditioned at boundary nodes of the network, and associated
to different behavior aggregates identified by DiffServ code-points (DSCPs) [13].
Within the core network, interior nodes examine only the DSCP field of incoming
packets and forward them according to the per-hop behavior (PHB) associated with
those DSCPs. A PHB defines how a packet should be treated by a DiffServ node, be-
fore being transmitted to the next hop. In order to implement a PHB, a DiffServ node
has several components that form building blocks as presented in the informal man-
agement model for DiffServ routers [14]. The model includes abstract definitions for
traffic classification, metering, marking, dropping, queuing, and scheduling.

The device-level configuration of the elements is realized through a configuration
and management interface via one or more management protocols, such as SNMP
or COPS, or via other configuration mechanisms such as command line interfaces
running over SSH or TELNET. Some of the management interfaces are currently
being standardized within the IETF. The IETF DiffServ working group is developing
a DiffServ MIB [15] and a DiffServ PIB [16] for managing DiffServ devices via
SNMP and COPS-PR. Additionally, the Policy Framework working group focuses
on a CIM information model for DiffServ nodes [17].

3 Architecture

This section describes our general policy-based configuration management architec-
ture using the Script MIB shown in Figure2. It contains four kinds of components:
policy manager, policy repository, PDP, and PEP.

SNMP HTTP or FTP

Script MIB
Access Library

Policy
Class Library Web Server

Policy Management Application

for agent
communication policies

to construct

Policy / Script Repository

Script

etc.Agent

MIB Script MIB Runtime Engine Network
Elements

Policy Manager / Higher−Level Manager

Policy Decision Point / Distributed Manager

SNMP,
COPS−PR,
SSH+CLI,

Policy Enforcement Points / Agents

Policy DB

Figure 2: Architecture of the Script MIB based configuration management system.

The policy manager controls the entire policy-based management system. It pro-
vides a user interface which allows administrators to construct and edit policies and
to store them in the policy repository. To control and monitor the execution of poli-
cies, the management application communicates with the agent(s) via SNMP.

The policy manager must be aware of the roles associated to each network ele-
ment, since it performs a policy selection in order to know which policies each agent
must retrieve. The concept of roles is used to select the policies which apply to a cer-
tain network element and therefore need to be downloaded to the Script MIB agent.
In our architecture, the policy management application needs to keep track of the
roles of the network elements controlled by the Script MIB agent, and what policies
apply for what role.

The Script MIB agent acts as PDP, retrieving policies from an HTTP or FTP
server that is acting as a policy repository. We are regarding the runtime engine
of the Script MIB agent as a policy engine that evaluates the policies delegated to
it as ‘scripts’. A policy evaluation may require monitoring network elements and
executing actions by sending configuration messages to the network elements.

There are two manager-agent relationships, one between policy manager and
PDP and one between PDP and PEP. For communication between policy manager
and PDP, SNMP and the Script MIB are used. For communication between PDP
and PEP several alternatives can be used: SNMP, COPS-PR, SSH/CLI, or a local
interface, if PDP and PEP are co-located.

While we assume only one instance of policy manager and policy repository,
there may be multiple PDPs and for each PDP there may be multiple PEPs. The
architecture covers three levels of PDP distribution shown in Figure3: (a) centralized
with just a single PDP, (b) weakly distributed with several PDPs, but much less than
the number of PEPs, and (c) strongly distributed with one PDP per PEP.

For centralized policy management there is no specific advantage in using the
Script MIB compared to other policy management systems. For weakly distributed
policy management we gain scalability. The central PDP in (a) may become a bot-
tleneck, if the number of policies and/or the number of PEPs increase too much. In
(b) the bottleneck is removed by distributing the load to as many PDPs as required.

In case of strongly distributed policy management, all network elements hosting
a PEP also host a PDP. Here, no standardized communication between PDP and PEP
is required anymore, because local proprietary communication may be used. The

Policy
Manager

PDP

P

P
E

P

P
E

P

P
E

P

P
E

P

P
E

Policy
Manager

P

P
E

P

P
E

P

P
E

P

P
E

P

P
E

PDP PDP

Policy
Manager

P

P
E

P

P
E

P

P
E

P

P
E

P

P
E

P

P
D

P

P
D

P

P
D

P

P
D

P

P
D

(c) strongly distributed(b) weakly distributed(a) centralized

Figure 3: Different levels of PDP distribution.

scalability is still higher than in (a) because policy information is considered to be
more condense than the configuration information derived from it and because the
policy manager now can select which policy to send to which network element. For
example, in a DiffServ network management system with all routers hosting PDPs
and PEPs, core routers would only receive and evaluate core router policies, while
edge routers receive different and potentially more complex policies.

3.1 Two Approaches for a Policy Engine

In order to make the Script MIB agent behave as a PDP, we must regard the runtime
engine designed to execute scripts as a policy execution engine that evaluates poli-
cies. The following sections describe implementations of two different approaches
for the handling and processing of policies with the Script MIB.

The first approach represents policies by program code. This matches the typical
use of the Script MIB. A policy or a group of policies are represented by a pro-
gram that is passed as a ”script” to a Script MIB agent. At the agent the program
is executed by a runtime engine for the used programming language. This runtime
engine must provide a way of accessing the network elements to be configured by
the policies, e.g. by offering a specific library.

The second approach represents policies by objects. A policy or a group of poli-
cies are represented by a set of objects. Again, the set is passed as a ”script” to
a Script MIB agent. There, the objects are evaluated by a specific policy runtime
engine. The objects representing policies conform to PCIM, they contain data only
and no code. Also, they are specific to an application domain, e.g. QPIM [18] for
QoS. The policy runtime engine must contain implementations of all PCIM policy
classes that are to be evaluated, and it must have access to the network elements to
be configured by these policies.

evaluation
process

application domain specific
configuration interface

network element configuration

la
ng

ua
ge

 r
un

tim
e

en
gi

ne

application domain specific
configuration interfacepo

lic
y

ru
nt

im
e

en
gi

ne

network element configuration

policy ’scripts’

objects
policy

policy ’scripts’

(a) policies as programs (b) policies as objects

policy
program

Figure 4: Two different approaches to policy-based management with the Script
MIB.

4 Approach 1: Policies as Programs

This approach, shown in Figure5, is based on an existing Script MIB runtime engine.
Policies are represented as scripts written in a language supported by that runtime
engine. A general policy management language extension provides interfaces for
deriving and implementing policies, rules, conditions, actions, network elements,
event generators and events.

Domain specific language extensions provide abstract interfaces to network ele-
ments of a specific policy application domain. They allow policy scripts to retrieve
element attributes and event notifications and to correlate them to make policy deci-
sions, so that they can in turn be used to configure network elements. Drivers realize
the mapping between the domain specific interfaces and the underlying device-level
mechanism to actually configure the network elements.

We developed a prototype implementation of these libraries based on the Jasmin
Script MIB implementation [19] . This prototype is described in the following sec-
tion, while Section4.2gives a simples policy script example. A class diagram of the
libraries along with the example is shown in Figure6.

4.1 Implementation

ThepolicyMgmt package contains the classes and interfacesPolicy , Condi-
tion and Action that are usually implemented by policy scripts: APolicy -
derived class represents the main class that is executed when the policy script is
started. It registers a number of newly instantiatedRule s that in turn register imple-
mentations of theCondition andAction interfaces. Since these classes can be
programmed individually, they can benefit from the whole Java code flexibility.

Rules are triggered byEvent s, which are raised byEventGenerator s. Typi-

engine:
within the runtime
Usual script code

Policy scripts

Policy
specific

extension

Application and
config−mechanism

specific

Application domain
specific

network element
extension

extensions:
Script MIB language

Script MIB language runtime engine

drivers

scripts using classes

Figure 5: The standard Script MIB runtime engine is executing policy ‘scripts’ that
use policy-supporting language extensions.

cal events are time-based (TimeEvent raised byTimer), e.g. periodic or calendar-
based one-shot timers (CalendarTimer). So far, our implementation is restricted
to time events, but the architecture is open for other kinds, such as monitoring events.
The abstract classElement is the parent of all network elements modeled by do-
main specific packages. Elements are handled through aDriver interface.

Our targeted application domain is the configuration of DiffServ nodes. Hence,
our domain specific class package is nameddiffServ and contains element classes
to represent classifiers, filters, meters, actions, droppers, queues, schedulers, etc.,
that can be created, deleted and modified. In accordance to the DiffServ MIB all
these data path elements can be plugged together (with certain restrictions) through
methods provided by the common parent classDiffServElement , which in turn
is a child class of thepolicyMgmt.Element class.

The classJtcDriver represents the adapter between the protocol independent

StartCondition

KeyDatePolicy
+main(args:String[])

StopCondition

StartAction

StopAction

 policyMgmt

Element
+Element(driver:Driver)
+setRole(role:String)
+getRole(): String
+commit()
+remove()

«interface»
Driver

+elements(): Enumeration
+commitElement(element:Element)
+removeElement(element:Element)

«interface»
Condition

+getFreeIdents(): Hashtable
+evaluate(event:Event,elements:Hashtable): boolean

«Thread»
Policy

+registerRule(event:Event,rule:Rule)
+registerDriver(driver:Driver)
+process(event:Event)
+newEvent(event:Event)
+run()

 diffServ

Classifier
+addFilter(filter:Filter)
+removeFilter(filter:Filter)

JtcDriver
+JtcDriver(hostname:String,port:int)

«interface»
Action

+perform(event:Event,elements:Hashtable)

Rule
+addFreeIdent(name:String,classname:String)
+getFreeIdents(): Hashtable
+addCondition(condition:Condition)
+addAction(action:Action)
+isConditions(event:Event,elements:Hashtable): boolean
+doActions(event:Event,elements:Hashtable)

«EventObject»
Event

+Event(src:Object)
+setRole(role:String)
+getRole(): String

«interface»
EventGenerator

+addEventDrain(policy:Policy)

«Thread»
Timer

+setParam(p:TimerParameter)
+run()

CalendarTimer
+CalendarTimer(when:Date,policy:Policy)
+addDate(when:Date)

TimeEvent
+TimeEvent(when:Date,src:Object)
+getTime(): Date

generates

1

*

executes
1

*
evaluates

1

*

contains
1

*

handles
1

*

notifies

*

1

instantiates
1

*

DiffServElement
+addInput(element:DiffServElement)
+setOutput(element:DiffServElement)
+removeInput(element:DiffServElement)
+getInputs(): Vector

*instantiates

1

*

reads
modifies

...and further classes

 jtc

QDisc FilterTCClass

DSMarkQDisc DSMarkClass U32Filter

...and further classes

handles jtc objects

1

*

tc service on the managed device.

It accepts tc commands from the
JtcDriver via a TCP connection.

talking to tc service

1

1

a
policy
script

Figure 6: Class diagram of (a) the policy management packagepolicyMgmt , (b)
the DiffServ domain specific packagediffServ , and (c) the Linux tc specific
driver jtc . A policy script (d)KeyDatePolicy makes use of these components.

classes of thediffServ package and the device specific configuration mechanism.
In our prototype we have implemented support for the Linux 2.4 “tc” (traffic condi-
tioning) subsystem through the Java class packagejtc which represents the tc data
structures. This allows theJtcDriver to manage tc configurations mapped from
the model supported by thediffServ package. In order to write tc configuration
to the kernel, we have implemented a simple TCP service that accepts tc commands
sent by theJtcDriver .

4.2 Example

The following example shows a policy script that contains a pair of rules: a
StartRule that gets triggered by aCalendarTimer at a specific point in time,
e.g. at 23:00 on December 31, and aStopRule that gets triggered some time later,
e.g. at 2:00 on January 1. The conditions evaluate unconditionally to true in both
cases. TheStartAction doubles a specific bandwidth parameter and after the
critical time period theStopAction resets it to the start value. This might be
reasonable to allow mobile phone traffic to carry the expected increased bandwidth
demand during that time. The Java code below shows the essential parts of a policy
script that supports this scenario.

public class KeyDatePolicy extends Policy {
public class StopCondition implements Condition {

public Hashtable getFreeIdents() { return new Hashtable(); }
public boolean evaluate(Event event, Hashtable elements) {

// check whether the bandwidth is ok again...
return checkBandwidth(elements);

} }
public class StartAction implements Action {

public void perform(Event event, Hashtable element) {
defaultRate = tokenBucket.getRate();
tokenBucket.setRate(defaultRate * 2);
try { tokenBucket.commit(); } catch (IOException e) {}

} }
public class StopAction implements Action {

public void perform(Event event, Hashtable element) {
tokenBucket.setRate(defaultRate);
try { tokenBucket.commit(); } catch (IOException e) {}

} }
public KeyDatePolicy(String[] args) {

// setup the driver and the general DiffServ config...
// setup the start and stop calendar timers...
Date startDate = formatter.parse("31.12.2001 23:30:00");
Date stopDate = formatter.parse("01.01.2002 02:00:00");
CalendarTimer startTimer = new CalendarTimer(this, startDate);
CalendarTimer stopTimer = new CalendarTimer(this, stopDate);
startTimer.start(); stopTimer.start();
// setup the policy rules
Rule startRule = new Rule(); Rule stopRule = new Rule();
startRule.addCondition(new AlwaysCondition());
startRule.addAction(new StartAction());
stopRule.addCondition(new AlwaysCondition());
stopRule.addAction(new StopAction());
this.registerRule(startTimer, startRule);
this.registerRule(stopTimer, stopRule);

}
public static void main (String[] args) {

KeyDatePolicy policy = (new KeyDatePolicy(args));
policy.start();
try { policy.join(); } // ...

} }

5 Approach 2: Policies as Objects

In our second approach, we coded policies not as programs running independently
of each other, but as objects (or sets of objects) that are executed by a single policy
evaluation process, see Figure7. Therefore, the runtime engine cannot be anymore
an interpreter of a common programming language. A special runtime engine for
policy objects is required.

In order to use existing standards as much as possible, we chose PCIM and stan-
dards derived from PCIM as information model for the policy objects. Implementa-
tions of the classes these objects are instances of, must be available at the runtime
engine. The policy evaluation process executes policy actions by using application
domain specific interfaces.

objects
Policy

Script MIB policy runtime engine

class library

Applic. domain
policy classes

PCIM

Evaluation
Processobjects being

Policy

Application
domain
objects

specific drivers
config−mechanism

Application and

instances of classes

configuraion

Figure 7: Implementation of the policy runtime engine.

The functions that the policy runtime engine must offer are:

• Monitor domain specific attributes using domain specific objects that represent
the configuration state of the network elements controlled by the Script MIB
agent. These objects might use driver functions to provide an abstract interface
to configure the underlying specific domain implementation.

• Receive orders from the Script MIB agent to add, remove, enable or disable
policies.

• Handle the triggering of policies. The event that triggers the evaluation of a
policy is encoded within the delegated policy object.

• Identify the set of target domain objects to which the triggered policy applies.
The role of the policy is specified within the policy object.

• Compare the values of selected domain object attributes with the conditions
specified within the triggered policy object.

• Execute the actions of a policy rule after the corresponding condition was
evaluated to true. In general these actions are performed by modifying cer-
tain attributes of the domain objects regarding the information encoded in the
policy action.

• Prioritize policies according to their priority attribute.

5.1 Implementation

We restricted the implementation of this approach to the configuration of local man-
aged objects. This implies that each PEP has a co-located PDP that exclusively man-
ages the PEP. For implementing the policy runtime engine, we built upon the Java
language runtime engine already used in the approach described in Section4. We
replaced the default Java class loader with a class loader for serialized Java objects.

Policy classes for the PCIM package were implemented as a one-to-one mapping
of PCIM and QPIM to Java objects. QPIM is the IETF QoS Policy Information
Model [18], which conforms with PCIM and its extensions [4]. Note that PCIM and
QPIM are pure information models. Therefore, the classes of the PCIM package
do mainly contain data structures, but no specific methods. All code for evaluating
policy objects is contained in aPolicyEvaluator class defining the main loop
of the policy evaluation process. It contains all functions listed as required above.

As an interface for configuring the local DiffServ implementation, we developed
a class package for the DiffServ application domain which provides a virtual repre-
sentation of the traffic conditioning and per-hop behavior applied to data flows at a
DiffServ router. These classes and their relationships are based on the DiffServ In-
formal Management Model [14] and the Information Model for Describing Network
Device QoS Datapath Mechanisms [17].

We tested this implementation in a DiffServ test-bed containing Linux routers
with the NEC Linux DiffServ implementation [20] developed jointly with the Uni-
versity of Bern. The local driver translates calls from DiffServ Java configuration
methods into a respective set of commands and profile updates.

5.2 Example

Regarding the example introduced in Section4.2, the policy is represented by one
policy rule. It increases the capacity of the Expedited Forwarding (EF) PHB on each
router in a specific time period (see Figure8).

Once the policy object (a Java object) is received by the Script MIB, the
PolicyEvaluator checks the policy rule in order to derive triggering events for
that particular policy from thePolicyTimePeriodCondition and stores them
in its internal event table. The event table keeps track of when which policies need to
be triggered. In the current implementation, we store an event only for the start time
of the time period, because we do not role-back changes after the time period has
expired. Therefore a different policy rule is needed for restoring the original state
after the policy rule is not valid anymore. The policy rule itself is stored in the list of
policy rules and awaits to be triggered by the policy evaluator’s time management.

aPolicyTimePeriodCondition

from = "31.12.2001 23:30:00"
to = "01.01.2002 02:00:00"

aSimplePolicyCondition

aQoSPolicyBandwidthAction

qpBandwidthUnits = "%"
qpMaxBandwidth = 50

aPolicRule

policyRoles = "EDGE", "CORE"
enabled = enabled
mandatory = true
conditionListType = DNF
seqActions = mandatory

aPolicyDSCPVariable

aPolicyIntegerValue

integer = EF

evaluates

performs

Figure 8: HappyNewYear policy object.

When the policy is triggered, thePolicyEvaluator reads the value of the
policyRoles property and identifies the set of interfaces that match the roles.
Then thePolicyEvaluator evaluates for each of these interfaces the condi-
tion. In this case, the DiffServ element objects which are in the data path of
the EF PHB are searched, and the scheduling element of the path is configured
by the action in case EF is configured on the interface. In this example, the
QoSPolicyBandwidthAction increases the maximum bandwidth, the EF PHB
is allowed to use.

After all the changes on DiffServ element objects by one policy rule are made,
the pertinent accessor functions are called. The new parameters are translated intotc
commands (and for other examples in configuration file changes) of the underlying
NEC Linux-DiffServ implementation.

6 Evaluation

The Script MIB-based policy management architecture we introduced in Section3
can be used for a wide range of policy-based management systems including cen-
tralized single PDP solutions, weakly distributed solutions with high scalability, and
strongly distributed solutions with one PDP per PEP.

Our architecture covers the main functionality of the SNMPconf target without
requiring a new MIB to be developed. When used with one PDP per PEP, also
no standard for transferring configuration information, such as a Policy Information
Base module, is required. By using the SNMP Script MIB, our architecture inte-
grates well into existing Internet management frameworks and offers high security
as shown in [12].

Comparing the two approaches we investigated for realizing the architecture,
policies as programs (PaP) and policies as objects (PaO), we observed the following
differences: Definitely, PaP is much moreexpressive and flexible, because each
policy is coded explicitly as a program, that can be tailored individually and that is
only limited by the programming language and the runtime system. In contrast, PaO
is tightly bound to a set of predefined (standardized) policy classes that must be used
for policy definition. Yet, the predefined set should in general be sufficient for all (or
most) useful and required policies, because this is a key issue when defining the set.

While PaP has much more flexibility and expressiveness, PoP should have exactly as
much as is required.

Safety, i.e. protection against defining wrong or bad policies by mistake, is
obviously higher for PaO, because only attributes of policies and associations be-
tween policies can be set. In general, the typical trade-off between expressive-
ness/flexibility and safety applies. The more expressive a language is, the higher
are chances of making mistakes, for example coding infinite loops in policies.

Because the Script MIB does not offer means for specifying the priority of a
script,prioritization of policies cannot be supported by our first approach. In the
second approach, the runtime engine can easily check the priority attribute of policies
and schedule their evaluation accordingly.

Since PaP uses independent processes or threads for each policy, it does support
concurrent evaluation of policies. Our PaO implementation just supports sequen-
tial evaluation of policies. In general, it would be possible to implement concurrent
evaluation also for PaO, for example by switching between policies, when the current
one waits for I/O, but we estimate the implementation effort rather high.

User-friendlinessvery much depends on the editor/toolkit used for generating
policies as programs or objects. A PaO editor must support creation of policy objects,
setting their attributes, and associating them with other objects. A PaP toolkit must
assist the user in writing policy programs. For PaP standard programming language
toolkits may be used, although specific support for managing the policies is desirable
when larger numbers of policies are to be written.

The separation of policies into independent ”scripts” inhibitsre-use of ”scripts”
among different policies with PaP, because each ”script” runs its own policy decision
engine that cannot access data structures of other ”scripts”. Only policies coded into
the same ”script” may share code. This is different for PaO. Here, all objects are
evaluated by the same decision engine. Several policies can share conditions or
components of conditions as well as actions or components of actions.

For our implementations of the two approaches, we found similar”script” sizes
for corresponding policy implementations. For PaO, the ”scripts” contained super-
fluous data, because the policy objects contained values for all their attributes in-
cluding unused ones. For PaP only the values of required attributes are coded in set
operations, but here there is a lot of program code for the policy implementation that
is very similar for each policy, but that cannot be omitted.

Concerningruntime requirements PaP and PaO differ significantly for large
numbers of policies, because PaP create a thread or process for each policy. Our
implementation based on heavy-weighted Java threads consumed a lot of memory
(approx. 5MB per ”script”). The overhead might be less for other runtime systems,
but in principle the additional time requirement for creating new threads/processes
and the additional memory requirement remain.

The implementation effort of the runtime system appeared to be comparable
for PaP and PaO. For PaP more effort was required for thread control, while for PaO
the policy evaluation and prioritization consumed additional man power. However,
there is a big difference in re-usability of the runtime engine. While the PaO engine
is only usable for policy evaluation, the PaP engine includes a full runtime engine
for scripts in a standard programming language, that can be used for other (manage-

ment) purposes as well, or that is already available anyway. In the latter case, the
implementation effort for PaP would of course be much lower than for PaO.

The evaluation shows advantages and disadvantages for both approaches. Sum-
marizing, we think that policies as programs is the more open approach, which al-
lows more deviations from the pure policy-based management approach and which
is more flexible in unforseen situations. In contrast, PaO appears to be the better
choice for well defined and dedicated policy-control problems, particularly, when
PCIM-based solutions are desired.

7 Conclusions

This paper introduces an architecture for policy-based configuration management us-
ing the Script MIB. The architecture matches exactly the IETF framework for policy-
based management as well as the IETF framework for distributed management by
delegation. Thereby, it offers several PDP distribution models for customized scal-
ability and flexibility. The architecture shows an alternative to the approach chosen
by the IETF SNMPconf working group, but it is completely based on standards that
already exist.

We found, implemented, and evaluated two different ways of implementing our
architecture: one representing policies by programs and one representing policies by
objects. Both have proven to be feasible and suitable when applied to DiffServ net-
work management. Policies as programs are more flexible using a standard program-
ming language, while policies as objects seamlessly integrate into systems based on
the IETF policy framework. An example policy demonstrates the differences be-
tween the approaches.

In the future, the Java-based solution might be replaced by one specific to pol-
icy definitions, e.g., we could integrate a runtime engine for a policy specification
language such as Ponder [21] at the Script MIB agent.

References

[1] G.N. Stone, B. Lundy, and G.G. Xie. Network Policy Languages: A Survey and a New
Approach.IEEE Network Magazine, 15(8):10–21, January 2001.

[2] R. Yavatkar, D. Pendarakis, and R. Guerin. A Framework for Policy-based Admission
Control. RFC 2753, Intel, IBM, U. of Pensylvania, January 2000.

[3] B. Moore, E. Ellesson, J. Strassner, and A. Westerinen. Policy Core Information Model
– Version 1 Specification. RFC 3060, IBM, LongBoard Inc, Cisco Systems, January
2001.

[4] B. Moore, L. Rafalow, Y. Ramberg, Y. Snir, J. Strassner, A. Westerinen, R. Chadha,
M. Brunner, and R. Cohen. Policy Core Information Model Extensions. Internet Draft
<draft-ietf-policy-pcim-ext-06.txt>, IBM, Cisco Systems, Telcordia Technologies,
NEC, Ntear LLC, November 2001.

[5] K. Chan, J. Seligson, D. Durham, S. Gai, K. McCloghrie, S. Herzog, F. Reichmeyer,
R. Yavatkar, and A. Smith. COPS Usage for Policy Provisioning (COPS-PR). RFC
3084, Nortel Networks, Intel, Cisco, IPHighway, PFN, Allegro Networks, March 2001.

[6] K. McCloghrie, M. Fine, J. Seligson, K. Chan, S. Hahn, R. Sahita, A. Smith, and
F. Reichmeyer. Structure of Policy Provisioning Information (SPPI). RFC 3159, Cisco
Systems, Nortel Networks, Intel, Allegro Networks, PFN, August 2001.

[7] J. Scḧonwälder, J. Quittek, and C. Kappler. Building Distributed Management Applica-
tions with the IETF Script MIB.IEEE Journal on Selected Areas in Communications,
18(5):702–714, May 2000.

[8] D. Levi and J. Scḧonwälder. Definitions of Managed Objects for the Delegation of
Management Scripts. RFC 3165, Nortel Networks, TU Braunschweig, August 2001.

[9] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss. An Architecture
for Differentiated Services. RFC 2475, Torrent Networking Technologies, EMC
Corporation, Sun Microsystems, Nortel UK, Bell Labs Lucent Technologies, Lucent
Technologies, December 1998.

[10] M. Wahl, T. Howes, and S. Kille. Lightweight Directory Access Protocol (v3). RFC
2251, Critical Angle Inc., Netscape Communications Corp., Isode Limited, December
1997.

[11] Y. Yemini, G. Goldszmidt, and S. Yemini. Network Management by Delegation. In
Proc. International Symposium on Integrated Network Management, pages 95–107,
April 1991.

[12] J. Scḧonwälder and J. Quittek. Secure Internet Management By Delegation.Computer
Networks, 35(1):39–56, January 2001.

[13] K. Nichols, S. Blake, F. Baker, and D. Black. Definition of the Differentiated Services
Field (DS Field) in the IPv4 and IPv6 Headers. RFC 2474, Cisco Systems, Torrent
Networking Technologies, EMC Corporation, December 1998.

[14] Y. Bernet, S. Blake, D. Grossman, and A. Smith. An Informal Management Model
for Diffserv Routers. Internet Draft<draft-ietf-diffserv-model-06.txt>, Microsoft,
Ericsson, Motorola, Allegro Networks, February 2001.

[15] F. Baker, K. Chan, and A. Smith. Management Information Base for the Differentiated
Services Architecture. Internet Draft<draft-ietf-diffserv-mib-16.txt>, Cisco Systems,
Nortel Networks, Allegro Networks, November 2001.

[16] M. Fine, K. McCloghrie, J. Seligson, K. Chan, S. Hahn, C. Bell, A. Smith, and
F. Reichmeyer. Differentiated Services Quality of Service Policy Information Base.
Internet Draft<draft-ietf-diffserv-pib-05.txt>, Cisco Systems, Nortel Networks, Intel,
Allegro Networks, PFN, November 2001.

[17] B. Moore, D. Durham, J. Halpern, J. Strassner, A. Westerinen, and W. Weiss. Informa-
tion Model for Describing Network Device QoS Datapath Mechanisms. Internet Draft
<draft-ietf-policy-qos-device-info-model-06.txt>, IBM Corporation, Intel, Longitude
Systems, Intelliden Inc, Cisco Systems, Ellacoya, November 2001.

[18] Y. Snir, Y. Ramberg, J. Strassner, and R. Cohen. Policy QoS Information Model.
Internet Draft<draft-ietf-policy-qos-info-model-04.txt>, Cisco Systems, Ntear LLC,
November 2001.

[19] TU Braunschweig, NEC C&C Research Laboratories, http://www.ibr.cs.tu-
bs.de/projects/jasmin/.Jasmin - A Script MIB Implementation, 1999.

[20] T. Braun, M. Scheidegger, H. Einsiedler, G. Stattenbergerand, K. Jonas, and H. J.
Stüttgen. A Linux Implementation of a Differentiated Services Router. Technical
report, Network and Services for Information Society (INTERWORKING2000),
October 2000.

[21] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The Ponder Policy Specification
Language. Technical report, Departament of Computing, Imperial College, January
2001.

	Introduction
	Background
	Policy Framework
	Distributed Management by Delegation
	Differentiated Services

	Architecture
	Two Approaches for a Policy Engine

	Approach 1: Policies as Programs
	Implementation
	Example

	Approach 2: Policies as Objects
	Implementation
	Example

	Evaluation
	Conclusions

