
A&A 583, A118 (2015)
DOI: 10.1051/0004-6361/201525721
c© ESO 2015

Astronomy
&

Astrophysics

Using the Sun to estimate Earth-like planet detection capabilities

VI. Simulation of granulation and supergranulation radial velocity
and photometric time series

N. Meunier1,2, A.-M. Lagrange1,2, S. Borgniet1,2, and M. Rieutord3

1 Université. Grenoble Alpes, IPAG, 38000 Grenoble, France
e-mail: nadege.meunier@obs.ujf-grenoble.fr

2 CNRS, IPAG, 38000 Grenoble, France
3 Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse, 14 avenue Édouard Belin, 31400, Toulouse, France

Received 23 January 2015 / Accepted 31 July 2015

ABSTRACT

Context. Stellar variability, at a variety of timescales, can strongly affect the ability to detect exoplanets, in particular when using
radial velocity (RV) techniques. Accurately characterized solar variations are precious in this context to study the impact of stellar
variations on planet detectability. Here we focus on the impact of small timescale variability.
Aims. The objective of this paper is to model realistic RV time series due to granulation and supergranulation and to study in greater
detail the impact of granulation and supergranulation on RV times series in the solar case.
Methods. We have simulated a collection of granules and supergranules evolving in time to reproduce solar photometric and RV time
series. Synthetic time series are built over the full hemisphere over one solar cycle.
Results. We obtain intensity and RV rms due to solar granulation of respectively 0.8 m/s and 67 ppm, with a strong variability at
timescales up to more than 1 h. The rms RV due to supergranulation is between 0.28 and 1.12 m/s.
Conclusions. To minimize the effect of granulation, the best strategy is to split the observing time during the night into several
periods instead of observing over a consecutive duration. However, the best strategy depends on the precise nature of the signal. The
granulation RV remains large after even an hour of smoothing (about 0.4 m/s) while the supergranulation signal cannot be significantly
reduced on such timescales: a reduction of a factor 2 in rms RV can for example be obtained over 7 nights (with 26 min/night). The
activity RV variability dominates at larger timescales. Detection limits can easily be as high as 1 MEarth or above for periods of tens
or hundreds of days. The impact on detection limits is therefore important and may prevent the detection of 1 MEarth planets for long
orbital periods, while the impact is much smaller at small orbital periods. These results do not take the presence of pulsations into
account.
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1. Introduction

Stellar variability, at a variety of timescales, can strongly af-
fect our ability to detect exoplanets. A systematic analysis of
the radial velocity (RV) produced by active regions in the so-
lar case has been done by Lagrange et al. (2010) and Meunier
et al. (2010a). In these works, typical variability at timescales
from one day to the cycle length has been studied. Three contri-
butions to the RV variability have been considered: the spot in-
tensity contrast, which affects the stellar RVs as the spot crosses
the visible disk; the same process for bright plages; and the at-
tenuation of the convective blueshift in active regions (plages
being the dominant factor). We have shown that the resulting
RV variations were strongly dominated by the third contribu-
tion, with timescales from the rotational period to the solar cycle
length. The impact of the magnetic activity pattern on astrome-
try has also been estimated (Makarov et al. 2010; Lagrange et al.
2011).

Both RV and transit measurements are also affected by
small-scale variability (minutes to hours). This has been studied
for example by Aigrain et al. (2004), who derived photometric
light curves, and by Dumusque et al. (2011b), who derived

RV time series due to granulation or larger scale processes
(supergranulation and the so-called mesogranulation) using the
simple laws obtained by Harvey (1984) and later by Palle et al.
(1995). The law for each component is, however, not very well
constrained by the fits of observations. For example, Palle et al.
(1995) show that the flat part of the solar RV spectrum due to
granulation at low frequencies is much smaller than other contri-
butions (supergranulation, activity) and is therefore not well con-
strained. Palle et al. (1995) have fitted four components (gran-
ulation, mesogranulation, supergranulation, and active regions)
using the same law, but they observed that it was difficult to fit
the timescale parameters and have therefore fixed them to the
values derived by Harvey (1984). Because they fit the power
spectrum with four components whose dependence on the fre-
quency is fixed, it is mandatory to fit all four components with a
significant amplitude otherwise there would be a gap, but it does
not mean that these components are well fitted.

Lefebvre et al. (2008) have succeeded in fitting the photo-
metric data obtained by GOLF/SoHO without the mesogranula-
tion component. Furthermore, the very existence of mesogran-
ulation has long been questioned (Straus et al. 1992; Rieutord
et al. 2000). More recently, a number of works suggest that
mesogranular scales are unlikely to be a true convective scale,
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the energy being injected at another scale (e.g., Yelles Chaouche
et al. 2011; Berrilli et al. 2013). Nonetheless, it is possi-
ble that mesogranular flows are the consequence of a large-
scale organization of granules (Roudier et al. 2009). Whether
Harvey’s laws are adapted to mesogranulation is therefore not
proved.

Several issues remain to be investigated: what is the contri-
bution of granulation at larger timescales? Is the power spec-
trum flat, as expected from this description, or not? How would
a time series derived from more precise properties of granules
affect the sampling issues such as those discussed by Dumusque
et al. (2011b)? What is the true contribution of supergranules,
which is fitted by Palle et al. (1995) with a large power (rms RV
of 1.9 m/s)?

We know that the law derived by Palle et al. (1995) can be
reproduced with a simple simulation of a collection of a large
number of cells with a typical size and lifetime, but it is im-
portant to take all parameters into account to simulate the pro-
duced RV or photometry and check whether the law is still valid
at all timescales. Furthermore, such a law does not apply to
activity.

It is therefore necessary to realistically model time series due
to granulation and possibly to other contributions using a differ-
ent approach in order to understand the true nature of the signal.
Seleznyov et al. (2011) have simulated photometric time series
due to granulation by considering a collection of granules evolv-
ing in time and by studying the resulting power spectrum. In this
work, we follow a similar approach; we simulate photometric
and RV variations due to a collection of cells. Contrary to the
work of Seleznyov et al. (2011), however, we do not consider
a fixed number of granules, but a fixed surface covered by the
granules, because it allows us to consider the proper number of
granules. We also take projection effects into account, which is
necessary when dealing with RV, and simulate a full hemisphere,
hence our simulation is more realistic. Our approach is comple-
mentary to that developed by Cegla et al. (2013) who reproduced
spectra from different components in granules. It should also be
noted that regarding granulation, although the root mean square
(rms) RV and rms intensity I may be correlated (Cegla et al.
2014), such a correlation may be complex (Bastien et al. 2014);
moreover, the two time series themselves are uncorrelated (see
Sect. 3.2.1 for a discussion), therefore the photometric time se-
ries cannot be used to correct the RV time series due to granula-
tion for example1.

Our approach is described in Sect. 2. We analyze our results
in Sect. 3; we estimate the actual contribution of granulation at
various temporal scales and the consequences on the analysis
of RV time series when searching for exoplanets. Furthermore,
we extend this work to the estimation of the contribution of su-
pergranulation in Sect. 4. In Sect. 5 we use the simulation of
Borgniet et al. (2015) to study the sum of the three contribu-
tions: granulation, supergranulation, and magnetic activity on
RV and photometry, and discuss the contribution of mesoscale
flows. Finally, the impact on planet detectability is studied in
Sect. 6 using detection limits. We conclude in Sect. 7.

1 When considering a collection of stars, the rms RV and I tend to be
correlated (Aigrain et al. 2012; Haywood et al. 2014; Cegla et al. 2014)
because large granules tend to produce larger velocity and have a larger
contrast in intensity. However, for a given star we find that the time
series of RV and I due to granulation are not correlated with each other,
while the relationship between the two in the case of magnetic activity
may make it possible to correct for the activity components (Aigrain
et al. 2012; Haywood et al. 2014).

2. Description of the granulation simulation

2.1. Principle

We simulate a collection of granules spread over one solar hemi-
sphere. Each of these granules is created by several processes
with an initial size: granules are born either by appearance, from
the merging of two nearby granules, or from a preexisting gran-
ule splitting into two parts. They then evolve in size with time,
and finally either split into two granules, merge with a nearby
granule, or disappear when their age has reached their lifetime.
The total area covered by all granules at any time is equal to
the hemisphere surface, i.e., we impose a fixed surface and not a
fixed number of granules. Each granule is given a specific loca-
tion on the surface. The star is considered to be non-rotating2, the
lifetime of a granule being more than three orders of magnitude
smaller than the rotation period. Finally, each granule is assigned
a RV and an intensity (described in Sects. 2.4.1 and 2.4.2, re-
spectively) according to its size and position (projection effects),
which corresponds to the contribution of that granule to the in-
tegrated RV and intensity respectively. This allows us to build
time series of RV and intensity variations due to granules.

At each time step, two situations are possible for each gran-
ule in the collection. If its current lifetime is lower than its at-
tributed lifetime (described in Sect. 2.2.2), then its size evolved
following the rule described in Sect. 2.2.1. If it has reached its
theoretical lifetime, it will either disappear, merge with another
granule, or split into two new granules (to which new properties
will be assigned depending on the size of the fragments) as de-
scribed in Sect. 2.2.3. This is done for all granules at each time
step. A summary of the algorithm is presented in Sect. 2.3.

In the rest of this paper we assume that granular cells com-
bined with intergranular lanes form the granules.

2.2. Physical parameters

2.2.1. Size parameters and size evolution

We use the size distribution observed by Roudier & Muller
(1987). This distribution follows an exponential law, with a typ-
ical spatial scale of 1 Mm. We impose minimum and maximum
sizes of 0.016 and 6.6 Mm2, respectively. This is also compati-
ble with the results of Hirzberger et al. (1999) and Beeck et al.
(2013). This distribution is shown in Fig. 1.

Granules are known to evolve during their lifetime. As
in Seleznyov et al. (2011), who used the decay observed by
Hirzberger et al. (1999), we take this evolution into account. We
consider that granules below a typical size of 0.76 Mm2 linearly
decrease in size during their lifetime while those that are larger
linearly increase in size. The decay is chosen to linearly depend
on the size, with a maximum value of 0.0145 Mm2/min; this
value is smaller than the one used by Seleznyov et al. (2011) as
large values lead to unrealistic size distributions.

2.2.2. Lifetime parameters

Hirzberger et al. (1999) have also shown that the lifetime de-
pends on the size of granules. In this simulation we chose to

2 As stellar rotation broadens observed line profiles, the resulting
RV may differ slightly from one star to the other depending on the rota-
tion rate, an effect which cannot be taken into account in our simulation.
The timescale of supergranulation, considered in Sect. 4, is also larger
than for granulation.
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Fig. 1. Size distribution of granules from the exponential distribution
from Roudier & Muller (1987) observed distribution (dashed line) and
from the Rieutord et al. (2002) simulation (solid line).

attribute a lifetime to each granule according to its size follow-
ing the law of Hirzberger et al. (1999), and to check afterward
that the resulting distribution was indeed close to an exponential
law with the proper timescale. The minimum lifetime consid-
ered is τmin = 1 min and the maximum lifetime τmax = 30 min.
Because the published values (Hirzberger et al. 1999) provide
mean sizes versus the lifetime without any precise value of the
dispersion, we had to adapt these published values for our simu-
lation. For sizes S below 2.4 Mm2, the lifetime follows the law
τ = 1.5 + 4.375S to which a dispersion following a normal law
with sigma = 2 τ/τmax minutes is added (corresponding to a dis-
persion of 0.07 min at τmin and of 2 min at τmax). For sizes S
above 2.4 Mm2, the lifetime follows the law τ = 11.92+0.033S ,
to which a dispersion similar to the previous case is added, with
the constraint that they must lie between the minimum and max-
imum values.

2.2.3. Birth and death of granules

Most granules appear from the splitting of a previsouly existing
granule or from the merging of existing granules as shown by
the observations of e.g. Oda (1984) and Hirzberger et al. (1999).
Similarly, most observed granules also die either by splitting or
by merging with other granules. The percentage of granules ap-
pearing or disappearing is small. It should be noted that there is
no direct correspondence between the amount of birth by merg-
ing and the amount of death by merging because the splitting
process can lead to more than two granules and merging can be
done between more than two granules as well, but the propor-
tions of the different configurations are not necessarily symmet-
ric. In this paper, we consider merging between two granules
only and fragmenting into two granules only, therefore our per-
centages are slightly different but still representative of observed
granules.

Furthermore, Hirzberger et al. (1999) have shown that the
birth and death processes depend on the size: small granules tend
to be born by splitting while large granules result from merging.
Similarly, small granules tend to die by merging while the largest
ones die by splitting. This, as discussed for the size evolution of
granules, also adds a significant complexity to the simulation
if one wishes to reproduce the observed size and lifetime dis-
tribution. It is also time consuming: for each granule dying by

merging, we need to search for the closest granule disappear-
ing at the same time also by merging. In this paper we consider
that granules below 0.76 Mm2 would most likely merge and that
they would most likely fragment when larger. The transition be-
tween the two regimes is smoothed, typically over 2 Mm2, to
avoid steps in the final distributions. At each time step, the list
of granules at the end of their life is identified. Out of these, a
percentage of granules (21%) is chosen to disappear directly, in-
dependent of their size (Hirzberger et al. 1999). The others fol-
low the splitting/merging process. For the merging, the closest
granules are considered, providing the sum of their two sizes is
smaller than the maximum granule size. The birth of granules by
merging and fragmenting is controlled by the death of previous
granules. When a granule appears directly, its size is chosen so
that the global distribution at this time step is as close as possible
to the input distribution.

2.3. Summary: algorithm

The algorithm that creates granules can be summarized as
follows:

– Initialization. Granules are generated using the prescribed
size distribution until they cover the full hemisphere (or
prescribed surface for the small field-of-view simulations).
Size-dependent properties are assigned to each of the n gran-
ules as they are created: lifetime, position on the disk, RV,
intensity.

– Loop over the time steps.
1. Loop over the n granules: Size modification according to

their size.
2. Loop over the n granules: If their age has reached their

expected lifetime, attribution of a status: disappearance,
splitting, merging.

– In the case of disappearance: the granule is elimi-
nated from the list of granules.

– In the case of splitting: the size of the two new gran-
ules is determined (each size being a fraction of the
original granule size) as well as their new positions
and properties (lifetime, RV, intensity).

– In the case of merging: when the simulation cov-
ers the full hemisphere, large cells paving the whole
surface are identified so that granules are grouped
with other merging granules that are not far from
each other to speed up the identification of gran-
ules merging with each other. For each of these
cells, a loop over the merging granules is made: for
each granule that has not already merged, the clos-
est granule is identified and they merge. New prop-
erties (position, RV, intensity) are attributed to the
new granule, whose size is the sum of their two par-
ents’ sizes.

3. Update of the granule list and number n and computation
of the surface coverage.

4. Addition of new granules until the hemisphere is com-
pletely covered. As in the initialization step, they are
generated using the prescribed size distribution, but the
procedure takes the size distribution of existing granules
into account so that the total size distribution at each
step follows as closely as possible the prescribed size
distribution.

5. Computation of RV and intensity for each granule at this
time step (see next section).
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Fig. 2. Upper panel: intensity map from the convection simulation of
Rieutord et al. (2002). Lower panel: segmentation showing identified
granules.

2.4. Velocity and intensity parameters

2.4.1. Velocity parameters

In this section, we identify granules on maps produced by a hy-
drodynamical (HD) simulation (horizontal and vertical veloci-
ties, intensities) and derive their properties, which are used as
inputs to our simulation. The RV contribution of granules is due
to both horizontal and vertical velocity fields. Depending on the
granule position on the disk, they contribute differently. The ve-
locity is weighted with the local intensity. The vertical velocities
result from the contributions of the velocity in the granular cells
(upward flows) and in intergranular lanes (downward flows), of
opposite signs. We used the convection simulation described in
Rieutord et al. (2002) to extract granule contours and their ve-
locity properties (Fig. 2). Two hundred maps of the velocity field
(in the three directions) and intensity produced with a time step
of 20 s were used for that purpose. Each image covers a field of
view of 30 Mm × 30 Mm. We describe in Appendix A how the
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Fig. 3. Upper left panel: mean granule horizontal velocities (in one di-
rection) over the cells V̄h versus the granule sizes. The dashed line in-
dicates the law considered in this paper. Upper right panel: same for
the vertical velocity V̄v. Lower left panel: dispersion of the mean gran-
ule horizontal velocities (in one direction) over the cells V̄h in each size
bin. The dashed line indicates the law considered in this paper. Lower
right panel: same for the vertical velocity V̄v. The justification for the
chosen law is described in Appendix A.

velocity properties of granules, shown in Fig. 3, are extracted.
HD simulations do not include the effect of magnetic fields on
the velocity fields, therefore the present parameters do not take
the presence of magnetic fields into account even in the quiet
Sun. The variation of the RV due to granulation affecting activ-
ity during the cycle is explored in Sect. 5.1.1.

2.4.2. Intensity parameters

Hirzberger et al. (1997) derived laws describing the evolution
of the intensity inside granular cells and intergranular lanes, de-
fined respectively as parts of the cell with intensity above and
below average. We therefore extract the size of the intergran-
ular lanes versus the granule size from the convection simula-
tion. For each granule in our simulation, we first compute the
area corresponding to the granular cell and the area correspond-
ing to the intergranular lane using the law describing the half
width of the intergranules δ = 0.22 + 0.02S for granules larger
than 0.16 Mm2, otherwise δ is chosen to be equal to the ra-
dius of the granular cell. We then attribute an intensity to each
area according to Hirzberger et al. (1997). The intensity in an
intergranular lane pixel is equal to 0.98 to which a random
dispersion following a normal law is added, with a dispersion
of 0.1(1 − S/S max). The intensity in a granular cell pixel is a
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size-dependant intensity to which a random dispersion follow-
ing a normal law is added, with a dispersion of 0.2(1− S/S max).
The size dependent intensity is chosen to be 1.03 for diameters d
larger than 1.45 Mm and 0.95+0.055d for smaller cells. The two
intensities are then weighted by the area covered by the bright
(in granular cells) and dark areas (in intergranular lanes), to pro-
vide an intensity for that granule. A ponderation with a limb-
darkening function is used in the full-disk simulations (Sect. 3.2
and later). As in Borgniet et al. (2015) we used the non-linear
limb-darkening law from Claret & Hauschildt (2003), where the
limb-darkening coefficients are the bolometric coefficients taken
from ATLAS models (see Claret & Hauschildt 2003).

2.5. Simulation parameters

The time step must be small enough to produce realistic time
series, hence it must be lower than the granule minimum life-
time. We found that a time step of 30 s gave good results (i.e.,
no artifact in the lifetime distribution). We have also compared
these values with smaller time steps, 5 and 1 s, with almost no
difference (see Sect. 3.1.1).

With such a small time step, long time-series simulations
are time consuming. We have therefore performed two types of
simulations:

– Small field-of-view simulations: we performed several simu-
lations covering the small field of view (30 Mm × 30 Mm)
used in the convection simulation of Rieutord et al. (2002)
for two purposes. First, we wish to estimate the impact of the
projection effects and of some parameters on the results, and
to compare different realizations. Second, we wish to make a
comparison with the full convection simulation, covering 8 h
with a few gaps. These simulations are analyzed in Sect. 3.1.

– Full-disk simulations: we also performed simulations over
the full hemisphere, corresponding to realistic conditions of
stars. These simulations are analyzed in Sect. 3.2.

3. Granulation induced time series

3.1. Small field-of-view simulations

3.1.1. Time series analysis

In this section, we study time series obtained for the small field
of view over a 69-day period (200 000 time steps of 30 s).
Figure 4 shows the size and lifetime distributions for a single
realization of the time series. The size distribution shows a small
deficit of very small granules compared to the exponential law,
but as is seen in the next section the impact of this on the fi-
nal RV is not significant. The final distribution corresponds to
a size slightly larger than the typical size of 1.01 Mm2 corre-
sponding to the input size distribution because of the evolution
of granules. We find that the lifetime distribution corresponds to
a typical lifetime of about three minutes. This is smaller than
the six-minute lifetimes of Hirzberger et al. (1999), but it is not
far from the results of Title et al. (1989) who obtained a typi-
cal lifetime of 2.53 min and from the results from the simulation
of Beeck et al. (2013) with lifetimes between 2.6 and 4.1 min
for example. The contribution of small granules from observa-
tions is very dependent on the quality of the observations. The
impact of the size and lifetime distribution is discussed in the
next section. The rms RV is 17.7 m/s and the rms I is 3125 ppm.
Given the surface covered by the small field of view compared
to the whole hemisphere, we could extrapolate that the full-disk
rms RV should be on the order of 0.3 m/s. However, this final
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Fig. 4. Upper panel: snapshot size distribution of granules in the small
field-of-view simulation #1 (solid line). The dashed line shows an ex-
ponential distribution with a typical size 1.01 Mm2 and the dot-dashed
line an exponential distribution with a typical size of 1.29 Mm2. Lower
panel: lifetime distribution of granules in the small field-of-view simu-
lation #1 (solid line). The dashed line shows an exponential distribution
with a typical scale of 3 min and the dot-dashed line an exponential
distribution with a typical scale of 4.67 min.

rms could be different if the projection effects are important (see
Sect. 3.1.2).

Ten realizations of such time series have been performed.
The power spectrum of these time series is shown in Fig. 5
(upper panel), showing that the impact of the dispersion on the
power versus frequency is small at large frequencies. At low fre-
quencies, the impact is naturally larger (the smoothing3 is made
on a few points), but we note that these test simulations are per-
formed over a short period of time. Figure 5 also shows two ex-
amples of unsmoothed power spectra, illustrating that the peaks
that are visible in a given power spectrum are not indicative of a
significant power at these precise periods, but instead are due to
the specific realization.

3.1.2. Impact of projection effects

In a second step, we considered different positions of the small
field of view on the disk to study the impact of projection effects.

3 The smoothing consists of averaging over bins with a constant size
in Log(frequency) of ∼0.083.
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Fig. 5. Upper panel: smoothed power spectra (on a log scale) for ten
realizations of the small field of view at disk center. Middle panel: orig-
inal power spectrum (on a linear scale) for two of these realizations.
Lower panel: same on a logarithmic scale.

We note that the field of view always contains the same num-
ber of granules, but its projected surface becomes smaller as the
angle α with the line of sight increases (α = 0 at disk center).
Again, for each position, ten realizations are performed. The rms
RV for each time series are shown in Fig. 6. The rms RV signif-
icantly increases toward the edge, suggesting that the rms RV
for the full disk would be larger than the 0.3 m/s derived above.
This increase occurs because the horizontal velocity amplitude
in a granule is larger than the vertical velocities and because at
the limb the line-of-sight velocities are dominated by the hori-
zontal flows. Depending on α, the rms over the ten realizations
is between 0.1 and 0.3 m/s. The impact of the projection effect
on the intensity time series is, on the contrary, very small (and
within the variation from one time series to the next), justify-
ing the approximation made by Seleznyov et al. (2011) for this
parameter, while it is crucial for a realistic RV simulation.

3.1.3. Impact of the different parameters

In this section, we test the impact of several of our parameters
on the rms and power spectra.
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Fig. 6. Rms RV versus the position of the small field of view on the disk
(α = 0 at disk center).
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Fig. 7. Upper panel: smoothed power spectra for three categories of
granule sizes in the small field-of-view simulation: granules smaller
than 0.5 Mm2 (stars), granules between 0.5 and 1.5 Mm2 (diamonds),
granules larger than 1.5 Mm2 (triangles). The solid line indicates the
total power. Lower panel: same for the full-disk simulation.

Figure 7 shows the smoothed power spectra for three cate-
gories of granules: below 0.5 Mm2, between 0.5 and 1.5 Mm2,
and above 1.5 Mm2. We find that, at least at disk center, large
granules dominate the power spectrum.
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Fig. 8. Upper panel: zoom on a small field-of-view RV time series re-
alized with a time step of 30 s. Middle panel: zoom on a small field-
of-view RV time series realized with a time step of 5 s. Lower panel:
extraction of 1 point every 30 s of the realization made with a time step
of 5 s.

We also investigate the impact of the time step used in the
simulation. A zoom on our reference simulation is shown in
Fig. 8 and is compared with a simulation made with a five-
second time step. The variations are different since they corre-
spond to different realizations of the granules, but we find that
the variations are similar, and that the rms below 30 s is quite
small. The rms RV are similar. Figure 9 shows the smoothed
power spectra corresponding to these two simulations. For com-
parison purposes, we also interpolated the first series to get 5-s
time steps and we extracted a 30-s time-step series from the 5-s
time-step simulation. We find that the power spectra are very
similar. The power obtained for the full 5-s time series is slightly
lower than the other; when including more points at high fre-
quency with lower level, the normalization of the power due to
the Parseval’s Theorem becomes slightly different, as the sum of
the power multiplied by the frequency bin is equal to the vari-
ance of the signal (which is constant). This shows that we can
safely interpolate the 30-s time-step series to smaller time steps
if necessary.

We now consider the evolution of the granules. In this paper,
we took the merging and fragmenting of granules into account
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Fig. 9. Smoothed power spectra for several small field-of-view time
series (disk center): simulation made with a 30-s time step for
200 000 steps (orange stars), the same simulation extrapolated every 5 s
(blue crosses), simulation made with a 5-s time step for 1 200 000 steps
(green squares), and extraction of 1 point every 6 points of this time
series (red triangles).

Table 1. Small field-of-view rms RV.

F/M Evol rms RV rms RV at 1d rms RV at 1h
(m/s) (m/s) (m/s)

yes yes 17.70 1.30 7.01
no yes 17.39 1.60 7.50
no no 16.80 1.57 7.20
yes no 17.29 1.46 6.83
– – 17.72 0.34 1.60

Notes. Rms RV are computed at disk center for different parameters.
The last line corresponds to a noise simulation. F/M indicates whether
fragmentation and merging have been taken into account (values de-
scribed in Sect. 2.2.3). Evol indicates that the evolution of granules has
been taken into account (growing described in Sect. 2.2.3). Rms RV are
computed on each time series in three cases: full time series, after av-
eraging over 1-day time ranges (1d) and after averaging over 1-h time
ranges (1h).

as well as their size evolution during their lifetime. The impact
of this assumption is shown in Table 1. We find that the impact
on the rms RV is very small, although there is a trend for slightly
smaller rms RV when these effects are removed. Furthermore,
removing the fragmenting and merging processes leads to a rel-
atively larger rms at 1 h and 1 day, so this effect does not add
any significant power at long timescales due to memory effects.
Overall, these effects are very small. A comparison is also made
with a white noise time series with similar rms, showing that the
power at long timescales is significantly above what would be
expected from white noise.

In Table 2, we summarize the impact of several granule prop-
erties on the results. We show that the assumption made in 2.4.1
for the vertical velocities in small granules is fully justified as
the impact is very small (simulation 2). When increasing the
size or the lifetime of granules, the rms are not modified sig-
nificantly; however, the power at lower frequency (for example
at 1 h or 1 day) increases.

3.1.4. Comparison with the convection simulation

In this section, we compare the RV time series obtained for the
small field of view at disk center with that derived from the
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Table 2. Small field-of-view rms RV.

S lim λS τ Dist S rms RV rms RV at 1d rms RV at 1h
(Mm) (m/s) (m/s) (m/s)
0 ×1 ×1 norm 17.70 1.30 7.01
2 ×1 ×1 norm 17.92 1.40 7.15
0 ×2 ×1 norm 17.58 1.64 7.43
0 ×1 ×2 norm 18.00 2.46 10.03
0 ×1 ×1 truncated 17.72 1.44 7.04

Notes. Rms RV are computed at disk center for different parameters. S lim indicates the minimum size above which the rms V̄v is considered to be
constant (see discussion in Sect. 2.4.1). λS characterizes the size distribution of granules: when multiplied by two, granules are on average twice
as large, but their lifetime follows the same law versus S as in the default simulation. Similarly, τ indicates that the lifetimes are the default value
or multiplied by 2. Finally, the size distribution is either the default value or truncated at small sizes (see Sect. 3.1.4 for discussion). The rms RV
are computed as in Table 1.

convection simulation made by Rieutord et al. (2002). We used
the full time series of the convection simulation, covering a little
more than eight hours, with a few gaps. Our small field-of-view
simulation has been obtained with 20-s time steps for a more
direct comparison.

The results are shown in Fig. 10. The rms RV is smaller
in the convection simulation (11.3 m/s) than in our simulation
(16.8 m/s) by about one-third. The uncertainties on our rms
RV due to the realization are much smaller than this difference
(about 0.1 m/s, see Sect. 3.1.1). It should also be noted that part
of the convection simulation signal is also due to oscillations,
which are not filtered out, so that the contribution of granules
might be slightly smaller. We note that the oscillations should
not significantly affect our choice of parameters because they are
filtered out in Appendix A where we derive the velocities from
the HD simulation. Finally, the size distribution is slightly differ-
ent in both cases, but as is shown in Sect. 3.1.3, the contribution
of small granules to the total power is small. Table 2 shows the
results of a test in which we have truncated the size distribution
below 0.5 Mm2 by imposing a constant number of granules be-
low that size: we found a very small impact. The difference in
amplitude could be due to the HD simulation not being as turbu-
lent as the true Sun.

3.2. Full-disk time series and periodograms

3.2.1. Time series

We have implemented a simulation of granules covering a full
hemisphere over 12.5 years (to match solar cycle 23 and to be
able to use the activity simulation over the same period), with
time step of 30 s. We note that the properties derived from the
HD simulation do not take the impact of magnetic field on gran-
ulation into account, but see Sect. 5.1.1 for a discussion. The re-
sulting rms RV over the time series is 0.80 m/s and the rms pho-
tometry is 67 ppm. As pointed out in the introduction, our two
time series in RV and photometry are uncorrelated. This seems to
be different from what has been obtained by Cegla et al. (2015)
using a completely different approach. Our interpretation is that
with a realistic simulation involving on the order of 106 gran-
ules, although larger granules tend to have larger velocity fields
and intensity contrasts, such a relationship between granule size
and velocity and photometry properties is noisy: the sum of the
contributions from all those granules therefore destroys any such
correlation.

Figure 11 shows a zoom on this RV time series for a 1-day
and 1-h period, respectively (two upper panels). We observe
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Fig. 10. First panel: RV time series for our small field-of-view sim-
ulation (black) and the convection simulation of Rieutord et al. (2002)
(red). Second panel: zoom on the previous plot for a coverage of 5000 s.
Third panel: smoothed power spectra for both time series. Fourth panel:
same for the unsmoothed power spectra.

some variations at timescales significantly longer than a gran-
ule’s typical lifetime (a few minutes). This figure also shows 1-h
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Fig. 11. First panel: 1-day zoom on a time series of granulation RV over
the whole hemisphere, with a time step of 30 s. Second panel: same for
a 1-h zoom. Third panel: 1-h zoom over a time series performed with
a 5-s time step. Fourth panel: same for a 1-s time step.

zooms over similar simulations performed with smaller time
steps. Our 30-s time step is indeed smaller than granule life-
times, but not by a large factor: these two simulations therefore
allow us to check the impact of this choice. The difference in rms
RV and photometry is very small, on the order of 0.01–0.02 m/s
and 1 ppm, respectively. The results for the three time steps are
shown in Table 3.

We have also computed the RV time series for the dif-
ferent categories of granules. Granules smaller than 0.5 Mm2

(covering 5.4% of the surface) only contribute to 2.4% of the
variance. Granules in the range 0.5–1.5 Mm2 (covering 29.4%
of the surface) contribute to 28% of the variance. Granules
larger than 1.5 Mm2 (covering 65.2% of the surface) contribute
to 69.6% of the variance; therefore, there is a real effect of
size: large granules contribute more than small granules. Two-
thirds of the variation is due to granules larger than 1.5 Mm2.

Table 3. Full-disk rms RV.

Time cadence Duration No. of points rms RV
(s) (days) (m/s)

30 4562 1.314e7 0.80
5 100 1.728e6 0.79
1 20 1.728e6 0.79
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Fig. 12. Power spectrum of the RV granulation time series, for the full
hemisphere and 30-s time step. The smoothed power spectrum is su-
perimposed (red crosses), as is the fit by the function described in
Sect. 3.2.2 (solid red line).

The uncertainties discussed in Appendix A for small granule
properties therefore have a very small impact on the global time
series. The power spectra for the different categories are shown
in Fig. 7.

3.2.2. Power spectra

The periodograms for the RV are shown in Fig. 12. Before
smoothing, there is a very large dispersion in power at all scales,
the position of the numerous peak depending on the realization.
Figure 12 also shows a smoothed periodogram. The smoothed
curves can be fitted with a function similar to that used by
Harvey (1984) and Palle et al. (1995),

P(ν) =
4σ2τ

1 + (2πντ)2
, (1)

with τ the timescale and σ related to the amplitude. A fit of
the timescale gives 441 s (very similar to photometry), i.e.,
about 7.3 min, which is slightly smaller than the 472 s derived by
Harvey (1984) and used by Palle et al. (1995), but on the same
order of magnitude. The amplitude closely matches the ampli-
tude observed by Palle 1995. The power starts to decrease at a
few 10−4 Hz, which is compatible with Seleznyov et al. (2011),
who found ∼200 µHz for a 5.2 min granule lifetime. These re-
sults show that our approach is consistent with previous works.

3.2.3. Sampling issues: global dependence

The rms RV over the whole time span is 0.80 m/s, which is large
compared to the instrumental noise expected from future instru-
ments (below 0.1 m/s). It is therefore interesting to study how
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Fig. 13. Upper panel: rms of the smoothed granulation RV time series
(red curve) versus scale. The rms RV of the corresponding residuals
are in green. The horizontal dot-dashed line indicates a typical level
of the noise induced by future instruments. Middle panel: rms RV of
the granulation versus observing time during one night for a different
number of observing periods n during each night (1: solid line; 2: dotted
line; 3: dashed line; 4: dot-dashed line; 5: dot-dot-dot-dashed line). The
exposure time is the observing time divided by n. Lower panel: same for
the rms RV of the granulation versus the number of nights over which
the signal is averaged, in the case of a 26-min observing time per night.

this rms decreases as the time series are smoothed out. We pro-
ceed as follows:

– For a given timescale, we smooth the time series using a run-
ning mean.

– We compute the rms RV of this smoothed time series.
– We compute the residuals (RV times series minus the

smoothed time series) and their rms RV for that scale: this
shows the rms RV due to the signal at periods smaller than
the considered scale.

Figure 13 shows the results for granulation. With a 1-h smooth-
ing, the rms RV is still ∼0.4 m/s (which is a much slower de-
crease than would be observed for white noise): this is com-
parable to the noise of current instruments or slightly below,
but it is significantly higher than the noise of future instruments
(0.1 m/s or less). It would require more than one night to reach
a level of 0.1 m/s. This result also shows that averaging the

RV signal due to granulation over timescales on the order of the
cell lifetime (5–10 min) is not sufficient to decrease the rms sig-
nificantly, as the rms RV decreases from 0.8 to 0.7 m/s in ten
minutes: it is necessary to average the RV over a much longer
timescale to observe a significant reduction of the rms RV.

Dumusque et al. (2011b) claimed that averaging granulation
over 30 min averages out4: our results show that at this timescale,
the rms RV is still on the order of 0.5 m/s for granulation
alone.

3.2.4. Short-term temporal sampling and observing strategy

Since it is difficult to average out granulation, it is important
to study the best observational strategy. Such an attempt has
been performed by Dumusque et al. (2011b) for a simulation
of several stars, using laws such as Harvey (1984) for granula-
tion, mesogranulation, and supergranulation. Here, we consider
a given observing time available during each 10-h night. This
observing time is spread over the night in n observing periods
(n between 1 and 5), providing an exposure time equal to the
observing time divided by n.

The computations are made for a 1-year time series extracted
from the whole time series and the results are shown in Fig. 13.
Each curve in the middle panel corresponds to one strategy (i.e.,
a value of n). The best strategy is obtained when the observing
time is spread over five observing periods, while the worst result
is obtained for two observing periods. This is mostly true when
little observing time is available: the trend for longer observing
times is that the rms RV are very close to each other for the dif-
ferent strategies. After a 1-h averaging, the rms RV are, for ex-
ample, in the range 0.3-0.4 m/s. They reach values below 0.2 m/s
after at least eight hours of averaging.

We have also considered the case in which only a fraction of
the given observing time is available (duty cycle) with measure-
ments taken at random times during each observing period. The
impact is very small, down to the 14% efficiency tested here: the
dominant factor is therefore the duration of the observation over
which the RV is averaged.

Finally, we consider the averaging over several nights. The
result is shown in the lower panel of Fig. 13 in the case of 26 min
of observing time per night. The trends are similar, with a rms
RV reaching values below 0.1 m/s for the best strategy after
a 6-night average. The best results are also obtained for a large
number of observations during the night.

4. Supergranulation induced simulated time series

In this section, we perform a similar simulation for supergran-
ules, as their contribution might be comparable to that of gran-
ules, although on different typical timescales. They last longer
(typically 1.8 days instead of a few minutes), their size is much
larger but they have much smaller velocity fields (hundreds of
m/s instead of a few km s−1, but see the review of Rieutord &
Rincon 2010).

4 They do not quantify this reduction as they provide rms RV for all
processes and not granulation alone: a direct comparison is not possible
as we consider different stars, but for α Cen A, for example, which
is a G2V-type star with an original rms RV in their synthetic series
of 1.89 m/s – but only 0.4 m/s due to granulation – they find that for
an averaging of 30 min they get a rms RV around 1.2 m/s for a sin-
gle observation and around 0.8 m/s for three observations separated
by 2 h.
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4.1. Simulation parameters

The principle and algorithm of the simulation are similar to the
granule simulation described in Sect. 2, i.e., we consider a col-
lection of supergranules covering all of the visible hemisphere.
Each supergranule contributes to the total RV and intensity. We
adapt the parameters as follows:

– Size distribution. Several authors have derived the size distri-
bution of supergranules (Srikanth et al. 2000; Meunier et al.
2007c). Here we use the size distribution of Meunier et al.
(2007c). For this simulation, we have fitted their cell radius
distribution with an asymmetric law, with a mean of 9.392
Mm, a dispersion of 8.01 Mm, and an asymmetry factor
of 2.55. The minimum and maximum radii are respectively 3
and 40 Mm.

– Lifetimes. According to Del Moro (2004) supergranule
lifetimes follow an exponential law with a typical scale
of 22 h. However, the authors have also shown that su-
pergranule lifetimes depend on their size. Here we use
the following laws, derived from their analysis. We gen-
erate a typical timescale λτ for each diameter D, defined
by −489+88.9D min for radius below 14 Mm, and 33 h for
cells with a larger radius. For a given size, we then gener-
ate a timescale by using an exponential law that uses the
proper λτ. We impose a minimum and maximum lifetime
of 500 min (16.6 h) and 7000 min (117 h), respectively.

– Evolution of supergranules: size, appearance, and disap-
pearance. These parameters are not well constrained. In
this paper we consider that supergranules appear or die in
a similar way to granules, and we use the same percent-
ages of the various categories and a typical radius threshold
of 15 Mm between merging and fragmentation. No growing
is considered.

– Horizontal velocities. The contribution of the horizontal
flows inside a given supergranule to the total RV is unfor-
tunately not well constrained in the literature. Meunier et al.
(2007c) showed that the rms inside a cell was larger for the
largest cells, with a typical amplitude of ∼33 m/s for the
largest cells, and ∼6 m/s for the smallest. They have also
estimated the typical radial (horizontal) flows inside a cell
(average horizontal velocity versus the position in the cell)
and found typical velocities of about 200 m/s, with larger
velocities for the largest cells. For our simulation we want
to know the horizontal velocity (in one direction) averaged
over the cell as a function of the size. One way to estimate at
least an order of magnitude would be to scale the supergran-
ule behavior from the granule laws. This is risky because,
for example, the rms velocity inside a granule is about two
times smaller than the typical horizontal flow, while in su-
pergranules it is one order of magnitude smaller. Keeping
this in mind, such a scaling based on the horizontal veloci-
ties rms provides 6 m/s for the largest cells and 31 m/s for
the smallest cells. A scaling based on the typical horizontal
velocities gives values that are four times larger. The uncer-
tainty is therefore very large (a factor of 4 on the amplitude).
In this paper we build simulations using the lower bound val-
ues and provide the upper limit by multiplying the RV by 4.
We expect the true values to be between these two extrema.

– Vertical velocities. Vertical velocities in supergranules are
much weaker than horizontal flows. We scale them to the
horizontal flows according to Hathaway et al. (2002). The ra-
tio between the two components depends on the size. We use
the ratio 10−0.5−0.373LogR.

– Intensities. Meunier et al. (2007b) have shown that intensity
variations inside supergranules, after eliminating the mag-
netic field contribution, is small and corresponds to a temper-
ature variation on the order of 1 K between the centers of the
cells. Furthermore, no significant variations with the cell size
could be derived. Hence in our simulation we consider a con-
stant intensity. Taking into account the variations due to the
network would be possible, using the work of Meunier et al.
(2007a,b) providing relationships between the magnetic field
amplitude, the position in the supergranule cells for various
size ranges, and intensity. As this corresponds to the network
contribution and since we also model the activity contribu-
tion using a completely different modeling (Borgniet et al.
2015), we do not consider this variation here. The velocities
are, however, weighted by the same center-to-limb darkening
as for granulation (Claret & Hauschildt 2003).

The simulation is performed with a time step of 30 s to make
the comparison with granulation easier (although a larger time
step, typically 250 s, would be enough to contain all the in-
formation, given the typical lifetimes) over 12.5 years (length
of solar cycle 23) to be consistent with our previous simulation
and allows us to analyze the RV time series over the same long
timescales.

4.2. Times series

An example of the RV variations due to supergranulation is
shown in Fig. 14 on two different timescales (50 days and 1 day).
Large variations on the order of 1 m/s and 0.3 m/s are observed at
these timescales. When using the lower values of the estimated
velocity field and taking into account fragmentation and merg-
ing as for granules, we obtain a rms RV of 0.28 m/s over our
whole time series. The upper limit would correspond to a rms
RV of 1.12 m/s. These values are therefore in the same range as
the granule rms RV (0.8 m/s). The true value is probably between
these extremes.

Palle et al. (1995) have fitted a 1.9 m/s rms RV to their
data, significantly above our upper limit. However, as pointed
out above, the fact that they fix the timescale constrains the
amplitude, and therefore this amplitude is not entirely reliable.
This value is much higher than our upper limit, and we consider
it unlikely that solar supergranule properties allow for such a
large rms.

We have tested the impact of the evolution of supergranules,
and found very little difference when merging and fragmentation
are suppressed; the impact is therefore extremely small com-
pared to our uncertainty on the velocity field.

4.3. Power spectra

Figure 15 shows the smoothed power spectrum due to super-
granulation (minimum value) superimposed on the granulation
spectrum. The fit by the function defined in Sect. 3.2.2 gives a
timescale of 33 h. The amplitude is smaller than that derived
by Palle et al. (1995), as already derived from the rms RV in
Sect. 4.2.

4.4. Sampling issues

As we did for granulation, we also studied the variation of the
rms RV when smoothing the supergranulation time series. This
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Fig. 14. Upper panel: 50-day time series of supergranulation RV, for the
low velocity field assumption. Lower panel: the same over 1 day.

is shown in Fig. 16. The two left columns show supergranulation
alone (with our lower and higher limit). We find that smoothing
the data over a realistic duration during the night does not de-
crease the rms RV significantly. Only a smoothing over several
nights would allow that, and even a 5-day smoothing still gives
a large rms RV (0.17 m/s for the minimum values). The last two
columns show the same result when superimposing the granu-
lation and the supergranulation RV time series. With the lower
limit of supergranulation the rms are dominated by granulation,
while they are strongly affected by supergranulation when using
the higher limit.

The strategy in terms of number of observing periods during
the night for a given observing time is similar for supergranu-
lation and granulation alone, the rms RV is decreased more ef-
ficiently by splitting the available observing time into several
periods during the night (the largest number of periods we tested
was 5). When superimposing the two components, the best strat-
egy seems to be 4 periods, especially when using the high limit
for supergranulation. This strategy does not greatly affect the av-
erage over several nights. The rms strongly decreases with an in-
creasing number of nights, reaching 0.15 m/s for 10 nights, with
the lower level of supergranulation alone. For 10 nights, when
combining the two signals, the rms is between 0.1 and 0.5 m/s,
depending on the supergranulation level.

10-8 10-6 10-4 10-2

Frequency (Hz)

10-4

10-2

100

102

104

106

108

R
V

 p
o

w
e

r 
(m

/s
)2

/H
z

Fig. 15. Smoothed power spectrum of the RV granulation time series,
for the full hemisphere and 30-s time steps (black stars), fitted by the
Harvey function (black solid line). The power spectrum for supergran-
ulation (minimum values) is shown with orange diamonds, the activity
signal with red triangles, and mesogranulaion derived from supergranu-
lation scaled to the Palle et al. (1995) parameters with blue squares. The
green solid line corresponds to the sum of the three contributions (gran-
ulation, minimum supergranulation, activity) and the pink solid line is
the same, but includes the maximum supergranulation. The green and
pink dashed lines include mesogranulation. The black dotted line in-
dicates the level fitted by Palle et al. (1995). The activity signal is cut
above 30 min due to our time step.

5. Combined time series including granulation,

supergranulation, and other contributions

5.1. Magnetic activity

It is interesting to add our granulation and supergranulation time
series to the RV variations due to magnetic activity as modeled
by Borgniet et al. (2015), since the contribution to the RV sig-
nal at large timescales is important, as shown by Lagrange et al.
(2010) and Meunier et al. (2010a). Therefore, we combine the
three time series together to study the total impact on the sig-
nal. As we know that magnetic activity affects granulation (as
observed by the variable convective blueshift over the cycle),
the velocity field associated with each granule is also expected
to change when the granule is localized in an active region; we
also estimate the impact of magnetic activity on the granulation
time series themselves.

5.1.1. Approaches

We use a simulation of the RV due to solar activity derived
by Borgniet et al. (2015) for the Sun. The contributions are
due to spots, plages, and attenuation of convection in plages
(Meunier et al. 2010b); however, these simulations were per-
formed using a 1-day time step. In this paper we concen-
trate on small timescales, therefore several modifications have
been introduced: a smaller time step is possible (in the present
case 30 min), a small growing phase for spots and plages is intro-
duced, the RV are computed directly from the list of structures
without computing the spectra, and the RV results from the com-
bination of the contributions from all the structures.

This time series is also used to build a corrected granula-
tion time series Vcor. The attenuation of the convective blueshift
taken into account in the activity simulation corresponds to an
attenuation of two-thirds of the granulation signal over a certain
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Fig. 16. First column: same as Fig. 13, for the lower limit of supergranulation. The exposure time is the observing time divided by n. Second column:
same as Fig. 13, for the higher limit of supergranulation. Third column: same as Fig. 13, for the lower limit of supergranulation superimposed on
granulation. Fourth column: same as Fig. 13, for the higher limit of supergranulation superimposed on granulation.

fraction f of the surface (in plages and network). We therefore
reduce the dispersion of the RV granulation time series V de-
scribed in Sect. 3.2 according to this amplitude and the filling
factor at any given time during the cycle:

Vcor = (1 − f )V + f V/3.

The resulting corrected granulation time series has a rms RV
of 0.79 m/s over the whole time span, which is not significantly
different from 0.8 m/s. The impact of convection attenuation, al-
though very important on the global RV signal, is therefore very
small on the small-scale dispersion.

We note that this simple computation does not take the rota-
tion modulation into account. We only estimate the mean impact
on the granulation RV dispersion due to the fact that a certain
fraction of the granules are affected by the presence of magnetic
activity. Indeed, we do not associate each granule directly with
an active region, therefore the possible variability of the rms de-
pending on the position of the affected granules on the disk is not
accounted for. As the average effect is very small, we consider
that a more precise computation would not significantly affect
the corrected rms RV.

5.1.2. Power spectra

Figure 15 shows the power spectra due to activity superimposed
on the granulation and supergranulation RV. It shows that the

function used to fit the granulation or the supergranulation power
is not adapted to the activity RV power spectrum (presence of
the rotational modulation, different slope at medium frequen-
cies). The amplitude of supergranulation and activity component
is also smaller than that derived by Palle et al. (1995), while the
granulation component is in very good agreement, perhaps be-
cause the observations cannot reliably constrain the parameters
of activity and supergranulation given the short frequency do-
mains available.

When considering the global power, compared to the obser-
vations of Palle et al. (1995) there is a lack of power typically in
the range 10−6−10−5 Hz, corresponding to the mesoscale flows,
which are not modeled in our work. It is not straightforward to
model mesoscale flows as we modeled granulation and super-
granulation because the origin is different and cells cannot be de-
fined as precisely. To implement a realistic model of mesoscale
flows is therefore outside the scope of the present paper. A sim-
ple approach is adopted in the next section.

5.2. Mesoscale flows

We can however make a simple estimate of the impact of the
presence of such an additionnal component by scaling the su-
pergranulation time series to mesoscale flow properties, both
in amplitude and temporal scale. The amplitude is changed
to a 1.6 m/s rms (Palle et al. 1995) and the temporal scaling
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Fig. 17. Same as Fig. 13, for the lower limit of supergranulation added
to granulation and a simple estimate of mesoscale flows. The exposure
time is the observing time divided by n.

to τ = 1e4 s (Harvey 1984). The results are shown in Fig. 17.
The strategy is not significantly affected, although the rms RV af-
ter averaging is even more difficult to reduce. For example,
with the lower limit for supergranulation, the rms RV decreases
from 1.83 m/s to 1.6 m/s only after a 1-h averaging, and 1 m/s
after 10 h.

6. Impact on planet detectability

6.1. Sampling and method

In this section we investigate the impact of the granulation and
supergranulation RV on planet detectability in detail. For sim-
plicity, computations are made using a median amplitude for su-
pergranulation, i.e., 2.5 times the lower amplitude (see Sect. 4.1).
We complete this analysis by considering the sum of granulation,
supergranulation, and mesoscale flows, magnetic activity alone,
and the sum of the four components.

We consider the temporal samplings already used by
Lagrange et al. (2010) and Meunier et al. (2010a). We intro-
duce a four-month gap every year to simulate the impossibility
of observing a given star all year. Then we consider four sam-
plings: 1 measurement every day (1-day sampling, 2976 points

over 12.5 years), every 4 days (4-day sampling, 732 points),
every 8 days (8-day sampling, 372 points), or every 20 days
(20-day sampling, 148 points). In addition, we also test a ran-
dom sampling: a given number (20 or 40) of observing nights is
considered each year and randomly allocated over eight months,
which leads to 240- and 480-point time series covering 12 years.

For each of these samplings, the measurement is computed
as follows. We choose one observing duration (30 min, 1 h,
or 2 h) and we split it into five observing periods covering the
whole night, as this was the best configuration derived in the
previous section. The exposure time of each visit is then the total
observing duration divided by five. The average over these five
visits is then computed. Additionally, for the 8- and 20-day sam-
plings, we also consider the average of similar measurements
over 2 nights and 5 nights.

In each case, the new time series RV, hereafter RVstell, is an-
alyzed as follows:

– In Sect. 6.2, we compute periodograms of the RVstell. We
compare them to the periodogram of RVpla due to a 1 MEarth
planet at different semimajor axes and therefore different
periods and for different phases and to the periodogram of
RVstell + RVpla. Periodogram are computed using a Lomb-
Scargle method and the power is in arbitrary units: the pow-
ers corresponding to the same sampling can be compared to
each other.

– In Sect. 6.3, we compute detection limits for the same planet
periods. Detection limits are obtained using the LPA method
(Meunier et al. 2012), a local method which takes the power
into account in a window [0.75P–1.25P] where P is the
considered period.

6.2. Periodograms

Figure 18 shows an example of periodograms for the granulation
and supergranulation RV and the 1-day sampling. In both cases
a forest of peaks is present. Some of them can be quite high:
see for example the peak just above a period of 100 days in the
granulation periodogram. However, if we split each time series
into two independant series, although the envelope of the peaks
is similar from one series to the other, the exact positions of the
largest peaks are completely different. It is therefore important
to be careful of this effect when analyzing data as these RV do
produce large peaks.

We now add a 1 MEarth planet to each series. Six periods
are considered in the following: 3 d, 12 d, 50 d, 100 d, 300 d,
and 480 d (the last corresponds to a planet at 1.2 AU as in our
previous work). With these samplings it is increasingly more dif-
ficult to obtain a planet peak well above the granulation or su-
pergranulation power.

We illustrate this with the 8-day sampling as it shows all
configurations. Figure 19 (Fig. 20, respectively) shows the pe-
riodogram for the granulation (supergranulation) RVstell alone,
for the planet RVpla alone (with an arbitrary phase) and for the
combined RVstell + RVpla. For the granulation simulation, the
planet peak is always distinguishable, although for the largest
periods (300 and 480 days) its amplitude is similar to low period
peaks in the granulation forest. Conversely, for supergranulation,
for which the forest of peaks tends to extend toward larger pe-
riods, the planet peak is above the other peaks for periods up
to 50 days only, while for the three largest periods the planet
peak cannot be distinguished from the supergranulation power at
all. Such a level of supergranulation RV should therefore prevent
the detection of Earth mass planets in the habitable zone around
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Fig. 18. Upper panels: periodogram of the granulation (left) and super-
granulation with a level 2.5 times the minimum (right) time series for
the 1-day sampling. The observation duration is 30 min split into 5 ob-
serving periods over one night. Middle panels: the same for half of the
time series (1 point out of 2 is used, corresponding to a 2-day sampling).
Bottom panels: the same for the other half.

solar-type stars on this 8-day sampling, even with no magnetic
activity because it dominates the signal.

Figures 19 and 20 also show the usual false alarm proba-
bility (i.e., the probability that a peak of that amplitude is due
to noise; hereafter fap) for each time series (granulation for su-
pergranulation added to the planetary RV), for 1% and 0.1%
probabilities. The planet peak is above the fap when the planet
period is below 50 days (below 12 days, respectively) for gran-
ulation (supergranulation), while it is below the fap for periods
above 100 days (50 days). Figure 19 also shows in some cases
(at 300 and 480 days) a planetary peak that is well separated
from the granulation signal and that can be clearly identified al-
though it is below the fap, showing that the fap is not always a
sufficient criterion.

We have shown a few examples of the planet peaks for
a given realization and planet phase. Figure 21 illustrates the
strong impact of these conditions on the power. We consider
six slightly different realizations of the time series for the 8-day
sampling and 30 min over 1 night in the case of supergranula-
tion. For each of them we compute the power at the planet period
(here 480 days) versus the phase of the planet. When the planet is
alone, the peak is extremely stable, as shown by the red curves.
However, when added to the supergranulation time series, the
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Fig. 19. First six rows: periodograms of the granulation RVstell + RVpla

(left) and planet RVpla alone (right), for the 8-day sampling (30 min
over 1 night). Each row corresponds to a different planet period from 3
to 480 days. The planet has a mass of 1 MEarth and an arbitrary phase.
The false alarm probability at the 1% (dot-dashed lines) and 0.1%
(dashed lines) levels are shown on the left plots. Last row: periodogram
for the granulation RVstell alone.

amplitude of the power at the planet period varies very strongly
with the planet phase. It is also extremely sensitive to the real-
ization. This is also true for supergranulation alone, as the power
in the 480-day domain also varies significantly from one realiza-
tion to the other. We note that all these simulations are made with
no instrumental noise.
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Fig. 20. As in Fig. 19 for supergranulation, for a level 2.5 times the
minimum.

6.3. Detection limits

We now compute the detection limits for the same planet pe-
riods using the LPA method (Sect. 6.1). The peak at the planet
period P is compared to the power of peaks around it (in our case
within [0.75P–1.25P]) and not to all peaks in the periodogram.
We use this method because the usual fap method does not give
the same information: it tells us whether a peak has a certain
level of significance (if all the signal were white noise), while
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Fig. 21. Power at 480 d in the periodogram of the supergranulation +
planet RV versus the phase of the planet (black lines). The supergran-
ulation RV is obtained with the 8-day sampling, 30 min over 1 night.
The planet has a period of 480 days and a mass of 1 MEarth. The power
is the maximum for periods within 5% of the planet period. The dif-
ferent curves correspond to six different realizations of the time series
for this sampling. The red curves correspond to the planet alone (same
realizations). The green horizontal line is the average power for super-
granulation alone, while the two orange horizontal lines indicate the
minimum and maximum values of the power at 480 days for supergran-
ulation alone (over the six realizations).

we also want to know if a (planet) peak can indeed be distin-
guished from the rest of the signal (which is not white noise).
A selection of these detection limits is shown in Fig. 22 and il-
lustrates the impact of the sampling and averaging strategy. For
all our tests and samplings, the granulation-only detection lim-
its (first line in Fig. 22) are below 1 MEarth. They can however
be close to 1 MEarth in a few cases, which means that when com-
bined with other sources of noise a detection limit above 1 MEarth
can very easily be reached, especially for long planet periods.
As expected, the detection limit increases as the sampling is de-
graded from 1 day to 20 days, and decreases when the observing
duration increases (over one night or by averaging over several
nights).

In case of supergranulation (second line of Fig. 22), the
trends are similar, but there is one main difference: averaging be-
tween 30 min and 2 h does not affect the detection limits, which
is expected as this is a long timescale signal. However the am-
plitude is much larger: we obtain detection limits above 1 MEarth
for the longest periods. For a period of 480 days for exam-
ple, even two hours of observations per night averaged over 5
nights (i.e., 10 h of observing time) provide a detection limit
around 1 MEarth.

When combining the granulation and supergranulation RV
with the mesoscale flows RV (third line in Fig. 22), the trends are
similar, but the detection limits reach the 1 MEarth limit at lower
periods, from a few days (for the worse sampling) to ∼40 days
(for the best ones).

Finally, the detection limits including magnetic activity
(fourth line for magnetic activity alone and fifth line for a com-
bination of the four RV) are shown to illustrate the relative am-
plitude of the various components (which would be smaller if
some corrections were applied). They are much larger because
magnetic activity without correction dominates the signal. They
are also much less sensitive to the strategy (observating dura-
tion, splitting into periods, averaging over several night) and
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Fig. 22. First row: detection limits for granulation. The left panel shows the detection limit versus the planet period for a 30 min observing duration
over 1 night, for different samplings: 1 day (red), 4 days (green), 8 days (orange), 20 day (blue), random sampling of 20 days per year (dashed
yellow), random sampling of 40 days per year (dashed black). The middle panel shows the detection limit for the 1 day sampling over one night
for different observing durations: 30 min (red), 1 h (green), 2 h (orange). The right panel shows the detection limit for the 8 day sampling over
one night for different observing durations (same colors as middle panel) and nights: 1 night (solid lines), 2 nights (dashed lines), 5 nights (dotted
lines). In all cases the horizontal dotted-dashed line shows the 1 MEarth level. Second row: same for supergranulation (at a level 2.5 times the
minimum). Third row: same for granulation + supergranulation + mesogranulation. Fourth row: same for magnetic activity. Fifth row: same for
the four components.

are mostly sensitive to the sampling (with detection limits be-
low 1 MEarth for the 1-day sampling at very small periods only).

We note that at short periods (below 12 days), the detection
limit can be below 1 MEarth even when combining all compo-
nents, but this requires a very good sampling (1 day over a long
period).

Finally, we have also studied two random samplings
with 240 and 480 points over 12 years. The results are shown
in Fig. 22 (first column, yellow and black curves, respectively).
They show similar trends. The detection limits are not strictly
correlated with the number of points in the series, however, but

this is probably related to the uncertainties on the detection lim-
its (the detection limits are computed for only one realization of
our time series).

7. Conclusion

We have developed a simulation of granulation photometric and
RV time series covering a full solar cycle based on a collection
of granules covering a solar hemisphere. We have extended this
simulation to supergranulation and considered the combination
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of these signals with magnetic activity and mesogranulation. Our
approach is complementary to that developed by Cegla et al.
(2013) from MHD simulations of granulation, as we simulate
long time series based on granulation photometric and velocity
properties. We have obtained the following results:

– The photometric rms due to solar granulation is 67 ppm and
the rms RV is 0.8 m/s. The rms RV after a temporal smooth-
ing of one hour remains large (0.4 m/s) and is significantly
above the noise level of future instruments.

– The smoothed power spectra of RV and intensity granula-
tion time series is compatible with the fits made by Harvey
(1984) or Palle et al. (1995); however, the power spectra be-
fore smoothing show many peaks.

– Supergranulation, with a rms RV between 0.28 and 1.12 m/s
depending on the assumption, has a rms RV comparable to
the rms RV induced by granulation, and lower than the signal
derived by Palle et al. (1995). It cannot be averaged out over
one night however. After ten nights the signal still has a rms
between 0.1 and 0.5 m/s depending on the assumption.

– The best observational strategy is usually to spread the given
observing time into several periods during the night (up to
five have been tested), which is compatible with the results
obtained by Dumusque et al. (2011a). However, the most ef-
ficient strategy seems to be dependent on the precise proper-
ties of the signal.

– The impact of magnetic activity at timescales below
2–3 days is small compared to the other contributions (it is
above the other contributions for periods larger than 6 days).
Its impact on the rms RV due to granulation is also extremely
small. Magnetic activity, therefore, should not significantly
affect the detection of planets at very small periods, but must
be considered for orbital periods above a few days. We note
that pulsations are not taken into account and would also af-
fect the best strategy.

– A realistic modeling of mesoscale flows is beyond the scope
of this paper as the origin of these flows is not well known.
Its contribution is far from being well understood or well
observed. A simple estimate shows that it contributes signif-
icantly to the RV signal, but that its impact on the observation
strategy is not very different from the case with only granula-
tion and supergranulation. After a significant averaging and
considering the three components in the best case (granula-
tion, mesogranulation, lower limit for supergranulation), the
rms RV after 10 days is still ∼0.5 m/s.

– The presence of granulation or supergranulation has a sig-
nificant impact on detection limits. Although their impact is
smaller than the impact of magnetic activity, the detection
limits due to granulation or supergranulation alone can eas-
ily increase to 1 MEarth in the habitable zone for observa-
tions spread over a 12.5-year interval. The main contribution
comes from supergranulation. Contrary to magnetic activity
for which there are possibilities to correct at least for part of
their contribution to RV, it is difficult to correct for the gran-
ulation or supergranulation RV given their stochastic nature,
as it is not possible to use the photometric signal, for exam-
ple. One way is to average the signal, and its efficiency is
limited due to the intrinsic nature of the signal (unless one
observes stars with a lower level of convection, as in later
spectral-type stars). Another way might be to use comple-
mentary information extracted from the spectra such as the
line profiles or cross-correlation function on the spectra like
in Cegla et al. (2015). Such sophisticated approaches would

most likely need very high signal-to-noise spectra to be im-
plemented.
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Appendix A: Velocity properties of granules

We extract granules from the intensity map using the follow-
ing segmentation procedure. We first apply a filter in the Fourier
k − ω space (spatial and temporal dimension) to remove the ve-
locities corresponding to the 5-min oscillations by eliminating
all velocities larger than the phase velocity of 6 km s−1, as was
done for example in Roudier et al. (2001). We found that the im-
pact of the filtering on the results was small, however. There have
been many works about the segmentation of solar granules (e.g.,
Roudier & Muller 1987, Hirzberger et al. 1997, 1999). Here we
combine a threshold analysis with the curvature at each pixel to
extract granules. A closure operation is performed, and finally all
pixels in the map are attributed to a granule. Only entire granules
are considered. This leads to 94 657 granules. An example of the
segmentation is shown in Fig. 2.

Once the segmentation of the image is performed we can de-
termine, for each granule, its size, the vertical velocity field V̄v
averaged over the granule, and the horizontal velocity field V̄h
also averaged over the granule. The vertical component comes
from the contribution of the upward flows in granular cells and
of the downward flows in the intergranular lanes. For the hor-
izontal component, only one component is needed, as we then
consider the RVs. Figure 3 shows V̄v and V̄h averaged over size
bins, as well as their rms in those bins. It should be noted that the
convection simulation does not exhibit the same size distribution
as observations, as it lacks small granules, as shown in Fig. 1.
Therefore, if we apply large positive RV values to granules fol-
lowing the size distribution described in Sect. 2.2.1, we obtain
a very unrealistic total RV due to the domination of these small
granules. In this paper we have therefore considered a simple
function for the behavior of V̄v with size to give small structures
less weight than in the convection simulation, where the gran-
ule size may not be entirely reliable for small sizes. The impact
of this assumption is tested in Sect. 3.1.3. We use the following
laws, illustrated in Fig. 3: V̄h follows a normal distribution with a
dispersion of 1792 e−S/6.2 m/s; V̄v is equal to −300 m/s to which
is added a component following a normal distribution5.
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