
I 

Using the Universal Modality: Gains and 
Questions· 

VALENTIN GORANKO and SOLOMON PASSY, Faculty 
of Mathematics and Computer Science, Sofia University, blvd. Anton 
Ivanov 5, Sofia 1126, Bulgaria 

Abstract 
The paper investigates a simple and natural enrichment of the usual modal language 
!£ = !£<O) with an auxiliary 'universal' modality [!!) having Kripke semantics: [!!)� is true 
at a world of a model iff � is valid in the model. 

The enriched language � = !£<O, [!!) turns out to be fairly different from the classical 
one. In particular the notions of satisfiability, validity and consequence in models become 
interreducible. 

Section 2 is devoted to modal definability in �. Model-theoretic characterizations of 
this definability are obtained. �definability is proved to be equivalent with sequential 
definability in !£ introduced by Kapron. In section 3 the minimal normal .'l1i!-logic Kw, is 
axiomatized and a general model-completeness theorem for the family of normal exten
sions of K(ID is proved. Section 4 deals with minimal extensions-�logics axiomatized 
with schemata of !£ over KIID• A general study on transfer of properties of !£-Iogics to their 
minimal extensions is initiated. Transfer of incompleteness, strong completeness, compact
ness and filtration is proved. The problems of transferring completeness, finite complete
ness and decidability are investigated and several general results are obtained. Uniform 
reductions of these properties of �Iogics to corresponding natural properties in their 
classical fragments are established. For a large class of !e-Iogics, completeness is shown to 
be inherited in their minimal extensions. However, the general transferring problems re
main still open. In section 5 several concrete completeness and decidability results for 
logics with essentially .!lfi!J-axiomatics are stated and some other applications of [!!) are 
sketched. In an appendix independent join of .!lfi!J-Iogics is introduced and proved to pre
serve completeness when applied to minimal extensions. 

Besides the technical results, the paper pursues two main purposes: first, to advertise 
the universal modality as a natural and helpful tool, providing a better medium for the 
mission of modality; and second, to illustrate the typical problems arising when enricha 
ments of modal languages are investigated. 

Keywords: Modal logic; universal modality; modal definability; minimal extensions; transfer 
of properties; independent join. 

I 1. Introduction 

Nowadays the propositional languages enriched with intensional operators 
(modalities in a broad sense) are enjoying an increasing recognition as 
expedient and useful environments for uniform formalizing of seemingly 
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disintegrated situations and ideas arising in various scientific fields, such as 
computer science, artificial intelligence, linguistics, philosophy, cognitive 
science, etc. The expanding areas of application of (poly-) modal logics 
(including modal, temporal, dynamic, epistemic ones, etc.) cut across both 
the syntactic and semantic canons of the traditional approach to modality, 
featured in the classical works of Lewis, Kripke, Prior and others. On one 
hand, having fixed the usual syntax of the modality as a unary propositional 
operator, its Kripke-style semantics naturally leaves the classical paradigm 
reflecting the Leibnizian view on the necessity and varies over arbitrary first
or higher-order quantificational schemata involving the truth at the actual 
world of valuation and the 'accessibility' relation. An analogy can be made 
with the process of transition from Fregean first-order quantifiers to 
generalized quantifiers in the contemporary researches on natural language 
semantics. On the other hand, the syntactic appearance of the modality can 
vary, too. Familiar examples are the O-ary modalities loop and repeat in 
dynamic logic as well as the relevant implication which can be regarded as a 
binary modality or Kamp's operators Since and Until in temporal logic. For a 
more general approach towards modality in temporal setting see also [8]. 

The syntactic and semantic deviations from the classical modality yield a 
large variety of modal operators, increasing the expressive power of the 
language in one or other direction, and thus making it more adequate to the 
envisaged purposes. Among this variety of modalities there are several basic 
patterns of fundamental importance both for the expressiveness of the 
language and for axiomatization of the corresponding deductive machine. 
The most natural and simplest one, and at the same time the most useful as 
an auxiliary tool, is the universal modality @] which is the focus of the 
present paper. The universal modality is interpreted in the Kripke semantics 
on a frame ( W, R) by the Cartesian square W2 of the universe W, i .e. @]cp 
is true at a point of the model iff cp is valid in the model. Thus the main 
technical effect of the introduction of @] in the language is that it overcomes 
the restriction on the power of local (pointwise) truth imposed by the 
accessibility relation, and allows an expression of statements valid in the 
whole universe standing at any world of this universe. This ability of the 
universal modality has its undoubted value in all traditional interpretations 
of the modal language, i.e. it makes it possible to express eternal truths in 
temporal logic or invariance properties and partial correctness statements in 
logics of programs. That is why @] has been introduced, explicitly or not, 
many times by a number of authors, under different names and in different 
contexts, e.g. in temporal logic, [5], [6], [11]; in dynamic logic, [22], [23]; in 
logic of programs, [1]; and just technically, [4], [19], [24], etc. These are 
only a few references among many. Indeed, taken in isolation, @] is nothing 
more than the well-known old SS-modality. The point of the present paper, 
however, is to regard @] just as an auxiliary modality. We aim at a 
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systematic extraction and investigation of the effects generated by the 
universal modality and that is why we consider it in the classical modal 
environment. Nevertheless, as a rule, the results obtained in the paper 
readily spread over arbitrary polymodal languages with lli). Our other goal is 
to illustrate the typical difficulties and the challenging problems arising when 
enrichments, even so simple as this one, of modal languages are put to a 
systematic investigation. 

2. Preliminaries 

Throughout the paper we fix a propositional modal language It = It(O) of 
one modality 0 and its dual <> =DF-a..,. The set of formulae of It is 
denoted by FOR. We assume familiar the notions of frame, model, general 
frame, modal algebra and validity in them as well as the basic frame 
constructions-sub frame (this will mean generated subframe). p -morphic 
image, disjoint union and the basic algebraic constructions-subalgebra, 
homomorphic image, direct product (for exact definitions see [10], [16], [3], 
[15]. Some notation: At � cl> [x ] means that the formula cl> is true at the world 
x of the model At; At � cl> means that cl> is valid in At. Notation for truth and 
validity in frames, general frames and modal algebras is analogous. 

Also we use the categorical connections between general frames and 
modal algebras [10]: to each general frame gji there corresponds a modal 
algebra gji+ and to each modal algebra "It the general frame "It+ which is its 
Stone representation. (Here we stick to the notation of [10].) Hereafter, 
frames will be freely identified, when necessary, with the full general frames 
based on them. 

If gji is a general frame then (gji+)+ is called a Stone representation of gji, 
denoted also by Sr( gji). If F is a frame, then the underlying frame of (F+)+ is 
called an ultrafilter extension of F, denoted by ue(F). F is called an ultrafilter 
contraction of ue(F). 

Another construction to be used is the ultraproduct of general frames (see 
[10] or [3]). Note that this construction, applied to a family of frames, yields 
a general frame (unlike the ordinary ultraproduct of frames) since it regards 
frames as full general frames. That is why we call it a general ultraproduct. 

Denote the language obtained from It adding the universal modality @] 
(and its dual 4Y) by � and the set of formulae of It@] by FO�. Here are 
some basic notions for the new language. 

A frame for It@] (�-frame) is a frame (W, R, W2) which will be 
identified with (W, R). Operators 0 and (ill on subsets of the universe are 
defined in a frame F = (W, R) as follows: 

{w ifX=W 
OX={xeW/R(x)s;;X} and IillX= 0 . . 

otherwise 
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Itfm-model is a pair (F, V) where F is a frame and V is a valuation of the 
variables, extended to FORt.J via the usual clauses for If and V(@l4» = 

@lV(4)>. 
The notion of general If'Jirframe is also defined in due standard way as a 

pair (F, W) where F = ( W, R) is a frame and W £;; P(W) is closed under 
the Boolean operations, 0 and @I. Clearly, the operator @) does not impose 
extra closure conditions and so we can identify (general) If-frames with 
(general) Itfm-frames. An .Pm-algebra is a non-trivial modal algebra with an 
additional unary operator @I, satisfying the condition: 

r.;'1 {1 if a = 1 
L.!!Ja = 

o otherwise 

for each element a. Let Mm! be the class of all Itfm-algebras. It is easy to see 
that the Itfm-algebras are exactly those bimodal algebras which are isomor
phic to fJ'+ where fJ'is a general �-frame. The notions of validity (F) in 
Itfm-models, general Itfm-frames, IfIID-frames and IfIK)-algebras are defined in 
the standard way. Closed formulae in IfIID are the Boolean combinations of 
formulae, beginning with @I. 

Here we sketch several specific effects of the enriched language. The 
universal modality makes it possible to express global properties (for the 
whole model or frame) by means of local (pointwise) ones. This is grounded 
on the obvious fact that truth of a closed formula at a point (local validity) is 
equivalent to validity of this formula in the whole model (global validity). 
Here are some issues of this effect: 

PROPOSITION 2.1 
(1) Global validity of any IfIID-formula 4> is equivalent to local validity of 

@l4>; 
(2) Global consequence r 1= 4> (meaning that for every model Al F r 

implies All: 4» equivalent to local consequence @I(r) 1:, 4> (meaning that for 
every model Al and point x in it, AlI:@I(r)[x) implies AlI=4>[x», where 
@I(r) = {@lyly Er}; this is equivalent to the validity 1:@I(r)-> 4> when r is 
finite. 

Analogous effect appears in first-order definability [3): an IflID"formula 4> is 
(globally) first-order definable iff @l4> is locally first-order definable. 

3. Modal definability In :t1ID 

3.1. Classes of algebras and frames, modally definable In IfIID 

If C is a class of IfIID-frames then the modal theory of C, MTIID( C), is the set 
of all IfIID-formulae valid in C. If r is a set of Itfm-formulae then FR(r) is the 
class of frames in which the formulae of r are valid. 
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DEFINITION 
A class of frames C is modally definable in 2(jj] (2(jj] -definable) if there exists 
a set f £; FO� such that for each frame F: FE  C iff F F f. 

The class of the modally definable classes of frames in 2(jj] will be denoted 
by MD(2(jj]).  We will describe the .!l@-definability in a model-theoretic 
fashion, by means of closure under certain constructions. For this purpose 
we will define some operators on classes of algebras and frames. Let A be a 
class of algebras of some signature Q. Then we denote by I(A) (S(A), H(A), 
P(A), U(A» the class of all isomorphic copies (subalgebras, homomorphic 
images, direct products, ultraproducts) of algebras from A. Analogously, let 
C be a class of frames. Then we denote by 1,( C) (H,( C), U,( C) , SR( C), 
E,,(C), C.(C» the class C extended with all isomorphic copies (p-morphic 
images, ultraproducts, Stone representations, ultrafilter extensions, ultrafil
ter contractions) of frames from C. 

The same notation will be used for classes of general frames. 

FACT 3.0 
All of the operators defined above preserve the validity of modal formulae. 
(See (10].) 

DEFINITION 
Modally definable closure of a class C of frames in 2(jj] is the smallest 
.!l@-definable class [e] containing C. Explicitly: [Cl = FR(MT(jj](C». 

The definitions and notations for modally definable classes and modally 
definable closures of classes of general frames, models and modal algebras 
are in the same spirit. 

The following results in this section are obtained as close analogues to 
those in [13] where definability in the bimodal language 2(R, -R) (with 
modalities both over a relation and its complement) is studied. That is why 
the proofs will be omitted or just sketched. 

LEMMA 3.1 
MIuu consists of simple algebras (without proper congruences). 

PROOF. Let "Il E �, a, bE "Il, a '* b and for some congruence" in "Il, a"b. 
Then 0 =@](a-b),,@](a-a) = 1. # 

LEMMA 3.2 
If K £; fWIl(jj] then [K] = HSP(K) n fWIl(jj] = ISU(K). 

PROOF. By Lemma 3.1 and Jonsson's result that every subdirectly ir
reducible algebra in a variety generated by a class K of algebras with 
distributive lattices of congruences, belongs to HSU(K). # 

As a consequence, a class of 2(jj]-algebras is modally definable iff it is 
closed under isomorphisms, subalgebras and ultraproducts. A well-known 
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model-theoretic result implies that the 21l!1-definable classes of algebras are 
exactly the universal classes. 

Now we shall define specifically for ..'l1m, a simpler version of the notion of 
SA-construction introduced by Goldblatt and Thomason [12] and used to 
characterize if-definability. 

DEFINITION 
Let fF = (W, R, W) and F' = (W', R'). F' is said to be a [ill-collapse of fF 
iff F'+ is subalgebra of fF+. 

It can be shown (similarly to Lemma 3.10 from [13]) that the above 
definition means that there exists a complete atomic subalgebra of fF+, fFt = 
(W, R, W,)+ such that W' is the set of atoms of fF;+, for each a, b E 
W' :R'ab iff a!; Ob (i.e. '<Ix Ea 3y E bRxy) and the following condition 
holds: 

'<la E W' '<IX EW,('<Ib E W'(R'ab-+b !;X)-+R(a) !;X) 

Let C be a class of general frames. The class of all [ill-collapses of C will 
be denoted by �(C). 

From Lemma 2.2 it follows: 

THEOREM 3.3 
(1) If C is a class of frames then [C) = I�Uf(C), 
(2) A class of frames C is in MD(21l!1) iff it is closed under isomorphisms 

and [ill-collapses of general ultraproducts. 

The essential difference between this characterization and the classical 
result of Goldblatt and Thomason [12] is due to the fact that in the enriched 
language the notions of (generated) subframe and disjoint union of frames 
are trivialized. 

DEFINITION 
A class of frames C is tl.-elementary iff there is a set � of formulae of the 
first-order language with equality and a binary predicate symbol R, such that 
for each frame F, F E C iff F 1= �. 

CoROLLARY 3.4 
(i) If C is a class of frames closed under ultraproducts then [C] = 

1.Gm(C). 
(ii) A tl.-elementary class is 2[ID"definable iff it is closed under [ill

collapses. 
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3.2. Definability In .2'1!!J and sequential definability 

Kapron (18] considers definability by means of sequents in the usual modal 
language as follows: 

DEFINITION 
(1) A modal sequent in .2' (.2'-sequent) is a pair (r, a) of finite sets of 

formulae of .2'; 
(2) An .2'-sequent (r, a) is valid in a model.At, notation .At Hr, a), if 

(V 4> E r)(.At � 4» implies (3", E a) (.At � "'); 
(3) (r, a) is valid in a frame F, notation F � (r, a), if (r, a) is valid in 

each model on F; 
(4) A set of modal sequents E: is valid in a frame F, F �E, if each member 

of Eis. 
(5) A class of frames C is modally sequentially-definable if there exists a 

set E of modal sequents such that for each frame F: F � E iff F E C. (We do 
not use the notions of 'axiomatic' and 'sequent-axiomatic' class (cf. [12) and 
[18]) because a class of frames can be defined by a set of formulae or 
sequents but not axiomatized by this set.) 

The class of modally sequent-definable classes in .2' will be denoted by 
MSD(.P). 

LEMMA 3.5 
MSD('p) � MD(.'t!m). 

PROOF. Let a class C be defined by a set of sequents E. For each sequent 
C1= (r, a) EE we define 4>. EFO�: 

4>. =OF 1\ [ill", --+ V [illO 
YEr 91!4 

It is easy to see, using 1.1, that for each model .At:.At � C1 iff .At � 4> •. So C is 
defined by the set of formulae {4>./C1EE}. # 

The opposite inclusion will be proved using a kind of normal form of the 
formulae of .Pnu. 

DEFlNmoN 
(1) An elementary conjunction (disjunction) is any formula of the type 

X /\@lxo /\ �x. /\ ... /\ �x,(x V �Xo V @lx. v ... v@]X,), where X, x; E .P([]); 
(2) A conjunctive form, CF for short (disjunctive form, OF), is any 

conjunction (disjunction) of elementary disjunctions (conjunctions). 
By a standard argument, each CF is equivalent to a OF and vice versa. So, 

by form we will mean either CF or OF. 
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PROPOSITION 3.6 
For each formula q, and closed formula 1jJ, 

(a) �O(q, v 1jJ)-(Oq, v 1jJ); 
(b) � @J(q, v 1jJ) .... (@Jq, v 1jJ); 

PROOF. Standard semantic arguments, using 1 . 1 .  # 

THEOREM 3. 7 
For each q, E FORu.J there is a form equivalent to q,. 

PROOF. By induction on q,. The Boolean steps are standard. Let q, = 01jJ 
and 1jJ' = 1jJ, 1\ • • •  1\ 1jJ. be a CF of 1jJ. Then q, == 01jJ, 1\ • • •  1\ 01jJ. and 
Proposition 3.6(a) guarantees that all 01jJ,s have equivalent elementary 
disjunctions and so q, has an equivalent CF. For q, = @J1jJ, the proof is the 
same, using Proposition 3.6(b). # 

DEFINITION 
Let q, E FORu.J and q,' be a CF equivalent to q" q,' = 1jJ; 1\ • • •  1\ 1jJ;. For 
every elementary disjunction 1jJ = X v �Xo V @Jx, v . . .  v @JX. in q,' we 
denote 1"(1jJ) = @]oXo� (@Jx V @Jx, v . . .  v [!!]X.) and finally we put 1"( q,') = 
-':(1jJ;) 1\ • • •  1\ -':(1jJ;) and -.:(q,) = -.:(q,'). 

-.:( q,) will be called a sequential closure of q,. Note that 1"( q,) is a formula 
without nested occurrences of [!!]. The circumstance that a formula can have 
many equivalent sequential closures will be harmless. 

For every .'ern-model At and an elementary disjunction X v �Xo V [!!]X, v 
. . .  v [!!]X. the following hold: 

At � X v �Xo V [!!]X, v . . .  v @JX. iff an � [!!](X v �Xo V [!!]X, v . . .  v [!!]X.) 
iff At � [!!]X v �Xo V [!!]X, v . . .  v [!!]X. 
iff At� @]oXo� ([!!]X v @]X, v . . .  v @]x.) 
Thus, every .'ern-formula is equivalent to its sequential closure with respect 

to validity in models. Obviously, every conjunctive member of -.:( q,) 
equivalent, with respect to validity in an .'l'wrmodel (hence in a frame), to 
the corresponding sequent ("Xo, {X, x" . . .  , X,,}). This observation and 
Theorem 3. 7 yield an equivalence between sequential definability in .'l' and 
definability in .'l'1i1l: 

THEOREM 3.8 
MSD(.'l') = MD(.'ern). 

Moreover, definability and sequential definability coincide in each poly
modal language having [!!] explicitly definable. 

Now, Theorem 7 from [18] is directly translated into .'l'1i1l: 

COROLLARY 3. 9 
A 6-elementary class of frames is MD in .'ern iff it is closed under 
p-morphisms and ultrafilter contractions. 
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Thus, for �-elementary classes of frames, closedness under @I-collapses 
turns out to be equivalent to closedness under p-morphisms and ultrafilter 
contractions-a result which can be proved directly, too. 

In particular, a first-order condition is definable in ..P[ill iff it is preserved 
under p-morphisms and ultrafilter contractions. For instance, Vx--.Rxx and 
3xRxx are not definable in :t@ since the former fails after an appropriate 
p-morphism (e.g. the only mapping from ( {x, y}, { (x, y >, (y, x>} > onto 
( {u }, { ( u, u > } » and the latter fails after an appropriate ultrafilter contrac
tion (e.g. if N is the set of natural number then (N, <> � 3xRxx but 
ue«N, <» � 3xRxx). 

COROLLARY 3.10 
If C is a �-elementary class of frames then [C) = CuH,( C). 

This result is carried over into multimodal enrichments of I£ which have 
@I explicitly definable. It has some methodological value: frequently such 
enrichments have non-standard semantics extending the standard ones 
because the semantic connections between the different modalities may not 
be syntactically expressible. So, let L be a first-order definable logic in such 
an enrichment of ..P which is proved to be complete with respect to the class 
NS(L) of non-standard L-frames. Now the problem arises how to prove 
completeness with respect to the class of standard L-frames S(L), if it holds. 
Extending a well-known result from Fine (7) we can conclude that L is 
canonical, hence complete with respect to the class DNS(L) of (non
standard) L-frames which carry descriptive (see (10)) general frames. If L is 
complete with respect to S(L) then NS(L) = [S(L») = CuH,(S(L», hence 
DNS(L) s; CuHr(S(L», so E.(DNS(L» s; H,(S(L». But it is easy to see that 
every frame F which carry a descriptive general frame is a p-morphic image 
of its ultrafilter extension. Indeed, if � = (F, W) then �+ is a subalgebra of 
F+ hence if � is descriptive then � "" (�+)+ is a p-morphic image of (F+)+ 
hence F is a p -morphic image of ue(F). Thus we obtain DNS(L) s; 
H,Eu(DNS(L» s; ... ,Hr(S(L» = Hr(S(L». This calculation means that if standard 
completeness hold for L one must be able to prove it as follows: for any 
L-consistent formula <p take a canonical L-frame F (non-standard in general) 
satisfying <p and then construct a p-morphic counter-image of F which is a 
standard L-frame (using, for example, the 'copying' technique, ( 9) ,  (14),  
[2 7)). If  one succeeds in this, the standard completeness of L is  proved. 

COROLLARY 3.11 
A class of general frames C is MD in :t@ iff C is closed under p-morphisms, 
ultraproducts and Stone representations, and the complement of C is closed 
under Stone representations. (Kapron (1 8) ,  Theorem 6). 
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Actually, the proof of Kapron [18), Theorem 6 gives something more: 

COROLLARY 3.12 
If C is a class of general frames then [C) = SR-1H.8RU,(C). 

Here are some examples of conditions that are ..'l'lilrdefinable but not 
..'l'-definable. 

Semantic condition 

R=W2 
3xVy"'Rxy 
3x 3yRxylR *01 
IWI=1 

IWI :s; n 

Vx Vy Vz(Rxz-'> Ryz) 

Modal formula 

Vx Vy Vz(Rxz &x *z-'>Ryz) 
Vx 3yRyx 
R-1 is well-founded 

One could prove non-definability in ..'l' of these conditions, using the criteria 
of Goldblatt and Thomason [12) Theorems 3 and 8. See also [2). 

4. 2?l!lJ""loglcs 

In this section we consider normal modal logics in ..'l'1ID. First we have to 
define the minimal normal .'l'1ID-logic, i.e. the analogue of K. Here are 
several obviously valid schemata: 

([!!)) 
(refuD) 

(symlID) 

(tran�) 

(incl) 

@I(p -'> q) -'> (@Jp -'> @Iq) 
@)p-'>p 
p-,>@I�p 
@Jp -'> @I@Jp 
@Jp-'>[]p 

These schemata determine that @I is an SS-modality with corresponding 
equivalence relation U containing the relation R corresponding to O. This 
does not guarantee that U is a universal relation but this property cannot be 
expressed by means of model formulae since it is not preserved in disjoint 
unions. Indeed, we shall see (as a consequence of the completeness 
theorem) that the above schemata are all we can say about @I. The 
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extension of the minimal normal modal logic K with these schemata and the 
rule 

will be called KIY]. 

(NEC1.J) : ....!L 
[ill</> 

Note that the rule (NEC1.J), combined with (incl), makes the rule 

(NECO)·....!L 
'O</> 

redundant. 
So we have another semantics, larger than the one envisaged thus far, 

namely, models over frames (W, R, U) where U is an equivalence relation 
containing R. These frames, when U,* W2, will be called non-standard 
frames for -'l@ and the frames (W, R, W2) will be standard ones. Analogous 
terminology will be accepted for general frames and models over standard 
and non-standard frames. 

DEFINrnoN 
A simple extension of KIY]' or -'l@-logic, is any extension of KIY] by means of 
schemata of 21Y]. 

Now two general notions of completeness arise: completeness with respect 
to the general semantics and completeness with respect to the standard one. 
Of course we are interested in the latter, but, with SS in mind, it is clear that 
these two notions are equivalent since each generated subframe (as a 
bi-relational frame) of an -'l@-frame is a standard %frame and each 
formula refuted in a frame is refuted in some of its generated subframes. 
Combining the above observations with the usual canonical model technique 
we obtain the general model-completeness theorem for 21Y]-logics: 

THEOREM 4.1 
All -'l@-logics are complete with respect to the class of their standard 
21Y]-models. 

In particular KIY] is complete with respect to the standard -'l@-frames, i.e. 
it is actually the minimal normal -'l@-Iogic. 

We shall investigate in detail a special class of -'l@-Iogics, axiomatized by 
classical schemata over KIY]. 

DEFINITION 
Given an 2-logic L, the minimal extension of L in 21Y] is the simple 
extension � of KIY] with the schemata of L, spread over -'l@. 

Let us make a simple observation. If V is a valuation on a frame and r a 
set of formulae, we denote V[f] = {V(</»I </> e f}. Clearly, for any -'l@-model 
V[FOR] = V[F0Rt.J] since every formula beginning with [ill is equivalent in 
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the model either to T or to .L. This implies that for every ..'t'-Iogic L, if At is 
an L-model then At validates all schemata of YID and can be regarded as a 
standard L@J-model. As a consequence, every minimal extension is 
conservative. 

5. Minimal extensions and transfer of properties 

The notion of minimal extension appears every time an enrichment of a 
propositional language is considered. A general question of transfer of 
properties is connected with this notion: 

Let rY' be some property of logics. Is it the case that if an ..'t'-Iogic L enjoys 
the property rY' then so does its minimal extension in the enriched 
language? 

As a rule it is not difficult to prove such results for particular logics but the 
general problems seem hard. 

5.1. Transfer of completeness. Strong completness of ..'t'-Ioglcs 

An ..'t'@J-logic L is complete if for each <p E FO� such that L If <p there exists 
a frame F such that F � Land F If <p. 

Let us observe that, due to conservativeness of the minimal extensions, 
the transfer of incompleteness is obvious. 

The problems to be overcome while proving completeness of ..'t'@J-logics 
seem to be the same as those for ..'t'-Iogics (the universal modality is not 
expected to introduce new difficulties) so the methods will be the same too. 
Anyway, one should surely prefer not to re-create here all familiar 
completeness achievements in the usual modal logics but to effortlessly 
transfer as many of them as possible to the enriched language. So, the 
following seems quite plausible and desirable: 

CONJEcrURE 1 
If an ..'t'-Iogic L is complete, then its minimal extension YID is complete too. 

We will make a digression from ..'t'@J in order to translate the problem into 
an equivalent one in the classical language ..'t'. 

DEFINITION 
Let L be an ..'t'-Iogic and <p,  1/J E FOR. 

(1) A normal <p-theory over L, denoted by ThL( <P), is the set of formulae 
derivable from L U {<P} using MP and NEC; every 1/J E ThL( <P) is said to be 
normally derivable from <p over L, denoted q>�L 1jJ; 

(2) 1/J is a model consequence of <p over L, notation <p �L 1jJ, if for each 
L-model At: At � <p implies At � 1jJ; 

(3) 1jJ is a normal model consequence of <I> over L, notation <p �nL 1jJ, if for 
each normal (i.e. based on an L-frame) L-model At: At � <p implies At � 1/J. 
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O(k)4> = 4> 1\ 04> 1\ • • •  1\ Ok4> and GW)4> = {4>, 04>, ... , 

LEMMA 5.1 (Deduction lemma for normal 4>-theories) 
Let L be an ..'f -Iogic and 4>, 1/J e FOR. Then 4> � L 1/J iff for some k 2: 0, 
L�O(k)4>� 1/J. 

PROOF. An easy induction on the inference 4> �L 1/J. # 

PROPOSITION 5.2 (General model-completeness theorem-sequential version) 

Let L be an ..'f-Iogic and 4>, 1/J e FOR. Then 4> � L 1/J iff 4> �L 1/J. 

PROOF. Since validity in a model is preserved under MP and NEC, we 
obtain the soundness -direction. Vice versa, suppose 4> �L 1/J does not hold . 
Then the set X = O(w)4> U {-'1/J} is L-consistent: otherwise some finite subset 
should be L -inconsistent hence 4> � L 1/J by 5.1. So there exists a maximal 
L-theory x containing X. Then 4> is valid in the x-generated submodel At;' of 
the canonical L-model while 1/J is refuted in the root, whence 4> �L 1/J 
fails. # 

CoROLLARV 5.3 
For every 4>, 1/J E FOR and ..'f-Iogic L, 4> �L 1/J iff ��!ill4>-+@]1/J. 

Now a question arises: what will be the sequential version of the 
completeness theorem with respect to frames? A natural candidate for an 
answer is the following: 

CONJECTURE 2 
An ..'f-Iogic L is complete iff it satisfies the condition: (*) for each 
4>, 1/J e FOR : 4> � L 1/J iff 4> �nL 1/J. 
Note that 

(1) (*), when 4> is T, expresses frame-completeness of L; 
(2) 4> � L 1/J implies 4> �nL 1/J by virtue of the soundness of L and the 

preservation of validity in a model under MP and NEC. 

DEFINITION 
An ..'f-Iogic is called sequentia/ly complete if it satisfies the condition (*). 

Let us note that the reader should not consider the adjective 'sequential', 
used above and henceforth, with its traditionally accepted logical etymology, 
although there are certain reasons for that. It is just a more or less 
appropriate name for a (at least definitively) new kind of completeness, 
decidability, etc. 

So Conjecture 2 states that the sequential completeness is not stronger 
than the ordinary one. So far the Conjectures 1 and 2 are open but we are 
going to prove that they actually claim the same. 
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THEOREM 5. 4 
An .:t-Iogic L is sequentially complete iff its minimal extension LaD is 
complete. 

PROOF. ( 1) Let LIiJ be complete, </I, tjJ E FOR and </I If L tjJ. Then there exists 
an .:t-model AI such that AI � L, AI � </I and AI � tjJ. Now regarding AI as an 
!t1.rmodel we have AI�LaD and AI�@)</I .. .. . @)tjJ, so LaDIf@)</I ..... @)tjJ, and 
hence there exists a normal LaD-model AI' such that AI' �Iill</l""'lilltjJ, hence 
AI' � </I and AI' � tjJ, i.e. </I �.L tjJ. 

(2) Let L be sequentially complete, </I E FORm and LrID If </I .  Then 
LIiJIf"&( </I) (recall the definition of "&(</1) from section 3), so there exists a 
conjunctive member @)X ..... (@)X, v . . . v@)X,) of "&(</1) for some 
X, Xl> .. . , X, E FOR, which is not derivable in LaD. We shall find normal 
L-models AI, such that AI, � X and AI, � Xi for i = 1, ... , s. Assume that for 
some i no such a model exists, i.e .  X�.LXi. Then, by the sequential 
completeness of L, Xf-LXi' whence by Lemma 5. 1 .  Lf-O'k)X ..... Xi for some 
k. Therefore LaDf-O'k)X ..... Xi; also LIiJf-@)X ..... O'k)X hence LIiJf-@)X ..... Xi SO 
LrIDf-@)X ..... @)Xi and LaDf-@)X ..... (@)X, v . . .  v@)X,)-a contradiction. So, 
let AI" . . . , AI., be the normal L-models with the desired property. Let AI be 
their disjoint union. Considered as an .:trID-model AI is a normal LaD-model 
such that AI�1illx and AI�4l>"Xi for i=I, . . .  , s, so AI�@)x""'(lliJx, v . . .  v@) 
X,), therefore AI � "&( </I), and so AI � </I. This shows that LaD is 
complete. # 

DEFINITION 
(1) A set of formulae r is normally satisfiable in a logic L if r is satisfiable 

in a normal L-model; 
(2) r is locally normally satisfiable in L if every finite subset of r is 

normally satisfiable in L; 
(3) A logic L is compact if every locally normally satisfiable in L set is 

normally satisfiable in L; 
(4) A logic L is strongly complete if every L-consistent set is normally 

satisfiable in L. 
Actually, strong completeness = frame-completeness + compactness. 

Let L be an .:t-Iogic and </I, tjJ E FOR. Let us note that, as a consequence 
of 5. 1, </I If tjJ is equivalent to L-consistency of the set {.,tjJ} u O'W)</I. So, an 
equivalent definition of sequential completeness is: L is sequentially 
complete if every L-consistent set of formulae of the kind {tjJ} u 0'''')</1 is 
normally satisfiable in L. This condition corresponds to a particular case of 
compactness: call a logic L sequentially compact if it is compact with respect 
to all sets of the kind {tjJ} u 0'''')</1. Thus: an .:t-Iogic L is sequentially 
complete ilf it is complete and sequentially compact. 
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THEOREM 5.5 
Let L be an � -Iogic. 

(1) L is compact iff � is compact; 
(2) L is strongly complete iff LuiJ is strongly complete. 

PROOF. (1) If LuiJ is compact then L is compact too, since LuiJ is conservative 
over L and every normal L-model can be extended to a normal �-model. 
Vice versa, let L be compact and r be a locally normally satisfiable in � 
set. By virtue of 3.7 one can regard every <p e r of the type X v �Xo v [ill 
x, v . . .  v @]x •. Then we can successively choose disjunctive items from 
every such formula of r and thus form a new set 6. which is locally normally 
satisfiable in LuiJ, too. Partition 6. to 3 sets 6." 6.2 and 6.3 as follows: 

6.,=FORn6., 6.2={�x/�xe6.} and 6.3= {[illX/[illxe6.}. Put 6.;= 
U {X, OX, ... , O·X, ... /@]x e 6.,}. 6., U 6.; is locally normally satisfiable 
in � (because 6., U 6.3 is) hence in L. Then 6., U 6.; is satisfied at a point x 
of a normal L -model Al.,. We can choose this model to be generated by x. 
Further, for every �X e 6." the set 6.; U {X} is locally normally satisfiable in 
4m hence satisfiable at the root of some normal L-model .At.. Finally, take 
At to be the disjoint union of .M.., and all .At. for �X e 6.2• Then At is a 
normal L-model (hence LIi1l-model) which satisfies 6., hence r, at x. 

(2) is proved in the same way since completeness implies (consistency = 
local normal satisfiability). # 

Note that, by virtue of a result in Fine [7], all first-order definable 
complete logics are strongly complete (being canonical) hence sequentially 
complete and their minimal extensions in �[ID are strongly complete too. In 
particular, for every strongly complete (e.g. canonical) logic, Conjectures 1 
and 2 hold. 

Here is a sufficient condition for sequential compactness. 

PROPOSITION 5.6 
If an �-Iogic L contains a theorem of the type O'p->omp for some m, k 
such that m > k, then L is sequentially compact. 

PROOF. Let LrO'p->Omp, m>k. Then a set {X} U O(W)<P is normally 
satisfiable in L iff {X} uO(m-')<p is such, since for each n ""=m a formula 
O'p -> O·p is a theorem of L for some integer r, such that k :5 r < m. (More 
exactly, we can choose r = OF k + r" where T" is the remainder of n - k modulo 
m-k.). # 

Thus, for example, every complete extension of K4 is sequentially 
complete. As one of the referees hints, the above statement can be 
obviously strengthened: if L r (p "DP " . . . "O·p)->on+,p for some n, 
then L is sequentially compact. 

1 
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Now we can show that strong completeness is stronger than sequential 
completeness. For example, 

K4.3W = K + O([]P->p)->[]p + O«[]P "p)-> q) v O«Oq "q)-> p) 

which is sequentially complete (being a complete extension of K4) but not 
compact [16]. 

By the way, here is a sufficient model-theoretic condition for compactness. 

PROPOSITION 5.7 
If FR(L) is closed under ultrapowers, then L is compact. 

PROOF. FR(L) is closed under generated subframes, disjoint unions and 
isomorphisms, therefore closedness under ultrapowers implies closedness 
under ultraproducts (see [3] . 8.2). Now, let S be a locally normally satisfiable 
in L set and Sf be the set of all finite subsets of S. For each rE Sf there exists 
a normal L-model .Mr= (Wr, Rr, Vr) and XrE Wr, such that .M:rF 
(I\ •• r 4> )[xr], i.e . .Mr F (I\ ... r ST( 4> ))[xrJ where .Mr is  considered as a model 
for the first-order language L, having a binary predicate symbol R and unary 
predicate symbols (corresponding to the propositional variables) PI' P" . . .  
and ST( 4» is the standard translation of 4> in L, (cf. [3]). Let for each 
rE Sf X r = {c. E s,Ir <;;. C.}. The family X = {X r/r E Sf} is centered, hence it 
is included in a ultrafilter D. Let (.M, x) = (nr." (.Mr, xr})/D . .M is a 
normal L-model (the underlying frame for .M being an L-frame) and 
.M FS[X]. # 

The above results show that, if our Conjectures 1 and 2 are not true, a 
counter-example should be a relatively weak, complete but not compact 
extension of K. 

Warning (Vakarelov, personal communication). The results about transfer 
of completeness do not carry over to completeness results with respect to 
classes of frames, defined through additional semantic conditions, inexpres
sible syntactically. For instance, the logic S4.3 is complete w.r.t. the class of 
all linear orderings LO [25] but is characterized by the class of weak linear 
orderings WLO. However, S4.%1 (which is characterized by WLO too, 
thanks to 5.2, the canonicity of S4.3 and 4.5) is not complete W.r.t. LO since 
the formula @]([]P -> q) v @](Oq-> p) is true in LO and not true in WLO, 
hence not a theorem of S4.3@. 

Let us notice that another, easily achieved transfer (as pointed out by one 
of the referees) concerns canonicily in the classically adopted sense: ([7]) a 
logic L is called canonical if every frame carrying a descriptive general 
L-frame is an L-frame itself. Now, if L is an ..'t-Iogic and ;ji is descriptive 
regarded as a standard general �-frame then it is descriptive as an 
L-frame, too. This obviously leads to transfer of canonicity. 
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5.2. Transfer of finite completeness In �IID 
Now we shall consider transfer of finite completeness. Of course, we can 
confine ourselves to the class of standard models. We can translate the 
problem into �, too: 

DEFINITION 
An �-logic L is sequentially finitely complete if for each <P, 1J! E FOR such 
that <P li-L 1J! there exists a finite normal L-model .At such that .At F <p and 
.At � 1J!. 

In fact, the requirement of normality of the refuting model can be 
dropped by virtue of the analogue of Segerberg's theorem [25) in �IID about 
an equivalence between finite model property (FMP) and finite frame 
property. 

THEOREM 5.8 
An �-Iogic L is sequentially finitely complete iff the minimal extension LIii] is 
finitely complete. 

PROOF. The same as the proof of 5.4, since a finite disjoint union of finite 
models is a finite model, too. # 

Here we set a series of open questions: Do canonicity and finite 
completeness in � imply sequential finite completeness? Do finite complete
ness and sequential completeness imply sequential finite completeness? Does 
finite completeness imply sequential completeness? Does finite completeness 
imply sequential finite completeness? 

Still, we can easily ascertain the transferring of the most frequently used 
technique for proving FMP, namely, filtration. There could be a number of 
different definitions of what it means for a logic to admit filtration. We shall 
adopt here an acceptable and general enough version of this property. We 
say that a logic L admits a filtration if there exists a class of L-models C such 
that L is complete w.r.t. C and for every model .At E C and a finite set of 
formulae r there exists a finite set f' containing r and closed under 
subformulae, such that an L-model can be obtained from .At by filtration 
over f' (in the usual sense, see for example [16)). 

THEOREM 5. 9 
If an �-Iogic L admits filtration then � does, too. 

PROOF. Let r s;; FO� be closed under subformulae and .At = (F, V )  be an 
�-model. For each <p E r we take a formula <P' E FOR obtained from <p by 
replacing all occurrences of subformulae of the sort ffiJ'IjJ by T or J. in 
accordance with V(ffiJ1J!). Obviously V(<P) = V(<P'). Thus we obtain a set 
f' s;; FOR which is closed under subformulas, too. The sets rand f' will 
lead to the same filtrations since ffiJ does not add new conditions. We can 
obtain by filtration on r (hence on r') an L-model hence a standard 
Lrirmodel. # 

-, 
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5.3. Transfer of decldablllty In .2'1l!J 
The next general question is: Does decidability of an .2'-logic L imply 
decidability of L uiJ? 

PROPOSITION 5.10 
The disjunction property 

f-@lt/>-->(@l1/' v @Ix) 
0 = = = = '  <p, 1/', X E F R, 

f-l!!J t/> --> l!!J1/' or f-l!!J t/> --> l!!JX 

holds in luJ, for each .2'-logic L .  

PROOF. Let us assume L uiJ  1I-@lI/>-->@l1/' and LuiJ II-@lt/>-->@]x . Then there 
exist luJ-models Alt = (W;, R" v,) and Atz = (W" R" v,) and points x, E W, 
and x, E W, such that At,I: t/>, Alt; 1/'[x,], Atzl: t/> and Atz h[x,] . Let At be the 
disjoint union of At, and Atz, considered as L-models. At I: L => At I: luJ. 
Moreover At I: I/> hence Atl:@lt/> but At;1/'[x,]*At;@l1/' and Ath[x,]* 
At ;@lx hence At ;@It/>-->(@)1/' v @Ix)· Therefore L [jj] 1I-@lt/>-->(@l1/' v @Ix). 

# 

Through the translation r, Proposition 5.10 reduces the decision problem 
for L IY]  to the problem of deciding provability in luJ of formulae of the form 
@lI/>-->@l1/' where t/>, 1/' E FOR. 

We can uniformly transfer the decidability problem from ..2im to .2'. 

DEFINITION 
An .2'-logic L is sequentially decidable if the set of valid consequences 
{ I/> f-L 1/'} is decidable. 

From 5.3 and 5.10 immediately follows 

PROPOSITION 5.11 
An .2'-logic L is  sequentially decidable iff L uiJ  is  decidable. 

Here we hazard a positive answer of the last question, raising 

CONJECTURE 3 
For each [decidable].2'-logic L there exists an effective function !L: FOR x 
FOR--> N such that for each t/>, 1/' E FOR <P f-L 1/' iff f-LD(n)I/>--> 1/' where 
n = !L( t/>, 1/') . 

We finish this section with two more open questions. Do minimal 
extensions preserve complexity? Do they preserve the interpolation 
property? 

6. Some uses of the universal modality 

The universal modality can be a fairly useful tool for axiomatization. Here 
we sketch some examples demonstrating its merits. 
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Let us first mention that the standard techniques for proving completeness 
and finite model property in :£ (canonical model, filtrations, etc.) work as 
well in :£Iill' As we have already noticed, the canonical model technique will 
cause no additional complications, connected with the non-standard models, 
since all [i!J-rooted models are standard, which is sufficient for the purposes 
of the completeness. For instance it is a routine task to prove that all 
conditions, listed in section 3 are axiomatized by the corresponding 
formulae, added to KIill. Indeed, all of them but the last are canonical (note 
that [i!JO corresponds to the composition W2 

0 R and [i!J[Jp -> p says that 
this relation is reflexive) . All these examples axiomatize logics which admit 
filtration and therefore have the finite model property and are decidable. 
(The proof for the logic of finite paths KIill + [i!J([Jp -> p ) -> p goes through a 
minimal filtration and is a slight modification of the well-known proof of 
completeness for GL.) 

Another curious example is due to Dimiter Vakarelov. The condition 
3xRxx is definable neither in :£ nor in :£[jj) as we have already known . This 
condition is axiomatized in :£ by K, i .e .  no part of it can be expressed there. 
In :£[jj) however, it is axiomatized over K[jj) by the infinite set of axioms 
{On}n.'" where On = <iV«p, ->  <)p,) A . . .  A (Pn -- <)Pn)) (without being de
fined by them) . First, all frames with a reflexive world satisfy all 0..
Actually, validity of On in F = ( W, R )  means that for every n subsets 
P" . . . , Pn of W there exists a world x which has R -successors in all P s 
containing x. In particular, if F is finite and W = {x" . . . , xn} then F � On 
implies (taking the subsets {x,}, . . .  , {xn }) that F�3xRxx. So, the axioms 
{On}ne., guarantee existence of an R-reflexive world in all finite frames 
which satisfy them, though not in all such infinite frames. The proof of 
completeness uses the standard canonical model technique: observe that if 
L = KIill + { O,,}nE'" and L If.</> then {<iV</>} U {Ol1'-- l1'/l1' e FO�} is con
sistent and hence included in a maximal L -consistent set which is reflexive. 

The finitely axiomatized 2'@ -logics form a lattice (unlike the finitely 
axiomatized 2-logics, [3] Ch. 5)  as follows from the next proposition . 

PROPOSITION 6.1 
If L, = KIill + </>, and L2 = KIill + </>2 are 21ill-logics and </>, and </>2 do not share 
common variables then L, n L2 = KIill + [i!J</>, v [i!J</> •. 

PROOF. It is clear that L, n L, � [i!J</>, V [i!J</>2' hence KIill + [i!J</>, v [i!J</>2 £; 
L, n L •. Vice versa, a standard deduction lemma for :£mrlogics shows that 
L, � 1/1 iff KIill � [i!J</>: A . . .  A [i!J</>t-- 1/1 for certain substitution instances 
</>:,  . . . , </>t of </>,; analogously L, � 1/I iff KIID � [i!J</>� A . . . A @J</>�-> 1/1 for 
some </>1, . · · , </>'2. But KIill + [i!J</>, v [i!J</>. � (@J</>: A . . . A [i!J</>�) v ([i!J</>1 A 
. . .  A [i!J</>'2), whence L, n L. £; KIill + @J</>, v [i!J</>.. # 

The above fact is certainly not surprising; an analogous property is proved 
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by analogous arguments, for the normal extensions of S4 in Maksimova and 
Rybakov [21] . 

The prime stimulus for considering the universal modality has come up in 
the context of the proper names for ihe possible worlds (see Passy and 
Tinchev [22, 23]). They are special kinds of propositional variables evaluated 
in the Kripke semantics in single worlds which, added to modal and dynamic 
languages, strongly increase their expressiveness and deductive power. A 
complete axiomatization of the minimal normal logic K N in the modal 
language with names is given in [9] using special kinds of axiom schemata, 
called in [11] admissible forms. The names are axiomatized by the scheme 
M(e A A)-> L(e-> A) , where e is a name, A is a formula, M is a possibility 
form and L is a necessity form. 

After adding the universal modality to the language, the need of 
admissible forms disappears because the form scheme is replaced by the 
axiom scheme �(e A A)->@](e->A). In addition, we can already say that 
each name has a denotation by means of the schema �e and thus to give a 
complete axiomatization of the names over K[jj]. 

Using @] one could elegantly axiomatize puzzling non-classical modalities. 
As an example let us consider a modality [8J with the following semantics in 
an ordinary Kripke model .M. = ( W, R, V) : 
(*) At F [8J I/> [x ] iff V'y(Rxy ... At F I/>[Y]) i.e. R(x) = V( 1/» 

We shall call [8J the 'iff-modality' having in mind a natural interpretation 
as 'necessary and sufficient' (see [9]) or 'all and only' [17] . This is a fairly 
strange modality: neither monotonic, nor anti-monotonic, but extensional; 
no formula of the kind �I/> or its negation is universally valid. 

Humberstone [17] has axiomatized [8J by means of an infinite set of 
schemata and an infinite set of rules. Adding the universal modality to the 
language we can replace that really ingenious axiomatics by the following 
transparent one in the language .'f(�, [ill): 
Axiom schemata of the logic IFF: 

(1) all propositional tautologies; 
(2) SS axioms for @]; 
(3) ([8J,) : @p  A [8Jq)->@](p ... q) ; 
(4) ([8.h) :@](p .... q)->@p .... [8Jq) ; 

Rules: MP and NEG.J . 

THEOREM 6 .2 
The logic IFF is sound and complete. 

PROOF. Soundness is straightforward. Completeness: let I/> be an IFF
consistent formula and w be a maximal IFF-consistent set containing 1/>. 
(There are no problems in the Lindenbaum lemma.) Denote Wo = {y/y is a 
maximal IFF-consistent set and @]w � y}  where @]w = {I/> /@]I/> E w } .  Let w' 
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be a copy of w and W = Wo U {w'} .  It is clear that for every x, Y E W, @]x � y. 
Now we define a relation R in W: 

Rxy iff (@1JI E X and 1JI E Y for some 1JI) or 

(y = w' and �1JI <l- x  for every 1JI» 

Obviously R(w) = R(w'). Consider the model ( W, R, V )  with the canonical 
valuation V :  V(p) = {x E W /1JI E X }  for each propositional variable p. 
Extend V to a valuation on all formulae through the standard semantics of 
[i!J and (*) . Now we shall prove the truth lemma : # 

For each formula 1JI, V(1JI) = {x E W/1JI E X}. The only non-trivial case in the 
induction on 1JI is that V(�1JI) = {x/�1JI E X} .  

Let us first observe that if Rxy, then for every e ,  �e E x implies e E y. 
Indeed, Rxy and �e E x imply �X E x and X E Y for some X. Then 
[i!J(X .... e) e x by @,), so X .... e e y, hence e e y. 

(1) Let �1JI E X. If y E V(1JI) then by IH 1JI e y  and Rxy by definition; if 
Rxy then 1JI e y  by the above observation. Thus R(x) = V(1JI), so x E 
V(�1JI). 

(2) Let �1JI <I- x. Two cases are possible: 
(a) for each X, �X <l- x. Therefore Rxw' but not Rxw. If 1JI <I- w'  then 

w' e R(x)\V(1JI); if 1JI E W' then 1JI E W  and so w E V(1JI)\R(x) and x <I
V@1JI). 

(b) �X e x for some X. Then �X -> � 1JI <I- x hence by ([8h)[i!J(x .... 1JI) <I- x 
so «»« 1JI 1\ -'X) v (X I\ -'1JI» e x, i .e. for some y, (1JI 1\ -,x) e y  or (X 1\ 
-'1JI) E y. 

(b1) (1JI 1\ -,X) E y. Then -,Rxy since otherwise X E y ;  so y e V(1JI)\R(x). 
(b2) (-'1JI 1\ X) E y. Then �X E x and X E Y imply Rxy and so y e  R(x)\V( 1JI). 

The proof of the truth lemma is finished. Thus the theorem is proved. 

Let us note that both modalities [i!J and � are expressible in the bimodal 
language :£(R, -R) : [i!Jp = !±Jp 1\ BP and [8]p = !±Jp 1\ g,p where I±J and 
El are the modalities corresponding to R and -R. The minimal logic of 
:£(R, -R), K- is axiomatized (see [9]) just by S5-axioms for [i!J thus 
expressed and is proved to have the FMP and hence to be decidable. Since 
K- is conservative over IFF (by an easy semantic argument) we have the 
FMP and the decidability of IFF. 

The last two examples suggest that the universal modality can fairly well 
play the role of the admissible forms and more precisely, that the admissible 
forms are devised as rough approximations of [i!J. 

7. Appendix: Independent Joint of .!fll!J"loglcs 

This appendix contains a first author's result concerning polymodal logics 
with [i!J. The picture in the polymodal case is much more complicated 

, 
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because of the interaction between the basic modalities but there exists an 
important particular case-an independent join of modal logics (cf. [26]) ,  
without interacting axioms. A natural question is which virtues of the 
compounding logics are inherited in the independent join. Our result 
concerns join of �Ii!l-logics but after some modifications the technique can be 
applied to classical modal logics as well. Such results about transfer of basic 
logical properties as completeness, finite model property, decidability, 
compactness, etc., are independently obtained in a recent work of Kracht 
and Wolter [20]. 

We shall consider join of two logics but the results are readily generalized 
to the polymodal case (even with infinitely many modalities). Let us start 
with the exact definitions. 

DEFINITION 
Let �, = �(rn) and :e, = �@) be two modal languages and L" Lz be 
normal logics in �, and :e, respectively. We call the logic L, E9 Lz in 
�(rn, [ID axiomatized by the schemata both of L, and L2 spread over the 
joint language an independent join of L, and Lz. 

When consider languages with [ill we modify the above definition in 
accordance with the particular role of the universal modality. 

DEFINITION 
Let �, = �(rn, [ill) and :e, = �(rn , [ill) be two modal languages with [ill 
(note that both languages share the same universal modality) and L" Lz be 
normal logics in �, and :e, respectively. We call the logic L, E9 Lz in 
�(rn, rn, [ill) axiomatized by the schemata both of L,  and Lz spread over 
the joint language an independent join of L, and Lz over �([ill). 

THEOREM 7.1 
An independent join of sequentially complete normal �-logics is sequen
tially complete, too. 

PROOF. Let �, = �(rn) and :e, = �(rn) be two ordinary modal languages 
and L, and Lz be sequentially complete normal logics in �, and :e, 
respectively. Denote �,.z = �(rn, rn)· 

We need some preparation and preliminaries. 

DEFINITION 
An 2,-approximation of an �,.z-formula </> is the result of the replacement of 
all maximal occurrences of subformulae beginning by [j), for j oF i, by 
different propositional variables not occurring in </>. 

DEFINITION 
i-cactus with a set of j-thorns X (for i = 1, 2, j oF i). Inductively: 

(1) Every normal L,-model .J,l = ( W, R" V) is a 2-cactus ( W, R" 0, V) 
with a set of I-thorns W. The same with 1 and 2 exchanged. 
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(2) Let .M' = ( W', RI, R2, V ' )  be a 2-cactus with a set of i-thorns X. 
Now let {.M,. = (w., R�, V.}/x e X} be a set of disjoint normal L,-models 
such that: 

(i) .M. is generated by x for every x e X. 
(ii) W. n w' = {x} .  
(iii) V. agrees with V' over x. 

Then the structure 

.M = (W'  u u  {W./x e X}, R" R2 U U {R�/x e X}, V }  where 

V1w• = V. and VI ... = V' 

is a i-cactus with a set of 2-thorns U {W.\{x}/x e X}. Analogously, starting 
from a i-cactus we obtain a 2-cactus. 

Now let At, , . . .  , ..«", . . .  , by an infinite sequence of cactuses, successively 
constructed as above. They form an increasing chain by inclusion. So we can 
consider the 'limit' of the above construction: .M = (U w .. U Rt, 
U R�, U V.) .  It will be called an infinitary cactus. 

FACT 
Every infinitary cactus is a normal LI EB L,-model. Indeed, erasing all 
RI-arrows in the cactus we obtain a disjoint union of normal L2-models and 
vice versa. 

Now, we are ready to start the proof. Suppose not 4> �L,eL,-'1jJ. We will 
construct an infinitary cactus .M, generated by some w, such that .M F </> and 
.M F 1jJ[w]. 

We start constructing the series of i-cactuses and 2-cactuses. Let 
y = 4> /\ 1jJ and PI" " ,  P. be all propositional variables occurring in 
y, XI, . . .  , X, be all subformulae of y beginning with rn and Xs+I , . . .  , Xm be 
those subformulae which begin with rn. Now, let P'+I ,  . . .  , P'+m be new, 
different, propositional variables which will represent X I, . . .  , Xm in the 
approximations. Hereafter we shall take care only for the variables 
p" . . .  , Pk+m; all others will be irrelevant for what we shall do. 

Let yl = </>1 /\ 1jJI be the corresponding �I-approximation of y. 
Denote by 8" . . .  , 8, all formulae of the type: 

8j = e{PI /\ . . .  /\ e{p. /\ e{+IXI /\ . . .  /\ e�+mXm 

where each e is either empty or negation, and such that not 4> �L,eL,-,8j. 
Let 8; = e{PI /\ . . .  /\ e{p. /\ e{+IX\ /\ . . . /\ e�+mX:', i = i, 2, be their ap

proximations. Denote 8 = 81 V . . . v 8, and 8' = 8\ v . . . v 8�, i = i, 2. We 
call 8 a consistency description for </> and 1jJ and denote it by CD( </>, 1jJ). By 
propositional reasoning, 4> � L,eL, 8. Therefore not </> /\ 8 � L,eL, -'1jJ hence not 
</>1 /\ 81 �L' -'1jJI. Then, by sequential completeness of L" there exists a 
normal LI-model .MI = (WI ' RI, VI) generated by some w, and such that 
.MI F </>1 /\ 81 and .MI F 1jJI[W]. We may assume that V. evaluates only the 
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variables which may appear in .:t,-approximations, i.e. {p"  . . . , Pk} U 
{Pk+,+" . . .  , Pk+m}' Then we extend V, over Pk+I> . . . , Pk+> in accordance 
with their destination: V.(Pk+i) =OF V,(X)), i = 1, . . .  , s. Consider .M, as a 
2-cactus with a set of I-thorns Wt. Now for each I-thorn x there exists 
exactly one OJ such that .M, � 0] [x ]. Since not tf> f-L,an, ,OJ then not tf>2 f-L, ,Of. 
Let .M, = (w., R;, V,) be a normal L2-model, generated by x and such that 
WJl W, = {x} ,  .M, � Of[x] and .M, � tf>2 A (CD(tf>, OJ))2 (repeat the above 
reasoning with OJ instead of 1/1). Again we may assume that V, evaluates 
only those variables which may appear in .'£,-approximations, i .e. 
{Ph "  · , Pt, Pk+" · ·  " Pk+s} ' Extend Vx over Pk+s+l r " " Pk+m accordingly: 
lI,(Pk+i) =OF V,(xi), i = s  + 1, . . . , m. Then clearly V, and V, agree on x. 

Taking such disjoint normal L2-models for every x E W, and proceeding in 
the same way we construct a I-cactus as in the definition. Repeating this 
procedure infinitely many times we obtain a sequence of cactuses and finally 
an infinitary cactus .M = ( W, R" R2, V) .  

We shall prove by a structural induction that for every subformula a of 
tf> A 1/1, .M � a[x] iff .M' � a'[x] iff .M2 � a'[x] where .Mi is .M considered as an 
.,p,-model, for i = 1, 2. 

When a is a propositional variable there is nothing to prove. The Boolean 
steps are trival as usual. 

Let a = ITlP. Then a' = ITlP' and .M � ITlP[x] iff Vy E .M(R ,xy => .M � P[y]) 
iff (by IH) Vy E .M(R,xy => .M' � P'[y]) iff .M' � ITlP'[x]. 

Now let ITlP = Xi for some i E {I ,  . . .  , s} .  Then a' = Pk+i' We shall prove 
.M' �ITlP'[x] iff .M2 �Pk+i[X]. Let .Mk be the cactus from the sequence 
constructed above, where x appears as a thorn and let .Ml and .MZ be its 
restrictions to .:t, and .'£,. Also, let .M, be the model grafted at x. We 
consider two cases: 

(a) x is a I-thorn. Then .M' �ITlP'[x] iff .Ml � ITlP'[x] and .M2 �p'+i [X] iff 
.M, �Pk+i[X] (.M, is an L2-model). Let j E  {I,  . . .  , r} be such that .Ml � O][x] 
(j exists by the construction). Now, .Ml � ITlP'[x] iff ITlP has a positive 
occurrence in OJ iff PHi has a positive occurrence in Of iff .Mx �P'+I[X] 
because .M, � Of[x]. 

(b) x is a 2-thorn. Then .M' � ITlP'[x] iff .M, � ITlP'[x] (.M, is an L,-model) 
and .M2 �Pk+i[X] iff .MZ �Pk+i[X]. Let j E {I, . . .  , r} be such that .M� � OJ[x]. 
Now, .MZ � PHi[X] iff Pk+i has a positive occurrence in Of iff ITlP has a positive 
occurrence in OJ iff .M, � ITlP'[x] because .M, � O][x]. 

The case a = rnp is analogous. The induction is completed. As immediate 
consequences .M � tf> and .M to 1/1 [ w], what we need. # 

As a corollary of this proof we can uniformly translate derivability In 
L, $ L2 to derivability in the components: 

I 
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However, this translation seems not to be really effective since it involves 
again derivability in Lt EEl L2 in order to define CD(.p, "'). 

Now, let us note that the results of section 5 are easily generalized for 
polymodal logics, i.e. a polymodal logic is (finitely) sequentially complete iff 
its minimal extension in �IID is (finitely) complete. Since the constructions 
join and minimal extension commute, we obtain: 

PROPOSITION 7.2 
The independent join over �@) of the minimal extensions of normal 
�-logics Lt and Lz coincides with the minimal extension of the independent 
join of Lt and L2• 

COROLLARY 7.3 
The independent join over �@) of complete minimal extensions of normal 
�-logics Lt and L2 is complete, too. 

Modifying the technique used in the proof of Theorem 7.1  one can obtain 
similar results concerning strong completeness and compactness of inde
pendent join of minimal extensions. Then, as a corollary of Theorem 5.5 
these results can be transferred to usual �-logics. 

As for independent join over �(@]) of arbitrary �IID-logics, the generali
zation of Theorem 7.1 is another open problem. 
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