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Abstract

Stan is a new Bayesian statistical software program that implements the powerful and

efficient Hamiltonian Monte Carlo (HMC) algorithm. To date there is not a source

that systematically provides Stan code for various item response theory (IRT) mod-
els. This article provides Stan code for three representative IRT models, including

the three-parameter logistic IRT model, the graded response model, and the nominal

response model. We demonstrate how IRT model comparison can be conducted
with Stan and how the provided Stan code for simple IRT models can be easily

extended to their multidimensional and multilevel cases.
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Introduction

In the past two decades, Bayesian item response theory (IRT) modeling has become

increasingly popular due to the advance of computing power and the Markov chain

Monte Carlo (MCMC) algorithms. Multiple software programs became available to

implement some MCMC algorithms, including WinBUGS (Lunn, Thomas, Best, &

Spiegelhalter, 2000), OpenBUGS (Spiegelhalter, Thomas, Best, & Lunn, 2010),

JAGS (Plummer, 2003), PROC MCMC in SAS, and Mcmcpack (Martin, Quinn, &

Park, 2011) in R. In those software programs, the Gibbs sampling (Geman & Geman,
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1984) and the Metropolis algorithm (Metropolis, Rosenbluth, Rosenbluth, Teller, &

Teller, 1953) are most frequently used. Despite their popularity, these sampling algo-

rithms have some limitations as well, especially the long computation time required

for model convergence due to their inefficiency in exploring the posterior parameter

space (Neal, 1993).

Stan (Carpenter et al., 2017) is a new Bayesian software program implementing

the no-U-turn sampler (Hoffman & Gelman, 2014), an extension to the Hamiltonian

Monte Carlo (HMC; Neal, 2011) algorithm. HMC is considerably faster than the

Gibbs sampler and the Metropolis algorithm because it explores the posterior para-

meter space more efficiently. It does so by pairing each model parameter with a

momentum variable, which determines HMC’s exploration behavior of the target dis-

tribution based on the posterior density of the current drawn parameter value1 and

hence enables HMC to ‘‘suppress the random walk behavior in the Metropolis algo-

rithm’’ (Gelman, Carlin, Stern, & Rubin, 2014, p. 300). Consequently, Stan is consid-

erably more efficient than the traditional Bayesian software programs. As stated in

the Stan User Manual (Stan Development Team, 2016a, p. 541), ‘‘Stan might work

fine with 1000 iterations with an example where BUGS would require 100,000 for

good mixing.’’ Another advantage of Stan is that unlike WinBUGS and OpenBUGS,

it does allow the use of improper priors. In addition, it allows interface with other

software programs such as R, Python, Matlab, Stata, Julia, as well as its compatibility

with all three major operating platforms, namely Linux, Mac, and Windows.

Curtis (2010) introduced WinBUGS codes for several IRT models while other

researchers (Ames & Samonte, 2015; Stone & Zhu, 2015) presented on using SAS

PROC MCMC for IRT model parameter estimation. Despite its efficiency and easy

accessibility in different interfaces, no article collectively introduces Stan codes for

IRT model parameter estimation. Stan user manual (Stan Development Team, 2016a)

introduces the one-parameter logistic (1PL) and two-parameter logistic (2PL) IRT

models. However, if one is interested in extended IRT models, it may take a long

time to learn the basics and figure out these extensions.

To promote the accessibility of Stan, this article intends to present Stan codes for

three more generalized IRT models and their multidimensional and multilevel exten-

sions. The three models are the three-parameter logistic (3PL) dichotomous IRT

model, the graded response model (GRM), and the nominal response model (NRM).2

Essentially, the 3PL model is a general case for dichotomous item responses while

the other two polytomous IRT models are the difference models and the divide-

by-total models, respectively (Thissen & Steinberg, 1986). Other dichotomous IRT

models such as the 1PL and 2PL IRT models, and polytomous IRT models such as

the partial credit model (Masters, 1982) and the rating scale model (Andrich, 1978)

can be easily developed by modifying the Stan codes provided. With the introduction

to the multilevel and multilevel extensions, many more available IRT models could

be possible. Furthermore, this article specifically focuses on rstan, an R package that

interfaces with Stan in the R computing environment that has become increasingly
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popular among psychometricians and applied researchers (e.g., Rusch, Mair, &

Hatzinger, 2013).

The rest of this article is organized into three parts. The first part describes the

basic components of a Stan program and the codes for the three IRT models. The

second part illustrates with both real and simulated data sets how to conduct model

comparison and fit multidimensional and multilevel IRT models in Stan. This article

concludes with a discussion regarding the use and limitations of Stan.

Components of a Stan Program

The main function in the rstan package is stan, which calls the Stan software pro-

gram to estimate a specified statistical model. In order to use the stan function, a Stan

program has to be specified either as a separate Stan file ending with ‘‘stan’’ as the

suffix or as an object in the R environment. In the first part of this article, we follow

the former approach and save a separate stan file for each IRT model in the R work-

ing directory folder; later in the second and third examples, we demonstrate the latter

approach in which the Stan codes are embedded as part of an R program. We start

with an introduction to the basic building blocks of a Stan program using the codes in

Listings 1 to 3 in the appendix with related Listing 1 code embedded in the text. Each

code also contains comments (which are preceded by ‘‘//’’ in Stan) at places where

deemed appropriate.

Data Block

The first necessary component of a Stan model is the data block, in which a

researcher specifies the relevant data information and the data itself. The data block,

as well as any other block in a Stan file, contains a pair of curly brackets ‘‘{ }’’ in

which Stan codes are written. For dichotomous IRT models, three pieces of informa-

tion are usually provided in the data block: the number of examinees, the number of

items, and a response matrix (Listing 1, lines 2-4) as follows:

For polytomous IRT models, the number of categories for each item, which is an

integer if all items have the same number of categories or a vector of integers for

items with different response categories (Listing 2-3, lines 2-5), needs to be speci-

fied. One big difference between Stan and BUGS is that data type has to be specified

in Stan. The number of students and the number of items are specified as int

1 data {
2 int\lower=0. n_student;
3 int\lower=0. n_item;
4 int\lower=0,upper=1. Y[n_student,n_item];
5 }
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(integers), while the response matrix is specified to be an array of integers, followed

by its dimension. As the polytomous items in the demo codes contain four response

categories, the number of categories is specified as an integer (e.g., Listing 2, line 2).

Stan provides an extra layer of data check by allowing the user to provide a data

boundary in a pair of angle brackets ‘‘\ . ’’ after the specification of data type. For

example, in the 3PL model, the elements in the response matrix are specified to range

from 0 to 1 (Listing 1, line 4). If one element in the matrix has a value of 2, Stan will

produce a warning message to notify the user that some value in the response matrix

is out of range. Similarly, in a polytomous IRT model, the elements in the response

matrix ranging from one to the number of categories should be specified accordingly

in the data block (e.g., Listing 2, line 5).

Parameters Block

Following the data block is the parameters block in which model parameters are

specified. In the context of IRT, model parameters usually include latent ability and

item parameters such as difficulty, discrimination, and pseudoguessing parameters.

Hyperparameters in the priors for any model parameters need to be specified in this

block as well. If any model parameter or hyperparameter that appears in the subse-

quent model block is not specified in this block, Stan will provide warnings that a

particular variable is not found and stop. Therefore, it is essential that a Stan user

knows what model parameters and hyperparameters (if any) are in the model of inter-

est and specify them accordingly and exhaustively. In the following, we provide a

brief description of each of the three IRT models, followed by a discussion of how

the corresponding model parameters and hyperparameters are specified.

The 3PL IRT model can be expressed as

pij(uij = 1jui, aj, bj, cj) = cj +
(1� cj)

1 + exp (� aj(ui � bj))
, ð1Þ

where uij is the response of examinee i to item j, uiis the latent ability of examinee i,

aj, bj, and cjare the discrimination, difficulty, and the pseudoguessing parameter or

lower asymptote of item j. The 3PL model can be reduced to the 2PL IRT model by

constraining cj to be zero, and the 1PL IRT model can be obtained by further con-

straining aj to be the same across all items. Furthermore, when the discrimination

parameters are constrained to be 1, the Rasch model will result.

Model parameters in the 3PL IRT model that need to be specified in the para-

meter block include all the parameters on the right side of Equation (1) (Listing 1,

lines 7-10) and their hyperparameters. In this illustration, a normal distribution with

unknown mean (mu_beta) and unknown standard deviation (sigma_beta) is specified

as a prior for the item difficulty parameter and a lognormal distribution with a mean

of zero and unknown standard deviation (sigma_alpha) for the discrimination para-

meter. Consequently, the parameters block includes three lines for these three hyper-

parameters (Listing 1, lines 11-13) as follows:
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The graded response model (GRM; Samejima, 1969) can be viewed as a gener-

alized case of the 2PL IRT model in that it allows more than two response cate-

gories in an item. Instead of directly modeling the probability of a response of a

certain response category, GRM first models the probability of responding below

a certain category versus above that category. The difference of such probabilities

is the probability of responding at that category. The mathematical equation for

GRM is given as

pij(uij = kjui, aj, bjk) =
1

1 + exp (� aj(ui � bjk))
�

1

1 + exp (� aj(ui � bjk + 1))
, ð2Þ

where k refers to the kth category, bjk is the category difficulty of item j, and the other

terms remain the same as in Equation (1). The probability of responding below the

first category is set to be 0, and the probability of responding above the highest cate-

gory is 1.

Similarly, all the GRM model parameters on the right side of Equation (2) are

specified in this block (Listing 2, lines 8-10). The prior distribution for item difficulty

contains two hyperparameters, and they are specified in this block as well (Listing 2,

lines 11-12). The category difficulty parameter k is declared as ordered (Listing 2, line

10), a special data type which conveniently constrain k to be a vector whose elements

are arranged in order of increasing value. This is similar to the function ranked used in

BUGS for the GRM estimation (e.g., Curtis, 2010) but more efficient.

The nominal response model (NRM; Bock, 1972) takes the form

pij(uij = kjui, ajk , gjk) =
exp (ajkui + gjk)

Pc

h= 1

exp (ajhui + gjh)

, ð3Þ

where ajk and gjk are the slope and intercept parameters of item j on category k, and

the other terms remain the same. As no hyperparameters are set in the priors for any

of the parameters on the right side of Equation (3), only three lines of codes are

needed in the parameters block for the NRM (Listing 3, lines 8-10).

6 parameters {
7 vector[n_student] theta;
8 vector\lower=0. [n_item] alpha;
9 vector[n_item] beta;
10 vector\lower=0,upper=1. [n_item] gamma; //item pseudo-guessing
11 real mu_beta;
12 real\lower=0. sigma_alpha;
13 real\lower=0. sigma_beta;
14 }
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The data type for all parameters in the parameters block need to be specified. If

one of the model parameters is defined as a vector or a matrix, its dimension needs

to be specified. For example, in the 3PL IRT model, the ability parameter (theta) is

specified to be a vector with a length equal to the number of students (Listing 1, line

7). In addition, if a parameter is expected to be within a certain range, the range

should be provided right after the data type. For example, the pseudoguessing para-

meter of the 3PL model (gamma) is constrained to range from 0 to 1 (Listing 1, line

10). In the GRM, the standard deviation of the prior for the category difficulty para-

meter (sigma_kappa) is constrained to be nonnegative (Listing 2, line 12).

Model Block

The model block, where the priors and the model are specified, is the most essential

component of a Stan program. Note that all the parameters appearing in this block

have to be specified in advance in the parameters block, or Stan will produce an error

message and stop. Prior distributions for all the parameters in the parameter block

need to be specified. If a prior is not specified, a uniform prior will be automatically

assumed by Stan. For example, we use a standard normal distribution as a prior for

the ability parameters (theta) in the 3PL model (Listing 1, line 16), and a normal

distribution with unknown mean (mu_beta) and unknown standard deviation

(sigma_beta) for the item difficulty parameters (beta; Listing 1, line 17). The hyper-

prior for mu_beta is specified as a normal distribution with a mean of 0 and standard

deviation of 5 (Listing 1, line 18), and a Cauchy distribution as a hyperprior for

sigma_beta (Listing 1, line 19). Note that since sigma_beta has been constrained to

be nonnegative in the parameters block (Listing 1, line 13), this Cauchy distribution

as a hyperprior is actually a half Cauchy distribution. Similar to any other Bayesian

software program, the priors may be informative, weakly informative, or noninfor-

mative, and the choice should reflect our belief about those parameters.

15 model {
16 theta ~ normal(0,1);
17 beta ~ normal(mu_beta,sigma_beta);
18 mu_beta ~ normal(0,5);
19 sigma_beta ~ cauchy(0,5);
20 alpha ~ lognormal(0,sigma_alpha);
21 sigma_alpha ~ cauchy(0,5);
22 gamma ~ beta(5,23);
23 for(i in 1:n_student){
24 for (j in 1:n_item){
25 real p;//create a local variable within the loop to make Stan code more readable
26 p= inv_logit(alpha[j]*(theta[i] - beta[j]));
27 Y[i,j] ~ bernoulli(gamma[j]+ (1-gamma[j])*p);
28 }}
29 }
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After all priors and hyperpriors have been specified, the model is specified in the

sampling statement through a function. Three functions, including bernoulli (Listing

1, line 27), ordered_logistic (Listing 2, line 25), and categorical_logit (Listing 3, line

29), are used for the 3PL model, the GRM, and the NRM, respectively. Since the ber-

noulli function is the Stan analog of the dbern function in BUGS, we focus our dis-

cussion on ordered_logistic and categorical_logit here.

The function categorical_logit is a direct parameterization of categorical, which

is the Stan counterpart of the function dcat in BUGS. Such a parameterization is

‘‘numerically more stable if the chance of success parameter is on the logit scale . .

.’’ (Stan Development Team, 2016a, p. 409). The function categorical_logit can be

used for all polytomous IRT models that belong to the divide-by-total family. For

the NRM, categorical_logit(zetan[j]+ lambdan[j]*theta[i]) (Listing 3, line 29) is

equivalent to categorical(p), where p is a simplex of length J (a vector of nonnega-

tive elements that sum to 1) and the jth element of p can be expressed as

pj =
exp (zetan½j�+ lambdan½j� � theta½i�)

PJ

h= 1

exp (zetan½h�+ lambdan½h� � theta½i�)

, ð4Þ

where the terms other than notational differences, are the same as those in

Equation (3).

The function ordered_logistic in the GRM (Listing 2, line 25), combined with the

category difficulty parameter kappa specified as the ordered data type in the para-

meters block (Listing 2, line 10), leads to a mathematical equation that is identical to

Equation (2), with the category difficulty parameter bjk replaced by kappa[j].

Generated Quantities Block

The generated quantities block is an optional component of the Stan code, and it is

usually used when there is a need to compute new variables and obtain their corre-

sponding posterior distributions. In the IRT context, this block can be used to com-

pute the model-based log-likelihood, which is used for the computation of model fit

indices for model comparison and selection purposes. The computation of model-

based log-likelihood requires the use of a function that is the combination of the func-

tion used in the sampling statement and a suffix ‘‘log.’’ For example, in the generated

block section of the 3PL model (Listing 1, lines 30-38), the function bernoulli_log

(Listing 1, line 36) is used, which is the function bernoulli used in the sampling state-

ment of the model block (Listing 1, line 27) plus the suffix ‘‘log.’’ The generated

quantity block included for all the three IRT models in this article can be deleted if

model comparison and selection is not of interest.

With the log-likelihood specified in this block, their posterior distributions can be

obtained and used to compute the widely available information criterion (WAIC;

Watanabe, 2010) and leave-one-out cross-validation (LOO; Vehtari, Gelman, &

Gabry, 2016a). In BUGS, model comparison is usually conducted using the deviance
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information criterion (DIC; Spiegelhalter, Best, Carlin, & van der Linde, 2002). Stan

does not compute DIC for model comparison and selection purposes; instead, it uses

WAIC and LOO, which are fully Bayesian and theoretically superior to traditional

information-based model selection criteria such as the Akaike information criterion

(AIC; Akaike, 1974), the Bayesian information criterion (BIC; Schwarz, 1978), and

DIC. In the context of IRT model selection, Luo and Al-Harbi (2016) investigated

the performances of WAIC and LOO in choosing the correct dichotomous IRT mod-

els and found that they were superior to the more traditional methods such as the

likelihood ratio test, AIC, BIC, and DIC. The computation of WAIC and LOO can

be intensive and nontrivial, and approximation methods usually have to be used.

Fortunately, an R package loo (Vehtari, Gelman, & Gabry, 2016b) has been devel-

oped and can be used in combination with the rstan package to compute WAIC and

LOO. In the ‘‘Illustrations for Unidimensional Dichotomous, Multidimensional

Testlet and Multilevel IRT Models’’ section, we will demonstrate how to compare

and choose competing IRT models with the R packages rstan and loo.

Transformed Parameters Block

The transformed parameters block is optional too and used when some parameters

specified in the parameters block need to be transformed. A transformed parameter

in this block is usually constrained to be a function of some other parameters in the

parameters block, and imposing a prior distribution on such a constrained parameter

in the subsequent model block causes Stan to produce an error message and stop,

which is another notable difference between Bugs and Stan. Consequently, it is nec-

essary in Stan to separate the freely estimated parameters and the constrained para-

meters into the parameters block and the transformed parameters block, respectively.

In the IRT context, this block is often used for model identification purposes. For

example, models that are members of the Rasch family can use this block to con-

strain the sum of item difficulty parameters to be 0. Among the three IRT models

illustrated in this article, the NRM is the only one that requires the transformed para-

meter block to identify the model by constraining both the sum of category intercepts

and that of category slopes for each item to be 0. One way to set the sum of all

30 generated quantities {
31 vector[n_item] log_lik[n_student];
32 for (i in 1: n_student){
33 for (j in 1: n_item){
34 real p;
35 p= inv_logit(alpha[j]*(theta[i] -beta[j]));
36 log_lik[i, j] = bernoulli_log(Y[i, j], gamma[j]+ (1-gamma[j])*p);
37 }}
38 }
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intercept parameters for an item to be 0 is to constrain the last intercept parameter to

be the negative sum of the remaining intercept parameters of that particular item. In

the example code, a different approach (e.g., Bolt, Cohen, & Wollack, 2001) is fol-

lowed by creating new sets of intercept and slope parameters which are deviations

from the means of the original intercept and slope parameter specified in the para-

meters block (Listing 3, lines 17-18) as the following presented lines. Note that while

the transformed parameters (lambdan and zetan) are directly used in the sampling

statement to describe the model of interest (Listing 3, line 29), only the parameters

in the parameters block from which they are transformed (lambda and zeta) are given

priors (Listing 3, lines 23-26).

Illustrations for Unidimensional Dichotomous,

Multidimensional Testlet and Multilevel IRT Models

In this section, both real and simulated data sets are used to demonstrate how to use

Stan to analyze dichotomous item response data using unidimensional IRT model,

multidimensional testlet model, and multilevel IRT model. We assume that the rstan

package has been installed (the installation of rstan is the same as any other R

packages on the R website https://www.r-project.org). The first example involves

model selection among three competing dichotomous IRT models. The second

example is a demonstration of using a multidimensional extension of the Rasch

model to estimate testlet effects with a simulated data set. In the last example, Stan

is used to fit a multilevel 3PL IRT model to a learning outcome assessment data set.

The second and the third examples are intended to demonstrate the flexibility of Stan

to extended multidimensional and multilevel IRT models.

Example 1: Model Comparison

The data set used in this example is from a high-stakes English proficiency test in a

Middle-Eastern country for admission and placement purposes, consisting of four

sections including listening, reading comprehension, sentence completion, and gram-

mar. All items are multiple-choice questions. For illustration of model comparison,

12 transformed parameters {
13 vector[K] zetan[n_item]; //intercept with constraints
14 vector[K] lambdan[n_item]; //slope with constraints
15 for (k in 1:n_item) {
16 for (l in 1:K) {
17 zetan[k,l]=zeta[k,l]-mean(zeta[k]); //constrain intercept sum for each item to 0
18 lambdan[k,l]=lambda[k,l]-mean(lambda[k]); //constrain slope sum for each item to 0
19 }}
20 }
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we only used response data from the listening section which contains 20 items with a

sample size of 1,637.

The code for conducting model comparison is provided in Listing 4. First the

working directory in R is set up and the rstan package is loaded. Then it is specified

that a compiled Stan program is saved to the hard disk so that it will not be compiled

again, and Stan is requested to run in parallel (Listing 4, lines 1-4). Note that line 4

in Listing 4 only applies if rstan runs on a local multicore computer: It allows multi-

ple chains to be simultaneously processed by multiple processors, given that the

number of processors are equal to or greater than that of chains. The R package loo

(Listing 4, line 5) is also loaded for the computation of WAIC and LOO.

Assuming the data set has been already saved as a comma-separated values (csv)

file in the directory folder, the data are imported and its dimension (which indicates the

number of students and items in the data set) is extracted (Listing 4, lines 6-8). A data

list is created to include the number of students, the number of items, and the response

matrix (Listing 4, line 9). It should be noted that the name assigned in the data list must

match what is provided in the data block of a Stan program. Otherwise Stan will pro-

duce an error message. For example, here the response matrix is named as Y, and in the

Stan code for the 3PL IRT model the same Y is found (Listing 1, line 4).

Four arguments for the function stan in rstan are necessary to run the program.

The first argument is file, which requires a user to specify a Stan program file saved

in advance. In this example, three Stan program files, irt_1pl.stan, irt_2pl.stan, and

irt_3pl.stan for the 1PL, 2PL, and 3PL IRT models, respectively, are assumed to exist

in the directory folder, so the file argument in the function stan (Listing 4, lines 10-

12) can locate the corresponding Stan program file. The second necessary argument

is data, referring to the data list created earlier. The third and four arguments specify

the number of chains and the number of iterations within each chain. For dichoto-

mous IRT models, Stan needs approximately 200 iterations to reach model conver-

gence (convergence check is elaborated below). In this example, three chains with

1,000 iterations per chain were run. Note that since the number of burn-in iterations

is not specified through the argument warmup, as default the first 500 iterations were

automatically discarded as burn-in iterations.

Running rstan with the function stan produces an object of S4 class. This object

contains information regarding the posterior distributions of model parameters. For

example, the object of fitting a 3PL IRT model can be saved as irt_3pl (Listing 4, line

12) to check model convergence. Directly printing irt_3pl in the R console provides

summary information regarding posterior distributions of all parameters. For illustra-

tion, only the item discrimination parameters in the 3PL IRT model are printed in line

13 of Listing 4. Figure 1 is the screenshot of the R console after running this line of

code. Note that this output is very similar to what is provided by R2WinBUGS

(Sturtz, Ligges, & Gelman, 2005). A list of summary statistics is provided for the pos-

terior distribution of every parameter. The posterior mean and the standard deviation

can be used as the point estimates of the discrimination parameters and their standard

errors. The column named n_eff lists the effective number of simulation draws, which
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can be viewed as the effective sample for a posterior distribution on which inferences

are based. The last column Rhat lists the Gelman and Rubin’s convergence diagnostic

(Gelman & Rubin, 1992), a popular statistic that computes the potential scale reduc-

tion factor (PSRF). A PSRF value close to 1 usually indicates model convergence,

and the PSRF value of 1.1 has been recommended as a threshold with smaller values

indicating model convergence (Gelman et al., 2014, p. 287). As can be seen in Figure

1, the largest PSRF value for the item discrimination parameter is 1.01. As all the

other parameters not printed here have PSRF values smaller than 1.05, it was con-

cluded that model convergence had been reached.

The trace plots for model parameters can be requested with the function traceplot

in rstan for additional convergence check (e.g., Listing 4, line 14). For illustrative

purposes, Figure 2 lists the trace plots for all 20 pseudoguessing parameters in the

3PL IRT model. It should be noted that those plots only show the last 500 iterations

as inc_warmup = FALSE and therefore the first 500 iterations are excluded. Usually

the appearance of a ‘‘fat hairy caterpillar’’ (Lunn, Jackson, Best, Thomas, &

Spiegelhalter, 2012, p. 73) in trace plots as shown in Figure 2 indicates convergence.

In general, rstan allows easy use of many other model convergence diagnostics

through the R package ShinyStan (Stan Development Team, 2016b). Interested read-

ers are referred to Cowles and Carlin (1996) for a review of MCMC convergence

diagnostics and Sinharay (2004) for their application in the IRT context.

After confirming model convergence, WAIC and LOO are computed in lines 15

to 23 in Listing 4 for each compared model. As the log-likelihood has been computed

in the generated quantity block, the function extract_log_lik can be used to directly

extract the posterior distribution of the log-likelihood (Listing 4, lines 15, 18, and 21)

and then WAIC and LOO are computed with the functions waic and loo, respectively

(e.g., Listing 4, lines 16-17). Table 1 lists the WAIC and LOO values for the three

Figure 1. Estimates of item discrimination parameters in the three-parameter logistic item

response theory (3Pl IRT) model.
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dichotomous IRT models, both of which lead to the same conclusion that the 3PL

IRT model has the smallest values of LOO and WAIC. Consequently, it was con-

cluded that the 3PL IRT model was the best-fitting model among the three competing

dichotomous IRT models.

Example 2: The Rasch Testlet Model

This example demonstrates how to use rstan to fit the Rasch testlet model (Wang &

Wilson, 2005), a multidimensional extension of the Rasch model. The Rasch testlet

model for data generation is given as follows:

pi(uj) =
1

1 + exp (� (uj � bi + gjd(i)))
, ð5Þ

where gjd(i) is a person-specific testlet effect parameter that models the interaction

between an examinee and a testlet, and all the other terms remain the same as in

Figure 2. Trace plots of the pseudoguessing parameters in the three-parameter logistic item

response theory (3PL IRT) model.

Table 1. WAIC and LOO for Three Dichotomous Item Response Theory Models.

1PL 2PL 3PL

WAIC 44,667 44,252 43,707
LOO 44,666 44,263 43,729

Note. WAIC = widely available information criterion; LOO = leave-one-out cross-validation; 1PL = one-

parameter logistic; 2PL = two-parameter logistic; 3PL = three-parameter logistic.
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Equation (1). The magnitude of the testlet variance (s2
gjd(i)

) indicates the magnitude

of the testlet effect. To provide data to fit the Rasch testlet model, a data set of 2,000

examinees’ responses to a test of 36 items was simulated. These 36 items formed six

testlets, and the testlet variance s
2
gjd(i)

was assumed to be 1 for all six testlets, repre-

senting a large testlet effect.

Listing 5 provides the R code for the analysis in this example. The data are trans-

posed and the number of items and the number of examinees are extracted in lines 6

to 8 in Listing 5. Such data transposing makes Stan more efficient as illustrated

below. The number of testlets or item groups is specified in a data list named data_-

testlet in lines 9 to 11 of Listing 5.

Stan code for the Rasch testlet model can be saved as an external file and runs in

the stan function. Another way is to specify the Stan program for the Rasch testlet

model as an object called code_testlet in the R environment as in lines 12 to 45 of

Listing 5. This Stan program is similar to that for the 3PL IRT model except the

inclusion of the number of testlets and the item group membership as specified in

lines 15 to 16 of Listing 5 in the data block. In the parameter block, two parameters,

gamma and sd_gamma are specified for the testlet parameters and the testlet var-

iance, respectively (Listing 5, lines 21 and 24). In the model block, normal distribu-

tions are assumed as priors for gjd(i)with the means fixed to be 0, and a half Cachy

distribution as the prior for each sgjd(i)
(Listing 5, lines 37-40).

This example uses the transformed parameters block to constrain the sum of item

difficulty parameters to be zero (Listing 5, line 30) for model identification. In addi-

tion, the function bernoulli_logit is used (Listing 5, line 42) in the sampling state-

ment. This function is a direct parameterization of bernoulli and can be used for both

1PL and 2PL IRT models. For the 2PL IRT model, it is expressed as bernoulli_logi-

t(alpha[j]*(theta[i]- beta[j])), which is equivalent to bernoulli(1/(1+ exp(-

alpha[j]*(theta[i]- beta[j])))). For the 3PL IRT model, the function bernoulli_logit

cannot be used due to the addition of the lower-asymptote parameter.

Different from that specified for the above three IRT models, the sampling state-

ment for the Rasch testlet model (Listing 5, lines 41-43) is vectorized for efficiency.

In the sampling statement for the first three models (e.g., Listing 1, lines 22-25), a

double loop is used to model one element at a time from the response matrix. This

example demonstrates that a single loop is used to model one vector (its length is the

number of examinees) at a time from the response matrix. Such a vectorized sam-

pling statement improves computation efficiency in Stan because ‘‘. . . vectorized log

probability functions are faster than their equivalent form defined with loops’’ (Stan

Development Team, 2016a, p. 405).

The sampling statement in this example (Listing 5, line 42) warrants some addi-

tional explanation. With the data transposed (Listing 5, line 6), res[i] outputs the

vector of all examinees’ responses to item i with a length equal to the number of

examinees. The parameter theta is defined as a vector with the same length (Listing

5, line 20), and gamma[t_index[i]] indicates a specific testlet that item i is associated

with and the vector of the testlet effect with the same length as the number of
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examinees. Although beta[i] is a scalar, it is automatically transformed by Stan into

a vector of the same length to be compatible with theta and gamma[t_index[i]].

With the Stan program for the Rasch testlet model defined as an R object called

code_testlet, the Rasch testlet model parameters can be estimated using the function

stan (Listing 5, line 46). It should be noted that when the Stan code is directly writ-

ten in the R environment, model_code instead of file should be used as the first argu-

ment in the function stan to refer to code_testlet.

Evidently different from the Gibbs sampler and the Metropolis algorithm that

require a larger number of iterations for the Rasch testlet model to converge, the effi-

cient HMC algorithm implemented in Stan needs fewer than 500 iterations to con-

verge. In this example, 1,000 iterations were run and the first 500 iterations were

discarded as burn-in iterations. The whole estimation process only took approxi-

mately 15 minutes on a desktop computer with an Intel Xeon E5 processor and as

will be shown next, model convergence was achieved within the first 500 iterations.

Figure 3 shows the trace plots of the testlet effect parameters. Good mixing is

observed for all six testlet effect parameters, indicating that convergence has been

reached for these parameters. Figure 4 shows the screenshot of the testlet effect para-

meter estimates printed in the R console. The PSRF values for the six testlet effect

parameters are all below 1.1, with the largest value of 1.05. Though not listed here,

all the other model parameters have PSRF values no greater than 1.05, with good

mixing as shown in the trace plots. The estimated testlet variance parameters are all

close to the generating value of 1, suggesting that they have been accurately esti-

mated by Stan. Consequently, it was concluded that convergence was achieved for

the Rasch testlet model.

Figure 3. Trace plots of testlet effect parameters in the Rasch testlet model.
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Example 3: A Multilevel 3PL IRT Model

This example demonstrates how to fit a multilevel 3PL IRT model in Stan. The data

set is an end-of-program learning outcome assessment test for students enrolled in

engineering programs in a Middle-Eastern country. The purpose of the analysis is on

evaluating those programs based on program mean scores. A traditional approach to

computing program mean scores is to calibrate items and score students with an IRT

model and average individual scores within a program to obtain the program mean

score. However, such an approach ignores the measurement error inherent in individ-

ual scores. An alternative, as proposed by Fox and Glas (2001), is to use a multilevel

IRT model that simultaneously estimates item parameters, individual scores, and pro-

gram mean scores. This example fits a 3PL multilevel IRT model that takes into con-

sideration the measurement error in individual scores to estimate program mean

scores. The multilevel 3PL IRT model is expressed as follows:

pi(ugj) = ci +
1� ci

1 + exp (� ai(ugj + ug � bi))
, ð6Þ

where ugj is the individual score of student j in group g, ug is program g’s mean score,

and all the other terms remain the same as in Equation (1).

The R code for this example is provided in Listing 6. The data set consists of 43

columns, with the first 42 for item responses and the last one for the group member-

ship for each person. Item responses and the group membership are imported in lines

6 and 9 of Listing 6, and the number of items, examinees, and programs are extracted

in lines 7, 8, and 10 of Listing 6. The Stan program for the multilevel 3PL IRT model

is defined as an R object named code_m3pl (Listing 6, lines 12-46). To avoid repeti-

tion, the illustration of this example focuses on additional Stan codes in Listing 6

related to the multilevel structure.

The group membership information and the number of groups are included in the

data block (Listing 6, lines 15-16). In the parameter block, two lines are added for the

program mean score parameter (s_theta) and its standard deviation (sigma_school;

Listing 6, lines 21 & 28). In the model block, a normal distribution with a mean of 0

and unknown standard deviation (sigma_school) is specified as the prior for s_theta

(Listing 6, line 35) whereas a half Cauchy distribution is set as the hyper priors for

the parameter sigma_school (Listing 6, line 39). The sampling statement (Listing 6,

Figure 4. Testlet effect parameter estimates in the Rasch testlet model.
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lines 40-44) in this example is similar to that of the 3PL IRT model (Listing 1, lines

33-37), with the addition of the program mean score parameter s_theta[g[i]]. In this

example, a double loop is still used instead of a single loop as the function bernoulli

does not allow vectorization for the 3PL model.

For this model, 1,000 iterations are sufficient for convergence. To be conserva-

tive, three chains were run with 3,000 iterations for each chain (Listing 6, line 47)

and as default, the first 1,500 iterations were discarded as burnin and subsequent

inferences were based on the last 1,500 iterations in each chain. The computation

took 45 minutes on a desktop computer with an Intel Xeon E5 processor. Based on

our experience, BUGS may need tens of thousands of iterations and hours of running

time to estimate parameters for this model. Such a noticeable difference in computa-

tion time confirms the efficiency of the HMC algorithm implemented in Stan over

the traditional MCMC algorithms.

The trace plots for s_theta and sigma_school are requested, as well as the sum-

mary statistics of the posterior distributions (Listing 6, lines 48-49). Figures 5 and 6

show the trace plots and the screenshot of the parameter estimates printed in the R

console. As can be seen, good mixing is observed for all trace plots in Figure 5, and

the PSRF values for all parameters shown in Figure 6 are all below 1.1, with the larg-

est value being 1.02. Though not listed here, all the other model parameters have sim-

ilar trace plots and PSRF values no greater than 1.05, indicating that convergence has

been reached. The 95% credible interval for each s_theta allows to determine whether

Figure 5. Trace plots of program effect parameters in the multilevel three-parameter

logistic item response theory (3PL IRT) model.
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a particular program has a mean score significantly different from zero (the grand

mean score). Take Program 11 as an example: Since s_theta[11] has a posterior mean

of 1.67 with a 95% credible interval of (0.90, 2.39), this program has a program effect

significantly above the average and is therefore classified as effective. The estimated

standard deviation of the program effect is 1.17 with a 95% credible interval of (0.84,

1.67), suggesting that in this data set, there is substantial between-program variation.

Summary

Stan is a relatively new programming software that implements the powerful HMC

algorithm. To date, there is no systematic introduction to using Stan for Bayesian

IRT model parameter estimation. This article introduces Stan programs for estimat-

ing common dichotomous and polytomous IRT models. Furthermore, it demonstrates

IRT model comparison with two R packages rstan and loo, using methods that are

fully Bayesian and hence theoretically superior to DIC. Estimation of multidimen-

sional and multilevel extensions of dichotomous IRT models using the Stan program

is also demonstrated. In general, Stan is efficient and requires considerably shorter

time than other Bayesian software programs for estimating these complex models.

Stan is not without limitations. While WinBUGS can automatically generate val-

ues from the posterior predictive distribution for missing response data, Stan treats

all missing data as parameters and consequently, a Stan user has to define them in

the parameters block or transformed parameters block. With the combination of non-

systematic missing patterns and complex models, such procedures can become

tedious and error-prone. Stan also lacks support for sampling discrete parameters,

Figure 6. Program effect parameter estimates in the multilevel three-parameter logistic

item response theory (3PL IRT) model.
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and such parameters need to be marginalized out in order to be estimated in Stan.

Although there are some sources such as the Stan User Manual that provide some

introduction to how to conduct the marginalization, this procedure may require a

substantial amount of coding effort and can be difficult to implement to some applied

researchers and practitioners. In the psychometric context, such a disadvantage trans-

lates into the fact that mixture IRT models and latent class models cannot be directly

specified in Stan, since both contain discrete latent variables. In contrast, BUGS

allows for straightforward specifications of such models.

It is hoped that this tutorial will introduce Stan to interested researchers as a pow-

erful and efficient software program suitable for Bayesian IRT analysis. The intro-

duction to the common dichotomous and polytomous IRT models and their

multidimensional and multilevel extensions will reduce the learning curve of Stan

and facilitate model parameter estimation for further extended IRT models. For

researchers who want to fit more complex IRT models to their data using MCMC

algorithm but are not satisfied with the computational speed of the Gibbs sampler

and Metropolis algorithm in BUGS and other MCMC packages, Stan may be an

attractive alternative.

Appendix

Listing 1: Stan Code for the 3PL IRT Model

1 data {
2 int\lower=0. n_student;
3 int\lower=0. n_item;
4 int\lower=0,upper=1. Y[n_student,n_item];
5 }
6 parameters {
7 vector[n_student] theta;
8 vector\lower=0. [n_item] alpha;
9 vector[n_item] beta;
10 vector\lower=0,upper=1. [n_item] gamma; //item pseudo-guessing
11 real mu_beta;
12 real\lower=0. sigma_alpha;
13 real\lower=0. sigma_beta;
14 }
15 model {
16 theta ~ normal(0,1);
17 beta ~ normal(mu_beta,sigma_beta);
18 mu_beta ~ normal(0,5);
19 sigma_beta ~ cauchy(0,5);
20 alpha ~ lognormal(0,sigma_alpha);
21 sigma_alpha ~ cauchy(0,5);
22 gamma ~ beta(5,23);
23 for(i in 1:n_student){
24 for (j in 1:n_item){

(continued)
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Listing 2: Stan Code for the Graded Response Model

1 data{
2 int\lower=2, upper=4. K; //number of categories
3 int\lower=0. n_student;
4 int\lower=0. n_item;
5 int\lower=1,upper=K. Y[n_student,n_item];
6 }
7 parameters {
8 vector[n_student] theta;
9 real\lower=0. alpha [n_item];
10 ordered[K-1] kappa[n_item]; //category difficulty
11 real mu_kappa; //mean of the prior distribution of category difficulty
12 real\lower=0. sigma_kappa; //sd of the prior distribution of category difficulty
13 }
14 model{
15 alpha ~ cauchy(0,5);
16 theta ~ normal(0,1);
17 for (i in 1: n_item){
18 for (k in 1:(K-1)){
19 kappa[i,k] ~ normal(mu_kappa,sigma_kappa);
20 }}
21 mu_kappa ~ normal(0,5);
22 sigma_kappa ~ cauchy(0,5);
23 for (i in 1:n_student){
24 for (j in 1:n_item){
25 Y[i,j] ~ ordered_logistic(theta[i]*alpha[j],kappa[j]);
26 }}
27 }
28 generated quantities {
29 vector[n_item] log_lik[n_student];
30 for (i in 1: n_student){
31 for (j in 1: n_item){
32 log_lik[i, j] = ordered_logistic_log (Y[i, j],theta[i]*alpha[j],kappa[j]);
33 }}
34 }

Listing 1: (continued)

25 real p; //create a local variable within the loop to make Stan code more readable
26 p= inv_logit(alpha[j]*(theta[i] - beta[j]));
27 Y[i,j] ~ bernoulli(gamma[j]+ (1-gamma[j])*p);
28 }}
29 }
30 generated quantities {
31 vector[n_item] log_lik[n_student];
32 for (i in 1: n_student){
33 for (j in 1: n_item){
34 real p;
35 p= inv_logit(alpha[j]*(theta[i] -beta[j]));
36 log_lik[i, j] = bernoulli_log(Y[i, j], gamma[j]+ (1-gamma[j])*p);
37 }}
38 }
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Listing 3: Stan Code for the Nominal Response Model

1 data{
2 int\lower=2, upper=4. K;
3 int\lower=0. n_student;
4 int\lower=0. n_item;
5 int\lower=1,upper=K. Y[n_student,n_item];
6 }
7 parameters {
8 vector[K] zeta[n_item]; //freely estimated intercept
9 vector[K] lambda[n_item]; //freely estimated slope
10 vector[n_student] theta;
11 }
12 transformed parameters {
13 vector[K] zetan[n_item]; //intercept with constraints
14 vector[K] lambdan[n_item]; //slope with constraints
15 for (k in 1:n_item) {
16 for (l in 1:K) {
17 zetan[k,l]=zeta[k,l]-mean(zeta[k]); //constrain intercept sum for each item to 0
18 lambdan[k,l]=lambda[k,l]-mean(lambda[k]); //constrain slope sum for each item to 0
19 }}
20 }
21 model{
22 theta ~ normal(0,1);
23 for (i in 1: n_item){
24 zeta[i] ~ normal(0,2);
25 lambda[i] ~ normal(0,2);
26 }
27 for (i in 1:n_student)
28 for (j in 1:n_item)
29 Y[i,j] ~ categorical_logit(zetan[j] + lambdan[j]*theta[i]);
30 }
31 generated quantities {
32 vector[n_item] log_lik[n_student];
33 for (i in 1: n_student){
34 for (j in 1: n_item){
35 log_lik[i, j] = categorical_logit_log (Y[i, j], zetan[j] + lambdan[j]*theta[i]);
36 }}
37 }
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Listing 4: R Code for Example 1, Model Selection

1 setwd(‘‘C:\\ Rstan Tutorial’’)
2 library(rstan)
3 rstan_options(auto_write = TRUE)
4 options(mc.cores = parallel::detectCores())
5 library(loo)
6 data\-read.table(‘‘example1.csv’’,header=FALSE,sep=‘‘,’’)
7 I=dim(res)[1]
8 J=dim(res)[2]
9 data_irt=list(n_student =I,n_item=J,Y=res)
10 irt_1pl = Stan(file = irt_1pl.Stan, data = data_irt, iter = 1000, chains = 3)
11 irt_2pl = Stan(file = irt_2pl.Stan, data = data_irt, iter = 1000, chains = 3)
12 irt_3pl = Stan(file = irt_3pl.Stan, data = data_irt, iter = 1000, chains = 3)
13 print(irt_3pl,par=‘‘alpha’’)
14 traceplot(irt_3pl, pars= ‘‘gamma’’,inc_warmup = FALSE)
15 log_lik1 = extract_log_lik(irt_1pl)
16 loo1 = loo(log_lik1)
17 waic1 = waic(log_lik1)
18 log_lik2 = extract_log_lik(irt_2pl1)
19 loo2 = loo(log_lik2)
20 waic2 = waic(log_lik2)
21 log_lik3 = extract_log_lik(irt_3pl)
22 loo3 = loo(log_lik3)
23 waic3 = waic(log_lik3)

Listing 5: R Code for Example 2, the Rasch Testlet Model

1 setwd(‘‘C:\\ Rstan Tutorial’’)
2 library(rstan)
3 rstan_options(auto_write = TRUE)
4 options(mc.cores = parallel::detectCores())
5 data\-read.table(‘‘example2.csv’’,header=FALSE,sep=‘‘,’’)
6 res\-t(data)
7 J\-dim(res)[1]
8 I\-dim(res)[2]
9 n_tl\-6
10 t_index\-rep(1:6, each = 6)
11 data_testlet\-list(n_student = I,n_item=J,n_tl=n_tl,t_index=t_index,res=res)
12 code_testlet\-’data {
13 int\lower=0. n_student;
14 int\lower=0. n_item;
15 int\lower=0. n_tl; // number of testlets
16 int\lower=0. t_index[n_item]; // testlet membership
17 int\lower=0,upper=1. res[n_item,n_student];
18 }
19 parameters {
20 vector[n_student] theta;

(continued)
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Listing 5: (continued)

21 vector[n_student] gamma[n_tl]; // testlet effect
22 vector[n_item] beta_free; //freely estimated item difficulty
23 real\lower=0. sigma_beta; // sd of difficulty
24 real\lower=0. sigma_gamma[n_tl]; // sd of testlet effect
25 real mu; //mean difficulty
26 }
27 transformed parameters {
28 vector[n_item] beta;
29 for (i in 1:(n_item-1)) beta[i]=beta_free[i];
30 beta[n_item]=-1*sum(beta_free); //constraint difficulty sum to 0
31 }
32 model {
33 beta_free ~ normal(0,1);
34 theta ~ normal(mu,sigma_theta);
35 mu ~ normal(0,5);
36 sigma_theta ~ cauchy(0,5);
37 for (i in 1: n_tl){
38 gamma[i] ~ normal(0,sigma_gamma[i]);
39 sigma_gamma[i] ~ cauchy(0,5);
40 }
41 for(i in 1:n_item) {
42 res[i] ~ bernoulli_logit(theta + gamma[t_index[i]]- beta[i]);
43 }
44 }
45 ‘
46 irt_testlet\- Stan(model_code = code_testlet, data = data_testlet, iter = 1000, chains = 3)

Listing 6: R Code for Example 3, the Multilevel 3PL IRT Model

1 setwd(‘‘C:\\Rstan Tutorial’’)
2 library(rstan)
3 rstan_options(auto_write = TRUE)
4 options(mc.cores = parallel::detectCores())
5 data\-read.table(‘‘example3.csv’’,header=TRUE,sep=‘‘,’’)
6 res\-data[,-43]
7 I\-dim(res)[1]
8 J\-dim(res)[2]
9 group\-data[,43]
10 ng\-length(unique(group))
11 data_m3pl\-list(n_student =I,n_item=J,res=res,g=group,n_school=ng)
12 code_m3pl\-’data {
13 int\lower=0. n_student;
14 int\lower=0. n_item;
15 int\lower=0. n_school;
16 int\lower=0. g[n_student];
17 int\lower=0,upper=1. res[n_student,n_item];
18 }

(continued)
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Notes

1. For a detailed but accessible description of how the momentum variable works in HMC,

readers are referred to Gelman et al. (2014).

2. Because of space limitation and for better readability, we do not provide Stan codes for all

the common IRT models in this article. Interested readers may contact the first author for

additional Stan codes for other IRT models.

Listing 6: (continued)

19 parameters {
20 vector[n_student] theta;
21 vector[n_school] s_theta; //program mean ability
22 vector[n_item] beta;
23 vector\lower=0. [n_item] alpha;
24 vector\lower=0,upper=1. [n_item] guessing;
25 real mu;
26 real\lower=0. sigma_alpha;
27 real\lower=0. sigma_beta;
28 real\lower=0. sigma_school; // sd of school mean ability
29 }
30 model {
31 mu ~ normal(0,5);
32 sigma_beta ~ cauchy(0,5);
33 beta ~ normal(mu,sigma_beta);
34 theta ~ normal(0,1);
35 s_theta ~ normal(0,sigma_school);
36 alpha ~ lognormal(0,sigma_alpha);
37 guessing ~ beta(5,23);
38 sigma_alpha ~ cauchy(0,5);
39 sigma_school ~ cauchy(0,5);
40 for(i in 1:n_student) {
41 for (j in 1:n_item) {
42 real p;
42 p= inv_logit(alpha[j]*(s_theta[g[i]]+ theta[i]- beta[j]));
43 res[i,j] ~ bernoulli(guessing[j] + (1-guessing[j])*p);
44 }}
45 }
46 ‘
47 irt_m3pl\- Stan(model_code = code_m3pl, data = data_m3pl, iter = 3000, chains = 3)
48 traceplot(irt_m3pl,pars=c(‘‘s_theta’’,‘‘sigma_school’’),inc_warmup = FALSE)
49 print(irt_m3pl,pars=c(‘‘s_theta’’,‘‘sigma_school’’))
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