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This paper shows that the web can be employed to obtain frequencies for bigrams that
are unseen in a given corpus. We describe a method for retrieving counts for adjective-
noun, noun-noun, and verb-object bigrams from the web by querying a search engine. We
evaluate this method by demonstrating: (a) a high correlation between web frequencies
and corpus frequencies; (b) a reliable correlation between web frequencies and plausibility
judgments; (c) a reliable correlation between web frequencies and frequencies recreated
using class-based smoothing; (d) a good performance of web frequencies in a pseudo-
disambiguation task.

Introduction

In two recent papers, Banko and Brill (2001a; 2001b) criticize the fact that current
NLP algorithms are typically optimized, tested, and compared on fairly small data sets
(corpora with millions of words), even though data sets several orders of magnitude larger
are available, at least for some NLP tasks. Banko and Brill (2001a; 2001b) experiment
with context-sensitive spelling correction, a task for which large amounts of data can be
obtained straightforwardly, as no manual annotation is required. They demonstrate that
the learning algorithms typically used for spelling correction benefit significantly from
larger training sets, and that their performance shows no sign of reaching an asymptote
as the size of the training set increases.

Arguably, the largest data set that is available for NLP is the web,1 which currently
consists of at least 968 million pages.2 Data retrieved from the web therefore provides
enormous potential for training NLP algorithms, if Banko and Brill’s (2001a; 2001b) find-
ings for spelling corrections generalize; potential applications include tasks that involve
word n-grams and simple surface syntax. There is a small body of existing research that
tries to harness the potential of the web for NLP. Grefenstette and Nioche (2000) and
Jones and Ghani (2000) use the web to generate corpora for languages where electronic
resources are scarce, while Resnik (1999) describes a method for mining the web in order
to obtain bilingual texts. Mihalcea and Moldovan (1999) and Agirre and Martinez (2000)
use the web for word sense disambiguation, Volk (2001) proposes a method for resolving
PP attachment ambiguities based on web data, Markert, Nissim, and Modjeska (2003)
use the web for the resolution of nominal anaphora, and Zhu and Rosenfeld (2001) use
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web-based n-gram counts to improve language modeling.
A particularly interesting application is proposed by Grefenstette (1998), who uses

the web for example-based machine translation. His task is to translate compounds from
French into English, with corpus evidence serving as a filter for candidate translations.
An example is the French compound groupe de travail. There are five translations of
groupe and three translations for travail (in the dictionary that Grefenstette (1998) is
using), resulting in 15 possible candidate translations. Only one of them, viz., work group
has a high corpus frequency, which makes it likely that this is the correct translation
into English. Grefenstette (1998) observes that this approach suffers from an acute data
sparseness problem if the counts are obtained from a conventional corpus. However, as
Grefenstette (1998) demonstrates, this problem can be overcome by obtaining counts
through web searches, instead of relying on a corpus. Grefenstette (1998) therefore ef-
fectively uses the web as a way of obtaining counts for compounds that are sparse in a
given corpus.

While this is an important initial result, it raises the question of the generality of
the proposed approach to overcoming data sparseness. It remains to be shown that web
counts are generally useful for approximating data that is sparse or unseen in a given
corpus. It seems possible, for instance, that Grefenstette’s (1998) results are limited to his
particular task (filtering potential translations) or to his particular linguistic phenomenon
(noun-noun compounds). Another potential problem is the fact that web counts are far
more noisy than counts obtained from a well-edited, carefully balanced corpus. The effect
of this noise on the usefulness of the web counts is largely unexplored.

Zhu and Rosenfeld (2001) use web-based n-gram counts for language modeling. They
obtain a standard language model from a 103 million word corpus and employ web-
based counts to interpolate unreliable trigram estimates. They compare their interpolated
model against a baseline trigram language model (without interpolation) and show that
the interpolated model yields an absolute reduction in word error rate of .93% over the
baseline. Zhu and Rosenfeld’s (2001) results demonstrate that the web can be a source
of data for language modeling. It is not clear, however, whether their result carries over
to tasks that employ linguistically meaningful word sequences (e.g., head-modifier pairs
or predicate-argument tuples) rather than simply adjacent words. Furthermore, Zhu and
Rosenfeld (2001) do not undertake any studies that evaluate web frequencies directly
(i.e., without a task such as language modeling). This could be done, for instance, by
comparing web frequencies to corpus frequencies, or to frequencies recreated by smooth-
ing techniques.

The aim of the present paper is to generalize Grefenstette’s (1998) and Zhu and
Rosenfeld’s (2001) findings by testing the hypothesis that the web can be employed to
obtain frequencies for bigrams that are unseen in a given corpus. Instead of having a
particular task in mind (which would introduce a sampling bias), we rely on sets of
bigrams that are randomly selected from a corpus. We use a web-based approach for
bigrams that encode meaningful syntactic relations, and obtain web frequencies not only
for noun-noun bigrams, but also for adjective-noun and verb-object bigrams. We thus
explore whether this approach generalizes to different predicate-argument combinations.
We evaluate our web counts in four ways: (a) comparison with actual corpus frequencies
from two different corpora, (b) comparison with human plausibility judgments, (c) com-
parison with frequencies recreated using class-based smoothing, and (d) performance in
a pseudo-disambiguation task on data sets from the literature.
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1 Obtaining Frequencies from the Web

1.1 Sampling Bigrams from the BNC
The data sets used in the present experiment were obtained from the British National
Corpus (BNC; see Burnard (1995)). The BNC is a large, synchronic corpus, consisting of
90 million words of text and 10 million words of speech. The BNC is a balanced corpus,
i.e., it was compiled so as to represent a wide range of present day British English.
The written part includes samples from newspapers, magazines, books (both academic
and fiction), letters, and school and university essays, among other kinds of text. The
spoken part consists of spontaneous conversations, recorded from volunteers balanced
by age, region, and social class. Other samples of spoken language are also included,
ranging from business or government meetings to radio shows and phone-ins. The corpus
represents many different styles and varieties, and is not limited to any particular subject
field, genre, or register.

For the present study, the BNC was used to extract data for three types of predicate-
argument relations. The first type is adjective-noun bigrams, where we assume that the
noun is the predicate that takes the adjective as its argument.3 The second predicate-
argument type we investigate is noun-noun compounds. Here we assume that the right-
most noun is the predicate that selects the leftmost noun as its argument (as compound
nouns are generally right-headed in English). Thirdly, we included verb-object bigrams,
where the verb is the predicate that selects the object as its argument. We only con-
sidered direct NP objects; the bigram consists of the verb and the head noun of the
object. For each of the three predicate-argument relations, we gathered two data sets,
one containing seen bigrams, i.e., bigrams that occur in the BNC, and one with unseen
bigrams, i.e., bigrams that fail to occur in the BNC.

For the seen adjective-noun bigrams, we used the data of Lapata, McDonald, and
Keller (1999), who compiled a set of 90 bigrams as follows. First, 30 adjectives were
randomly chosen from a part-of-speech tagged and lemmatized version of the BNC so
that each adjective had exactly two senses according to WordNet (Miller et al., 1990)
and was unambiguously tagged as “adjective” 98.6% of the time. They used the part-of-
speech tagged version that is made available with the BNC and was tagged using claws4
(Leech, Garside, and Bryant, 1994), a probabilistic part-of-speech tagger, with error rate
ranging from 3% to 4%. The lemmatized version of the corpus was obtained using Karp
et al.’s (1992) morphological analyzer.

The 30 adjectives ranged in BNC frequency from 1.9 to 49.1 per million words, i.e.,
they covered the whole range from fairly infrequent to highly frequent items. Gsearch
(Corley et al., 2001), a chart parser which detects syntactic patterns in a tagged corpus
by exploiting a user-specified context free grammar and a syntactic query, was used to
extract all nouns occurring in a head-modifier relationship with one of the 30 adjectives.
Examples of the syntactic patterns the parser identified are given in Table 1. In the case of
adjectives modifying compound nouns, only sequences of two nouns were included and the
rightmost occurring noun was considered as the head. Bigrams involving proper nouns or
low-frequency nouns (less than 10 per million words) were discarded. This was necessary
as the bigrams were used in experiments involving native speakers (see Section 2.2), and
we wanted to reduce the risk of including words unfamiliar to the experimental subjects.
For each adjective, the set of bigrams was divided into three frequency bands based
on an equal division of the range of log-transformed co-occurrence frequencies. Then one

3 This assumption is disputed in the theoretical literature. For instance, Pollard and Sag (1994)
present an analysis where there is mutual selection between the noun and the adjective.
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Table 1
Example of patterns used for the extraction of adjective-noun bigrams

Pattern Example
A N educational material
A Adv N usual weekly classes
A N N environmental health officers

bigram was chosen at random from each band. This procedure makes sure that the whole
range of frequencies is represented in our sample.

Lapata, Keller, and McDonald (2001) compiled a set of 90 unseen adjective-noun
bigrams using the same 30 adjectives. For each adjective, Gsearch was used to compile a
list of all nouns that failed to co-occur in a head-modifier relationship with the adjective.
Again, proper nouns and low-frequency nouns were discarded from this list. Then each
adjective was paired with three randomly chosen nouns from its list of non-co-occurring
nouns. Examples of seen and unseen adjective-noun bigrams are shown in Table 2.

For the present study, we applied the procedure used by Lapata, McDonald, and
Keller (1999) and Lapata, Keller, and McDonald (2001) to noun-noun bigrams and to
verb-object bigrams, creating a set of 90 seen and 90 unseen bigrams for each type of
predicate-argument relationship. More specifically, 30 nouns and 30 verbs were chosen
according to the same criteria proposed for the adjective study (i.e., minimal sense am-
biguity and unambiguous part-of-speech). All nouns modifying one of the 30 nouns were
extracted from the BNC using a heuristic which looks for consecutive pairs of nouns that
are neither preceded nor succeeded by another noun (Lauer, 1995). His heuristic (see (1))
effectively avoids identifying as two word compounds noun sequences which are part of
a larger compound.

(1) C = {(w2, w3) | w1w2w3w4; w1, w4 6∈ N ; w2, w3 ∈ N}
Here, w1 w2 w3 w4 denotes the occurrence of a sequence of four words and N is the set
of words tagged as nouns in the corpus. C is the set of compounds identified by Lauer’s
(1995) heuristic.

Verb-object bigrams for the 30 preselected verbs were obtained from the BNC using
Cass (Abney, 1996), a robust chunk parser designed for the shallow analysis of noisy
text. The parser recognizes chunks and simplex clauses (i.e., sequences of non-recursive
clauses) using a regular expression grammar and a part-of-speech tagged corpus, without
attempting to resolve attachment ambiguities. It comes with a large-scale grammar for
English and a built-in tool that extracts predicate-argument tuples out of the parse trees
that Cass produces.

The parser’s output was post-processed to remove bracketing errors and errors in
identifying chunk categories that could potentially result in bigrams whose members do
not stand in a verb-argument relationship. Tuples containing verbs or nouns attested
in a verb-argument relationship only once were eliminated. Particle verbs were retained
only if the particle was adjacent to the verb (e.g., come off heroin). Verbs followed by
the preposition by and a head noun were considered instances of verb-subject relations.
It was assumed that PPs adjacent to the verb headed by either of the prepositions in,
to, for, with, on, at, from, of, into, through, and upon were prepositional objects (see
Lapata (2001) for details on the filtering process). Only nominal heads were retained from
the objects returned by the parser. As in the adjective study, noun-noun bigrams and
verb-object bigrams with proper nouns or low-frequency nouns (less than 10 per million
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Table 2
Example stimuli for seen and unseen adjective-noun, noun-noun, and verb-object bigrams
(with log-transformed BNC counts)

adjective-noun bigrams
adjective high medium low unseen
hungry animal 1.79 pleasure 1.38 application 0 tradition, innovation, prey
guilty verdict 3.91 secret 2.56 cat 0 system, wisdom, wartime
naughty girl 2.94 dog 1.6 lunch .69 regime, rival, protocol

noun-noun bigrams
high medium low unseen head noun
process 1.14 user .95 gala 0 collection, clause, coat directory
television 1.53 satellite .95 edition 0 chain, care, vote broadcast
plasma 1.78 nylon 1.20 unit .60 fund, theology, minute membrane

verb-object bigrams
verb high medium low unseen
fulfill obligation 3.87 goal 2.20 scripture .69 participant, muscle, grade
intensify problem 1.79 effect 1.10 alarm 0 score, quota, chest
choose name 3.74 law 1.61 series 1.10 lift, bride, listener

words) were discarded. The sets of noun-noun and verb-object bigrams were divided into
three frequency bands and one bigram was chosen at random from each band.

The procedure described by Lapata, Keller, and McDonald (2001) was followed for
creating sets of unseen noun-noun and verb-object bigrams: for each of noun or verb, we
compiled a list of all nouns with which it failed to co-occur within a noun-noun or verb-
object bigram in the BNC. Again, Lauer’s (1995) heuristic and Abney’s (1996) partial
parser were used to identify bigrams, and proper nouns and low-frequency nouns were
excluded. For each noun and verb, three bigrams were randomly selected from the set of
their non-co-occurring nouns. Table 2 lists examples for the seen and unseen noun-noun
and verb-object bigrams generated by this procedure.

The extracted bigrams are in several respects an imperfect source of information
about adjective-noun or noun-noun modification and verb-object relations. First notice
that both Gsearch and Cass detect syntactic patterns on part-of-speech tagged corpora.
This means that parsing errors are likely to result because of tagging mistakes. Second,
even if one assumes perfect tagging, the heuristic nature of our extraction procedures
may introduce additional noise or miss bigrams for which detailed structural information
would be needed.

For instance, our method for extracting adjective-noun pairs ignores cases where the
adjective modifies noun sequences of length larger than two. The heuristic in (1) considers
only two word noun sequences. Abney’s (1996) chunker recognizes basic syntactic units
without resolving attachment ambiguities or recovering missing information (such as
traces resulting from the movement of constituents). Although parsing is robust and
fast (since unlike traditional parsers no global optimization takes place), the identified
verb-argument relations are undoubtedly somewhat noisy given the errors inherent in
the part-of-speech tagging and chunk recognition procedure. When evaluated against
manually annotated data, Abney’s (1996) parser identified chunks with 87.9% precision
and 87.1% recall. The parser further achieved a per-word accuracy of 92.1% (where per-
word accuracy includes the chunk category and chunk length identified correctly).

Despite their imperfect output, heuristic methods for the extraction of syntactic
relations are relatively common in statistical NLP. Several statistical models employ
frequencies obtained from the output of partial parsers and other heuristic methods;
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Table 3
Examples of dependencies generated by minipar for The fat cat ate the door mat

Head Relation Modifier Description
cat N:det:Det the determiner of noun
cat N:mod:A fat adjective modifier of noun
eat V:subj:N cat subject of verb
eat V:obj:N mat object of verb
mat N:det:Det the determiner of noun
mat N:nn:N door prenominal modifier of noun

these include models for disambiguating the attachment site of prepositional phrases
(Hindle and Rooth, 1993; Ratnaparkhi, 1998), models for interpreting compound nouns
(Lauer, 1995; Lapata, 2002) and polysemous adjectives (Lapata, 2001), models for the
induction of selectional preferences (Abney and Light, 1999), methods for automatically
clustering words according to their distribution in particular syntactic contexts (Pereira,
Tishby, and Lee, 1993), automatic thesaurus extraction (Grefenstette, 1994; Curran,
2002), and similarity-based models of word co-occurrence probabilities (Lee, 1999; Dagan,
Lee, and Pereira, 1999). In this paper we investigate alternative ways for obtaining bigram
frequencies that are potentially useful for such models despite the fact that some of these
bigrams are identified in a heuristic manner and may be noisy.

1.2 Sampling Bigrams from the NANTC
We also obtained corpus counts from a second corpus, the North American News Text
Corpus (NANTC). This corpus differs in several important respects from the BNC. It is
substantially larger, as it contains 350 million words of text. Also, it is not a balanced
corpus, as it only contains material from one genre, viz., news text. However, the text
originates from a variety of sources (Los Angeles Times, Washington Post, New York
Times News Syndicate, Reuters News Service, and Wall Street Journal). While the BNC
covers British English, the NANTC covers American English. All these differences mean
that the NANTC provides a second, independent standard against which to compare web
counts. At the same time the correlation found between the counts obtained from the
two corpora can serve as an upper limit for the correlation that we can expect between
corpus counts and web counts.

The NANTC corpus was parsed using minipar (Lin, 1994; Lin, 2001) a broad cover-
age parser for English. minipar employs a manually constructed grammar and a lexicon
derived from WordNet with the addition of proper names (130,000 entries in total).
Lexicon entries contain part-of-speech and subcategorization information. The gram-
mar is represented as a network of 35 nodes (i.e., grammatical categories) and 59 edges
(i.e., types of syntactic (dependency) relationships). minipar employs a distributed chart
parsing algorithm. Instead of a single chart, each node in the grammar network main-
tains a chart containing partially built structures belonging to the grammatical category
represented by the node. Grammar rules are implemented as constraints associated with
the nodes and edges.

The output of minipar is a dependency tree which represents the dependency rela-
tions between words in a sentence. Table 3 shows a subset of the dependencies minipar
outputs for the sentence The fat cat ate the door mat. In contrast to Gsearch and Cass,
minipar produces all possible parses for a given sentence. The parses are ranked accord-
ing to the product of the probabilities of their edges and the most likely parse is returned.
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Table 4
Log-transformed NANTC counts for seen adjective-noun, noun-noun and verb-object bigrams

adjective-noun bigrams
adjective high medium low
hungry animal .90 pleasure −.30 application .60
guilty verdict 2.82 secret .95 cat −.30
naughty girl .69 dog −.30 lunch −.30

noun-noun bigrams
high medium low head noun
process −.30 user −.30 gala −.30 directory
television 2.70 satellite −.30 edition −.30 broadcast
plasma −.30 nylon 0 unit 0 membrane

verb-object bigrams
verb high medium low
fulfill obligation 2.38 goal 2.04 scripture −.30
intensify problem 1.20 effect .60 alarm −.30
choose name 2.25 law .90 series .48

Lin (1998) evaluated the parser on the susanne corpus (Sampson, 1995), a domain in-
dependent corpus of British English, and achieved a recall of 79% and precision of 89%
on the dependency relations.

For our experiments, we concentrated solely on adjective-noun, noun-noun, and verb
object relations (denoted as N:mod:A, N:nn:N, and V:obj:N in Table 3). From the syn-
tactic analysis provided by the parser, we extracted all occurrences of bigrams that were
attested both in the BNC and the NANTC corpus. This way, we obtained NANTC fre-
quency counts for the bigrams that we had randomly selected from the BNC. Table 4
shows the NANTC counts for the set of seen bigrams from Table 2.

Due to the differences in the extraction methodology (chunking versus full parsing)
and the text genre (balanced corpus versus news text), we expect that some BNC bigrams
will not be attested in the NANTC corpus. More precisely, zero frequencies were returned
for 23 adjective-noun, 16 verb-noun, and 37 noun-noun bigrams. The fact that more zero
frequencies were observed for noun-noun bigrams is perhaps not surprising considering
the ease with which novel compounds are created (Levi, 1978). We adjusted the zero
counts by setting them to .5. This was necessary as all further analyses were carried out
on log-transformed frequencies (see Table 4).

1.3 Obtaining Web Counts
Web counts for bigrams were obtained using a simple heuristic based on queries to the
search engines Altavista and Google. All search terms took into account the inflectional
morphology of nouns and verbs.

The search terms for verb-object bigrams matched not only cases in which the object
was directly adjacent to the verb (e.g., fulfill obligation), but also cases where there was
an intervening determiner (e.g., fulfill the/an obligation). The following search terms were
used for adjective-noun, noun-noun, and verb-object bigrams, respectively:

(2) "A N", where A is the adjective and N is the singular or plural form of the noun.
(3) "N1 N2" where N1 is the singular form of the first noun and N2 is the singular or

plural form of the second noun.
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Table 5
Number of zero counts returned by the queries to search engines and in the NANTC (for
bigrams unseen in the BNC)

adj-noun noun-noun verb-object
Altavista 2 9 1
Google 2 5 0
NANTC 76 82 78

(4) "V Det N" where V is the infinitive, singular present, plural present, past, perfect,
or gerund for of the verb, Det is the determiner the, a or the empty string, and N
is the singular or plural form of the noun.

Note that all searches were for exact matches, which means that the words in the search
terms had to be directly adjacent to score a match. This is encoded using quotation
marks to enclose the search term. All our search terms were in lower case. We searched
the whole web (as indexed by Altavista and Google), i.e., the queries where not restricted
to pages in English.

Based on the web searches, we obtained bigram frequencies by adding up the number
of pages that matched the morphologically expanded forms of the search terms (see the
patterns in (2)–(4)). This process can be automated straightforwardly using a script that
generates all the search terms for a given bigram, issues an Altavista or Google query
for each of the search terms, and then adds up the resulting number of matches for each
bigram. We applied this process to all the bigrams in our data set, covering seen and
unseen adjective-noun, noun-noun, and verb-object bigrams, i.e., a set of 540 bigrams in
total. The queries were carried out in January 2003 (and thus are higher than the counts
reported in Keller, Lapata, and Ourioupina (2002), which were generated about a year
earlier).

For some bigrams that were unseen in the BNC, our web-based procedure returned
zero counts, i.e., there were no matches in the web searches. It is interesting to compare
the web and NANTC with respect to zero counts: both data sources are larger than
the BNC, and hence should be able to mitigate the data sparseness problem to a certain
extend. Table 5 lists the number of zero counts for both web search engines and compares
them to the number of bigrams that yielded no matches in the NANTC. We observe that
the web counts are substantially less sparse than the NANTC counts: in the worst case
there are nine bigrams for which our web queries returned no matches (10% of the
data), while up to 82 bigrams were unseen in the NANTC (91% of the data). Recall
that the NANTC is 3.5 times larger than the BNC, which does not seem to be enough
to substantially mitigate data sparseness. All further analyses were carried out on log-
transformed frequencies, hence we adjusted zero counts by setting them to .5.

Table 6 lists the descriptive statistics for the bigram counts we obtained using Al-
tavista and Google. For comparison, this table also contains the descriptive statistics for
the BNC and NANTC counts (for seen bigrams only), and the counts recreated using
class-based smoothing (see Section 2.3 for details on the recreated frequencies).

From these data, we computed the average factor by which the web counts are larger
than the BNC counts. The results are given in Table 7 and indicate that the Altavista
counts are between 550 and 691 times larger than the BNC counts, while the Google
counts are between 1064 and 1306 times larger than the BNC counts. As we know the
size of the BNC (100 million words), we can use these figures to estimate the number
of words available on the web: between 55.0 and 69.1 billion words for Altavista, and
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Table 6
Descriptive statistics for web counts, corpus counts, and counts recreated using class-based
smoothing (log-transformed)

seen bigrams
adj-noun noun-noun verb-object

Min Max Mean SD Min Max Mean SD Min Max Mean SD
Altavista 1.15 5.84 3.72 1.02 .60 6.16 3.52 1.22 .48 5.86 3.42 1.13
Google 1.54 6.11 4.01 1.01 .90 6.30 3.80 1.23 .60 5.96 3.70 1.11
BNC 0 2.19 .89 .69 0 2.14 .74 .64 0 2.55 .68 .58
NANTC −.30 2.84 .84 .96 −.30 3.02 .56 .94 −.30 3.73 1.90 .98
Smoothing −.06 2.32 1.28 .51 −.70 1.71 .30 .61 −.51 2.07 .53 .57

unseen bigrams
adj-noun noun-noun verb-object

Min Max Mean SD Min Max Mean SD Min Max Mean SD
Altavista −.30 5.00 1.50 .99 −.30 3.97 1.20 1.14 −.30 3.88 1.55 1.06
Google −.30 4.11 1.79 .95 −.30 4.15 1.60 1.12 0 4.19 1.90 1.04
Smoothing −.03 2.10 1.25 .46 −1.01 1.93 .28 .66 −.70 1.95 .53 .58

Table 7
Average factor by which the web counts are larger than the BNC counts (seen bigrams)

adj-noun noun-noun verb-object
Altavista 665 691 550
Google 1306 1151 1064

between 106.4 and 139.6 billion words for Google. These estimates are in the same order
of magnitude as Grefenstette and Nioche’s (2000) estimate that 48.1 billion words of
English are available on the web (based on Altavista counts compiled in February 2000).
They also agree with Zhu and Rosenfeld’s (2001) estimate that the effective size of the
web is between 79 and 108 billion words (based on Altavista, Lycos, and FAST counts;
no date given).

1.4 Potential Sources of Noise in Web Counts
The method we used to retrieve web counts is based on very simple heuristics; it is thus
inevitable that the counts generated will contain a certain amount of noise. In this section
we discuss a number of potential sources of such noise.

An obvious limitation of our method is that it relies on the page counts returned by
the search engines; we do not download the pages themselves for further processing. Note
that many of the bigrams in our sample are very frequent (up to 106 matches, see the
“Max” columns in Table 6), hence the effort involved in downloading all pages would be
immense (though methods for downloading a representative could probably be devised).

Our approach estimates web frequencies based not on bigram counts directly, but
on page counts. In other words, it ignores the fact that a bigram can occur more than
once on a given web page. This approximation is justified, as Zhu and Rosenfeld (2001)
demonstrated for unigrams, bigrams, and trigrams: page counts and n-gram counts are
highly correlated on a log-log scale. This result is based on queries to Altavista, a search
engine which returns both the number of pages and the overall number of matches for a
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given query.4

Another important limitation of our approach is due to fact that both Google and
Altavista remove punctuation and capitalization, even if the search term is quoted. This
can lead to false positives, for instance if the match crosses a phrase boundary, such as
in (5) which matches hungry prey. Other false positives can be generated by page titles
and links, such as the examples (6) and (7) which match edition broadcast.5

(5) The lion will kill only when it’s hungry. Prey can usually sense when lions are
hunting.

(6) 10th Edition Broadcast Products Catalog (as a page title)
(7) Issue/Edition/Broadcast (as a link)

The fact that our method does not download web pages means that no tagging, chunking,
and parsing can be carried out to ensure that the matches are correct. Instead we rely on
the simple adjacency of the search terms, which is enforced by using quoted queries (see
Section 1.3 for details). This means that we miss any non-adjacent matches, even though a
chunker or parser (such as the one used for extracting BNC or NANTC bigrams) would
find them. An example is an adjective-noun bigram in which an adverbial intervenes
between the adjective and the noun (see Table 1).

Furthermore, the absence of tagging, chunking, and parsing can also generate false
positives, in particular for queries containing words with part-of-speech ambiguity. (Re-
call that our bigram selection procedure ensures that the predicate word, but not the
argument word, is unambiguous in terms of its POS tagging in the BNC.) As an example
consider process directory, which in our data set is a noun-noun bigram (see Table 2).
One of the matches returned by Google is (8), where process is a verb. Another example
is fund membrane, which is a noun-noun bigram in our data set, but which matches (9)
in Google.

(8) The global catalog server’s function is to process directory searches for the entire
forest.

(9) Green grants fund membrane technology.

Another source of noise is the fact that Google (but not Altavista) will sometimes return
pages that do not include the search term at all. This can happen if the search term is
contained in a link to the page (but not in the page itself).

As we did not limit our web searches to English (even though many search engines
now allow to set the target language for a search), there is also a risk that false positives
are generated by crosslinguistic homonyms, i.e., by words of other languages that are
spelled in the same way as the English words in our data sets. However, this problem
is mitigated by the fact that English is by far the most common language on the web,
as shown by Grefenstette and Nioche (2000). Also, the chance of two such homonyms
forming a valid bigram in another language is probably fairly small.

To summarize, web counts are certainly less sparse than the counts in a corpus of a
fixed size (see Section 1.3). However, web counts are also likely to be significantly more
noisy than counts obtained from a carefully tagged and chunked or parsed corpus, as
the examples in this section show. It is therefore essential to carry out a comprehensive
evaluation of the web counts generated by our method. This is the topic of the next
section.

4 Note that this feature of Altavista has since been discontinued; hence in the present paper we had
no option but to use page counts. However, Keller, Lapata, and Ourioupina (2002) used Altavista
match counts (instead of page counts) on the same data sets; their results agree with the ones
reported in the present paper very closely.

5 Some of the examples in (5)–(9) were kindly provided by a reviewer.
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Table 8
Correlation of BNC counts with web counts (seen bigrams)

adj-noun noun-noun verb-object
Altavista .847** .720** .762**
Google .850** .720** .766**
Smoothing .248* .277** .342**

*p < .05 (one-tailed) **p < .01 (one-tailed)

Table 9
Correlation of NANTC counts with web counts (seen bigrams)

adj-noun noun-noun verb-object
Altavista .712** .667** .788**
Google .712** .662** .787**
BNC .710** .672** .814**
Smoothing .338** .317** .263*

*p < .05 (one-tailed) **p < .01 (one-tailed)

2 Evaluation

2.1 Evaluation Against Corpus Frequencies
Since web counts can be relatively noisy, as discussed in the previous section, it is crucial
to determine if there is a reliable relationship between web counts and corpus counts.
Once this is assured, we can explore the usefulness of web counts for overcoming data
sparseness. We carried out a correlation analysis to determine if there is a linear relation-
ship between BNC and NANTC counts and Altavista and Google counts. All correlation
coefficients reported in this paper refer to Pearson’s r.6 All results were obtained on
log-transformed counts.7

Table 8 lists the results of correlating web counts with corpus counts from the BNC,
the corpus that our bigrams were sampled from (see Section 1.1). A high correlation
coefficient was obtained across the board, ranging from .720 to .847 for Altavista counts
and from .720 to .850 for Google counts. This indicates that web counts approximate
BNC counts for the three types of bigrams under investigation. Note that there is almost
no difference between the correlations achieved using Google and Altavista counts.

It is important to check that these results are also valid for counts obtained from other
corpora. We therefore correlated our web counts with the counts obtained from NANTC,
a corpus that is larger than the BNC, but is drawn from a single genre, viz., news text (see
Section 1.2). The results are listed in Table 9. We find that Google and Altavista counts
also correlate significantly with NANTC counts. The correlation coefficients range from
.667 to .788 for Altavista and from .662 to .787 for Google. Again, there is virtually no

6 Correlation analysis is a way of measuring the degree of linear association between two variables.
Effectively, we are fitting a linear equation y = ax + b to the data; this means that the two variables
x and y (which in our case represent frequencies or judgments) can still differ by a multiplicative
constant a and an additive constant b, even if they are highly correlated.

7 It is well-known that corpus frequencies have a Zipfian distribution. Log-transforming them is a way
of normalizing the counts before applying statistical tests. We apply correlation analysis on the
log-transformed data, which is equivalent to computing a log-linear regression coefficient on the
untransformed data.
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difference between the two search engines. We also observe that the correlation between
web counts and BNC is generally slightly higher than the correlation between web counts
and NANTC counts. We carried out one-tailed t-tests to determine if the differences in the
correlation coefficients were significant. We found that both Altavista counts (t(87) =
3.11, p < .01) and Google counts (t(87) = 3.21, p < .01) were significantly better
correlated with BNC counts than with NANTC counts for adjective-noun bigrams. The
difference in correlation coefficients was not significant for noun-noun and verb-object
bigrams, for either search engine.

Table 9 also lists the correlations between BNC counts and NANTC counts. The
inter-corpus correlation can be regarded as an upper limit for the correlations we can
expect between counts from two corpora that differ in size and genre, and that were ob-
tained using different extraction methods. The correlation between Altavista and Google
counts and NANTC counts reached the upper limit for all three bigram types (one-tailed
t-tests found no significant differences between the correlation coefficients). The corre-
lation between BNC counts and web counts reached the upper limit for noun-noun and
verb-object bigrams (no significant differences for either search engine), and significantly
exceeded it for adjective-noun bigrams for Altavista (t(87) = 3.16, p < .01) and Google
(t(87) = 3.26, p < .01).

We conclude that simple heuristics (see Section 1.3) are sufficient to obtain useful
frequencies from the web; it seems that the large amount of data available for web counts
outweighs the associated problems (noisy, unbalanced, etc.). We found that web counts
were highly correlated with frequencies from two different corpora. Furthermore, web
counts and corpus counts are as highly correlated as counts from two different corpora
(which can be regarded as an upper bound).

Note that Tables 8 and 9 also contain the correlation coefficients obtained when com-
paring corpus frequencies with frequencies that were recreated using class-based smooth-
ing, using the BNC as a training corpus (after removing the seen bigrams). This will be
discussed in more detail in Section 2.3.

2.2 Evaluation Against Plausibility Judgments
Previous work has demonstrated that corpus counts correlate with human plausibility
judgments for adjective-noun bigrams. This result holds for both seen bigrams (Lapata,
McDonald, and Keller, 1999) and for unseen bigrams whose counts were recreated using
smoothing techniques (Lapata, Keller, and McDonald, 2001). Based on these findings,
we decided to evaluate our web counts on the task of predicting plausibility ratings. If
the web counts for bigrams correlate with plausibility judgments, then this indicates that
the counts are valid, in the sense of being useful for predicting the intuitive plausibility of
predicate-argument pairs. The degree of correlation between web counts and plausibility
judgments is an indicator of the quality of the web counts (compared to corpus counts
or counts recreated using smoothing techniques).

2.2.1 Method For seen and unseen adjective-noun bigrams, we used the two sets of
plausibility judgments collected by Lapata, McDonald, and Keller (1999) and Lapata,
Keller, and McDonald (2001), respectively. We conducted four additional experiments
to collect judgments for noun-noun and verb-object bigrams, both seen and unseen. The
experimental method was the same for all six experiments.

Materials. The experimental stimuli were based on the six sets of seen or unseen bi-
grams extracted from the BNC as described in Section 1.1 (adjective-noun, noun-noun,
and verb-object bigrams). In the adjective-noun and noun-noun case, the stimuli simply
consisted of the bigrams. In the verb-object case, the bigrams were embedded in a short
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sentence to make them more natural: a proper name subject was added.

Procedure. The experimental paradigm was magnitude estimation (ME), a technique
standardly used in psychophysics to measure judgments of sensory stimuli (Stevens,
1975), which Bard, Robertson, and Sorace (1996) and Cowart (1997) have applied to the
elicitation of linguistic judgments. The ME procedure requires subjects to estimate the
magnitude of physical stimuli by assigning numerical values proportional to the stimulus
magnitude they perceive. In contrast to the 5- or 7-point scale conventionally used to
measure human intuitions, ME employs an interval scale, and therefore produces data
for which parametric inferential statistics are valid.

ME requires subjects to assign numbers to a series of linguistic stimuli in a pro-
portional fashion. Subjects are first exposed to a modulus item, which they assign an
arbitrary number. All other stimuli are rated proportional to the modulus. In this way,
each subject can establish their own rating scale, thus yielding maximally fine-graded
data and avoiding the known problems with the conventional ordinal scales for linguistic
data (Bard, Robertson, and Sorace, 1996; Cowart, 1997; Schütze, 1996).

The experiments reported in this paper were carried out using the WebExp software
package (Keller et al., 1998). A series of previous studies has shown that data obtained us-
ing WebExp closely replicates results obtained in a controlled laboratory setting; this was
demonstrated for acceptability judgments (Keller and Alexopoulou, 2001), co-reference
judgments (Keller and Asudeh, 2001), and sentence completions (Corley and Scheepers,
2002).

In the present experiments, subjects were presented with bigram pairs and were asked
to rate the degree of plausibility proportional to a modulus item. They first saw a set
of instructions that explained the ME technique and the judgment task. The concept of
plausibility was not defined, but examples of plausible and implausible bigrams were given
(different examples for each stimulus set). Then subjects had to fill in a questionnaire
with basic demographic information. The experiment proper consisted of three phases:
(a) a calibration phase designed to familiarize subjects with the task; here, they had to
estimate the length of five horizontal lines; (b) a practice phase in which subjects judged
the plausibility of eight bigrams (similar to the ones in the stimulus set); (c) the main
experiment, in which each subject judged one of the six stimulus sets (90 bigrams). The
stimuli were presented in random order, with a new randomization being generated for
each subject.

Subjects. A separate experiment was run for each set of stimuli. The number of subjects
per experiment is listed in Table 10 (in the column labeled “N”). All Subjects were self-
reported native speakers of English; they were recruited by postings to newsgroups and
mailing lists. Participation was voluntary and unpaid.

WebExp collects by-item response time data; subjects whose response times were very
short or very long were excluded from the sample, as they are unlikely to have completed
the experiment adequately. We excluded the data of subjects that had participated more
than once in the same experiment, based on their demographic data and on their internet
connection data, which is logged by WebExp.

2.2.2 Results and Discussion The experimental data were normalized by dividing
each numerical judgment by the modulus value that the subject had assigned to the
reference sentence. This operation creates a common scale for all subjects. Then the
data were transformed by taking the decadic logarithm. This transformation ensures
that the judgments are normally distributed and is standard practice for magnitude
estimation data (Bard, Robertson, and Sorace, 1996; Cowart, 1997; Stevens, 1975). All
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Table 10
Descriptive statistics for plausibility judgments (log-transformed); N is the number of subjects
used in each experiment

adj-noun bigrams noun-noun bigrams verb-object bigrams
N Min Max Mean SD N Min Max Mean SD N Min Max Mean SD

Seen 30 −.85 .11 −.13 .22 25 −.15 .69 .40 .21 27 −.52 .45 .12 .24
Unseen 41 −.56 .37 −.07 .20 25 −.49 .52 −.01 .23 21 −.51 .28 −.16 .22

further analyses were conducted on the normalized, log-transformed judgments.
Table 10 lists the descriptive statistics for all six judgment experiments: the original

experiments by Lapata, McDonald, and Keller (1999) and Lapata, Keller, and McDonald
(2001) for adjective-noun bigrams, and our new ones for noun-noun and verb-object
bigrams.

We used correlation analysis to compare corpus counts and web counts with plausi-
bility judgments. Table 11 (top half) lists the correlation coefficients that were obtained
when correlating log-transformed web counts (Altavista and Google) and corpus counts
(BNC and NANTC) with mean plausibility judgments for seen adjective-noun, noun-
noun, and verb-object bigrams.

The results show that both Altavista and Google counts correlate well with plausi-
bility judgments for seen bigrams. The correlation coefficient for Altavista ranges from
.641 to .700; for Google, it ranges from .624 to .692. The correlations for the two search
engines are very similar, which is also what we found in Section 2.1 for the correlations
between web counts and corpus counts.

Note that the web counts consistently achieve a higher correlation with the judgments
than the BNC counts, which range from .488 to .569. We carried out a series of one-
tailed t-tests to determine if the differences between the correlation coefficients for the
web counts and the correlation coefficients for the BNC counts were significant. For the
adjective-noun bigrams, the Altavista coefficient was significantly higher than the BNC
coefficient (t(87) = 1.76, p < .05), while the difference between the Google coefficient
and the BNC coefficient failed to reach significance. For the noun-noun bigrams, both the
Altavista and the Google coefficients were significantly higher than the BNC coefficient
(t(87) = 3.11, p < .01 and t(87) = 2.95, p < .01). Also for the verb-object bigrams,
both the Altavista coefficient and the Google coefficient were significantly higher than
the BNC coefficient (t(87) = 2.64, p < .01 and t(87) = 2.32, p < .05).

A similar picture was found for the NANTC counts. Again, the web counts outper-
form the corpus counts in predicting plausibility. For the adjective-noun bigrams, both
the Altavista and the Google coefficient were significantly higher than the NANTC co-
efficient (t(87) = 1.97, p < .05; t(87) = 1.81, p < .05). For the noun-noun bigram, the
Altavista coefficient was higher than the NANTC coefficient (t(87) = 1.64, p < .05), but
the Google coefficient was not significantly different from the NANTC coefficient. For
verb-object bigrams, the difference was significant for both search engines (t(87) = 2.74,
p < .01; t(87) = 2.38, p < .01).

In sum, for all three types of bigrams, the correlation coefficients achieved with
Altavista were significantly higher than the ones achieved by both BNC and NANTC.
Google counts outperformed corpus counts for all bigrams with the exception of adjective-
noun counts from the BNC, and noun-noun counts from the NANTC.

Table 11 (bottom half) lists the correlations coefficients obtained by comparing
log-transformed judgments with log-transformed web counts for unseen adjective-noun,
noun-noun, and verb-object bigrams. We observe that the web counts consistently show
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Table 11
Correlation of plausibility judgments with web counts, corpus counts, and counts recreated
using class-based smoothing; Agreement is the inter-subject agreement on the judgment task

seen bigrams
adj-noun noun-noun verb-object

Altavista .650** .700** .641**
Google .641** .692** .624**
BNC .569** .517** .488**
NANTC .526** .597** .491**
Smoothing .329** .318** .223*
Agreement .630** .641** .604**

unseen bigrams
Altavista .480** .578** .551**
Google .473** .595** .520**
Smoothing .342** .372** .298**
Agreement .550** .570** .640**

*p < .05 (one-tailed) **p < .01 (one-tailed)

a significant correlation with the judgments, the coefficient ranging from .480 to .578
for Altavista counts, and from .473 to .595 for the Google counts. Table 11 also lists
the correlations between plausibility judgments and counts recreated using class-based
smoothing, which we will discuss in Section 2.3.

An important question is how well humans agree when judging the plausibility of
adjective-noun, noun-noun and verb-noun bigrams. Inter-subject agreement gives an up-
per bound for the task and allows us to interpret how well our web-based method does in
relation to humans. To calculate inter-subject agreement we used leave one-out resam-
pling. This technique is a special case of n-fold crossvalidation (Weiss and Kulikowski,
1991) and has been previously used for measuring how well humans agree on judging
semantic similarity (Resnik, 1999; Resnik, 2000).

For each subject group, we divided the set of the subjects’ responses with size n into
a set of size n − 1 (i.e., the response data of all but one subject) and a set of size one
(i.e., the response data of a single subject). We then correlated the mean ratings of the
former set with the ratings of the latter. This was repeated n times (see the number of
participants in Table 6); the mean of the correlation coefficients is shown in Table 11
under the heading “Agreement” for the seen and unseen bigrams.

For both seen and unseen bigrams, we found no significant difference between the
upper bound (inter-subject agreement) and the correlation coefficients reached using
either Altavista or Google counts. This holds for all three types of bigrams. The same
picture emerged for the BNC and NANTC counts: these correlation coefficients were not
significantly different from the upper limit, for all three types of bigrams, both for seen
and for unseen bigrams.

To conclude, our evaluation demonstrated that web counts reliably predict human
plausibility judgments, both for seen and for unseen predicate-argument bigrams. Al-
tavista counts for seen bigrams are a better predictor of human judgments than BNC
and NANTC counts. These results show that our heuristic method yields valid frequen-
cies; the simplifications we made in obtaining the web counts (see Section 1.3), as well
as the fact that web data are noisy (see Section 1.4), seem to be outweighed by the fact
that the web is up to a thousand times larger than the BNC.
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Table 12
Correlation of counts recreated using class-based smoothing with web counts

seen bigrams
adj-noun noun-noun verb-object

Altavista .344** .362** .361**
Google .330** .343** .349**

unseen bigrams
Altavista .439** .386** .412**
Google .444** .421** .397**
*p < .05 (one-tailed) **p < .01 (one-tailed)

2.3 Evaluation Against Class-based Smoothing
The evaluation in the last two sections established that web counts are useful for ap-
proximating corpus counts and for predicting plausibility judgments. As a further step in
our evaluation, we correlated web counts with counts recreated by applying a class-based
smoothing method on the BNC.

We recreated co-occurrence frequencies for predicate-argument bigrams using a sim-
plified version of Resnik’s (1993) selectional association measure proposed by Lapata,
Keller, and McDonald (2001). In a nutshell, this measure replaces Resnik’s (1993)
information-theoretic approach with a simpler measure which makes no assumptions
with respect to the contribution of a semantic class to the total quantity of informa-
tion provided by the predicate about the semantic classes of its argument. It simply
substitutes the argument occurring in the predicate-argument bigram with the concept
by which it is represented in the WordNet taxonomy. Predicate-argument co-occurrence
frequency is estimated by counting the number of times the concept corresponding to
the argument is observed to co-occur with the predicate in the corpus. Because a given
word is not always represented by a single class in the taxonomy (i.e., the argument co-
occurring with a predicate can generally be the realization of one of several conceptual
classes), Lapata, Keller, and McDonald (2001) constructed the frequency counts for a
predicate-argument bigram for each conceptual class by dividing the contribution from
the argument by the number of classes to which it belongs. They demonstrate that the
counts recreated using this smoothing technique correlate significantly with plausibility
judgments for adjective-noun bigrams. They also show that this class-based approach
outperforms distance-weighted averaging (Dagan, Lee, and Pereira, 1999), a smoothing
method that recreates unseen word co-occurrences on the basis of distributional similarity
(without relying on a predefined taxonomy), in predicting plausibility.

In the current study, we used the smoothing technique of Lapata, Keller, and Mc-
Donald (2001) to recreate not only adjective-noun bigrams, but also noun-noun and
verb-object bigrams. As already mentioned in Section 1.1, it was assumed that the noun
is the predicate in adjective-noun bigrams; for noun-noun bigrams, we treated the right
noun as the predicate, while for verb-object bigrams, we treated the verb as the predi-
cate. We applied Lapata, Keller, and McDonald’s (2001) technique to the unseen bigrams
for all three bigram types. We also used it on the seen bigrams, which were treated as
unseen by removing all instances of the bigrams from the training corpus.

To test the claim that web frequencies can be used to overcome data sparseness, we
correlated the frequencies recreated using class-based smoothing on the BNC with the
frequencies obtained from the web. The correlation coefficients are listed in Table 12 for
both seen and unseen bigrams. In all cases, a significant correlation between web counts
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and recreated counts is obtained. For seen bigrams, the correlation coefficient ranged from
.344 to .362 for Altavista counts, and from .330 to .349 for Google counts. For unseen
bigrams, the correlations were somewhat higher, ranging from .386 to .439 for Altavista
counts, and from .397 to .444 for Google counts. For both seen and unseen bigrams, there
was only a very small difference between the correlation coefficients obtained with the
two search engines.

It is also interesting to compare the performance of class-based smoothing and web
counts on the task of predicting plausibility judgments. The correlation coefficients are
listed in Table 11. The recreated frequencies are correlated significantly with all three
types of bigrams, both for seen and unseen bigrams. For the seen bigrams, we found
that the correlation coefficients obtained using smoothed counts were significantly lower
than the upper bound for all three types of bigrams (t(87) = 3.01, p < .01; t(87) = 3.23,
p < .01; t(87) = 3.43, p < .01). This also held for the unseen bigrams: the correlations
obtained using smoothing were significantly lower than the upper bound for all three
types of bigrams (t(87) = 1.86, p < .05; t(87) = 1.97, p < .05; t(87) = 3.36, p < .01).

Recall that the correlation coefficients obtained using the web counts were not found
to be significantly different from the upper bound, which indicates that web counts are
better predictors of plausibility than smoothed counts. This fact was confirmed by further
significance testing: for seen bigrams, we found that the Altavista correlation coefficients
were significantly higher than correlation coefficients obtained using smoothing, for all
three types of bigrams (t(87) = 3.31, p < .01; t(87) = 4.11, p < .01; t(87) = 4.32,
p < .01). This also held for Google counts (t(87) = 3.16, p < .01; t(87) = 4.02, p < .01;
t(87) = 4.03, p < .01). For unseen bigrams, the Altavista coefficients and the coefficients
obtained using smoothing were not significantly different for adjective-noun bigrams, but
the difference reached significance for noun-noun and verb-object bigrams (t(87) = 2.08,
p < .05; t(87) = 2.53, p < .01). For Google counts, the difference was again not significant
for adjective-noun bigrams, but it reached significance for noun-noun and verb-object
bigrams (t(87) = 2.34, p < .05; t(87) = 2.15, p < .05).

Finally, we conducted a small study to investigate the validity of the counts that
were recreated using class-based smoothing. We correlated the recreated counts for the
seen bigrams with their actual BNC and NANTC frequencies. The correlation coeffi-
cients are reported in Tables 8 and 9. We found that the correlation between recreated
counts and corpus counts was significant for all three types of bigrams, for both corpora.
This demonstrates that the smoothing technique we employed generates realistic cor-
pus counts, in the sense that the recreated counts are correlated with the actual counts.
However, the correlation coefficients obtained using web counts were always substantially
higher than those obtained using smoothed counts. These differences were significant for
the BNC counts for Altavista (t(87) = 8.38, p < .01; t(87) = 5.00, p < .01; t(87) = 5.03,
p < .01) and Google (t(87) = 8.35, p < .01; t(87) = 5.00, p < .01; t(87) = 5.03,
p < .01). They were also significant for the NANTC counts for Altavista (t(87) = 4.12,
p < .01; t(87) = 3.72, p < .01; t(87) = 6.58, p < .01) and Google (t(87) = 4.08, p < .01;
t(87) = 3.06, p < .01; t(87) = 6.47, p < .01).

To summarize, the results presented in this section indicate that web counts are
indeed a valid way of obtaining counts for bigrams that are unseen in a given corpus: they
correlate reliably with counts recreated using class-based smoothing. For seen bigrams,
we found that web counts correlate with counts that were recreated using smoothing
techniques (after removing the seen bigrams from the training corpus). For the task
of predicting plausibility judgments, we were able to show that web counts outperform
recreated counts, both for seen and for unseen bigrams. Finally, we found that web counts
for seen bigrams correlate better than recreated counts with the real corpus counts.

It is beyond the scope of the present study to undertake a full comparison between
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web counts and frequencies recreated using all available smoothing techniques (and all
available taxonomies that might be used for class-based smoothing). The smoothing
method discussed above is simply one type of class-based smoothing. Other more sophis-
ticated class-based methods do away with the simplifying assumption that the argument
co-occurring with a given predicate (adjective, noun, verb) is distributed evenly across
its conceptual classes and attempt to find the right level of generalization in a concept
hierarchy, by discounting for example the contribution of very general classes (Clark
and Weir, 2001; McCarthy, 2000; Li and Abe, 1998). Other smoothing approaches such
as discounting (Katz, 1987) and distance-weighted averaging (Grishman and Sterling,
1994; Dagan, Lee, and Pereira, 1999) recreate counts of unseen word combinations by
exploiting only corpus-internal evidence, without relying on taxonomic information. Our
goal was to demonstrate that frequencies retrieved from the web are a viable alternative
to conventional smoothing methods when data is sparse; we do not claim that our web-
based method is necessarily superior to smoothing or that it should be generally preferred
over smoothing methods. However, the next section will present a small-scale study that
compares the performance of several smoothing techniques with the performance of web
counts on a standard task from the literature.

2.4 Pseudo-disambiguation
In the smoothing literature, recreated frequencies are typically evaluated using pseudo-
disambiguation (Clark and Weir, 2001; Dagan, Lee, and Pereira, 1999; Lee, 1999; Pereira,
Tishby, and Lee, 1993; Prescher, Riezler, and Rooth, 2000; Rooth et al., 1999). The aim
of this task is to decide if a given algorithm recreates frequencies that make it possible
to distinguish between seen and unseen bigrams in a given corpus. A set of pseudo-
bigrams is constructed according to a set of criteria (detailed below) that ensure that
they are unattested in the training corpus. Then the seen bigrams are removed from
the training data and the smoothing method is used to recreate the frequencies of both
the seen bigrams and the pseudo-bigrams. The smoothing method is then evaluated by
comparing the frequencies it recreates for both types of bigrams.

We evaluated our web counts by applying the pseudo-disambiguation procedure that
Rooth et al. (1999), Prescher, Riezler, and Rooth (2000), and Clark and Weir (2001)
employed for evaluating recreated verb-object bigram counts. Take a verb-object bigram
(v, n) that is seen in a given corpus and pair the noun n with a randomly chosen verb v′

that fails to take n as its object. This results in an unseen verb-object bigram (v′, n).
Now treat the seen bigram as unseen (i.e., remove all of its occurrences from the training
corpus) and recreate the frequencies of both the seen and the unseen bigram (using
smoothing, or web counts, in our case). The task is then to decide which of the two
verbs v and v′ take the noun n as their object. For this, the recreated bigram frequency
is used: the bigram with the higher recreated frequency (or probability) is taken to be the
seen bigram. If this bigram is really the seen one, then the disambiguation is correct. The
overall percentage of correct disambiguations is a measure of the quality of the recreated
frequencies (or probabilities). In the following, we will first describe in some detail the
experiments that Rooth et al. (1999) and Clark and Weir (2001) conducted. We will then
discuss how we replicated their experiments using the web as an alternative smoothing
method.

Rooth et al. (1999) use pseudo-disambiguation to evaluate a class-based model that is
derived from unlabeled data using the expectation maximization (EM) algorithm. From
a data set of 1,280,712 (v, n) pairs (obtained from the BNC using Carroll and Rooth’s
(1998) parser), they randomly selected 3,000 pairs, such that each pair contained a fairly
frequent verb and noun (only verbs and nouns that occurred between 30 and 3,000 times
in the data were considered). For each pair (v, n) a fairly frequent verb v′ was randomly
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Table 13
Percentage of correct disambiguations on the pseudo-disambiguation task using web counts
and counts recreated using EM-based clustering (Rooth et al., 1999)

Data set N Altavista Altavista Rooth et al.
cond. prob. joint prob.

Subject 717 71.2 68.5 −
Objects 620 85.2 77.5 −
Subjects and objects 1337 77.7 72.7 80.0

chosen such that the pair (v′, n) did not occur in the data set. Given the set of (v, n, v′)
triples (a total of 1,337), the task was to decide whether (v, n) or (v′, n) is the correct
(i.e., seen) pair by comparing the probabilities P (n|v) and P (n|v′). The probabilities
were recreated using Rooth et al.’s (1999) EM-based clustering model on a training set
from which all seen pairs (v, n) had been removed. An accuracy of 80% on the pseudo-
disambiguation task was achieved (see Table 13).

Prescher, Riezler, and Rooth (2000) evaluate Rooth et al.’s (1999) EM-based cluster-
ing model again using pseudo-disambiguation, but on a separate data set using a slightly
different method for constructing the pseudo-bigrams. They used a set of 298 (v, n, n′)
BNC triples where (v, n) was chosen as in Rooth et al. (1999) but paired with a ran-
domly chosen noun n′. Given the set of (v, n, n′) triples the task was to decide whether
(v, n) or (v, n′) is the correct pair. Prescher, Riezler, and Rooth (2000) report pseudo-
disambiguation results with two clustering models: (a) Rooth et al.’s (1999) clustering
approach that models the semantic fit between a verb and its argument (VA model) and
(b) a refined version of this approach that only models the fit between a verb and its
object (VO model), disregarding other arguments of the verb. The results of the two
models on the pseudo-disambiguation task are shown in Table 14.

At this point, it is important to note that both Rooth et al. (1999) and Prescher, Rie-
zler, and Rooth (2000) do not use pseudo-disambiguation for the final evaluation of their
models. Rather, the performance on the pseudo-disambiguation task is used to optimize
the model parameters. The results in Tables 13 and 14 list the pseudo-disambiguation
performance achieved for the best parameter settings. In other words, these results were
obtained on the development set (i.e., on the same data set that was used to optimize the
parameters), not on a completely unseen test set. This procedure is well-justified in the
context of Rooth et al.’s (1999) and Prescher, Riezler, and Rooth’s (2000) work, which
aims at building models of lexical semantics, not of pseudo-disambiguation. Therefore,
they carried out their final evaluations on unseen test sets for the tasks of lexicon in-
duction (Rooth et al., 1999) and target language disambiguation (Prescher, Riezler, and
Rooth, 2000), once the model parameters had been fixed using the pseudo-disambiguation
development set.8

Clark and Weir (2002) use a setting that that is similar to that of Rooth et al.
(1999) and Prescher, Riezler, and Rooth (2000); here pseudo-disambiguation is employed

8 Stefan Riezler (personal communication, 2003) points out that the main variance in Rooth et al.’s
(1999) pseudo-disambiguation results comes from the class cardinality parameter (start values only
account for 2% of the performance and iterations do not seem to make a difference at all). Figure 3
of Rooth et al. (1999) shows that a performance of more than 75% is obtained for every reasonable
choice of classes. This indicates that a “proper” pseudo-disambiguation setting with separate
development and test data would have resulted in a similar choice of class cardinality, and thus
achieved the same 80% performance that is cited in Table 13.

19



Computational Linguistics Volume 29, Number 3

Table 14
Percentage of correct disambiguations on the pseudo-disambiguation task using web counts
and counts recreated using EM-based clustering (Prescher, Riezler, and Rooth, 2000)

Data set N Altavista Altavista VA model VO model
cond. prob. joint prob.

Subjects 159 66.7 59.1 − −
Objects 139 70.5 66.2 − −
Subjects and objects 298 68.5 62.4 79.0 88.3

Table 15
Percentage of correct disambiguations on the pseudo-disambiguation task using web counts
and counts recreated using class-based smoothing (Clark and Weir, 2002)

Data set N Altavista Altavista Clark & Li & Resnik
cond. prob. joint prob. Weir Abe

Objects (low freq.) 3000 83.9 81.1 72.4 62.9 62.6
Objects (high freq.) 3000 87.7 85.3 73.9 68.3 63.9

to evaluate the performance of a class-based probability estimation method. In order to
address the problem of estimating conditional probabilities in the face of sparse data,
Clark and Weir (2002) define probabilities in terms of classes in a semantic hierarchy and
propose hypothesis testing as a means of determining a suitable level of generalization in
the hierarchy. Clark and Weir (2002) report pseudo-disambiguation results on two data
sets, with an experimental setup similar to Rooth et al. (1999). For the first data set,
3,000 pairs were randomly chosen from 1.3 million (v, n) tuples extracted from the BNC
(using the parser of Briscoe and Carroll (1997)). The selected pairs contained relatively
frequent verbs (occurring between 500 and 5,000 times in the data). The data sets were
constructed as proposed by Rooth et al. (1999). The procedure for creating the second
data set was identical, but this time only verbs that occurred between 100 and 1,000
times were considered. Clark and Weir (2002) further compared their approach against
Resnik’s (1993) selectional association model and Li and Abe’s (1998) tree cut models
on the same data sets. These methods are directly comparable as they can be used for
class-based probability estimation and address the question of how to find a suitable level
of generalization in a hierarchy (i.e., WordNet). The results of the three methods on the
two data sets are shown in Table 15.

We employed the same pseudo-disambiguation method to test whether web-based
frequencies can be used for distinguishing between seen and artificially constructed un-
seen bigrams. We obtained the data sets of Rooth et al. (1999), Prescher, Riezler, and
Rooth (2000), and Clark and Weir (2002) described above. Given a set of (v, n, v′) triples,
the task was to decide whether (v, n) or (v′, n) was the correct pair. We obtained Al-
tavista counts for f(v, n), f(v′, n), and f(n) as described in Section 1.3.9 Then we used
two models for pseudo-disambiguation: the joint probability model compared the joint
probability estimates f(v, n) and f(v′, n) and predicted that the bigram with the highest

9 We only used Altavista counts, as there was virtually no difference between Altavista and Google
counts in our previous evaluations (see Sections 2.1–2.3). Google only allows 1000 queries per day
(for registered users), which makes it time-consuming to obtain large numbers of Google counts.
Altavista has no such restriction.
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estimate is the seen one. The conditional probability model compared the conditional
probability estimates f(v, n)/f(v) and f(v′, n)/f(v′) and again selected as the seen bi-
gram the one with the highest estimate (in both cases, ties were resolved by choosing
at random).10 The same two models were used to perform pseudo-disambiguation for
the (v, n, n′) triples, where we have to choose between (v, n) and (v, n′). Here, the prob-
ability estimates f(v, n) and f(v, n′) where used for the joint probability model, and
f(v, n)/f(n) and f(v, n′)/f(n′) for the conditional probability model.

The results for Rooth et al.’s (1999) data set are given in Table 13. The conditional
probability model achieves a performance of 71.2% correct for subjects and 85.2% cor-
rect for objects. The performance on the whole data set is 77.7%, which is below the
performance of 80.0% reported by Rooth et al. (1999). However, the difference is not
significant using a χ2-test comparing the number of correct and incorrect classifications
(χ2(1) = 2.02, p = .16). The joint probability model performs consistently worse than
the conditional probability model, it achieves an overall accuracy of 72.7%, which is
significantly lower than the accuracy of the Rooth et al. (1999) model (χ2(1) = 19.50,
p < .01).

A similar picture emerges on Prescher, Riezler, and Rooth’s (2000) data set (see
Table 14). The conditional probability model achieves an accuracy of 66.7% for subjects
and 70.5% for objects. The combined performance of 68.5% is significantly lower than
the performance of both the VA model (χ2(1) = 7.78, p < .01) and the VO model
(χ2(1) = 33.28, p < .01) reported by Prescher, Riezler, and Rooth (2000). Again, the
joint probability model performs worse than the conditional probability model, achieving
an overall accuracy of 62.4%.

We also applied our web-based method to the pseudo-disambiguation data set
of Clark and Weir (2002). Here, the conditional probability model reached a perfor-
mance of 83.9% correct on the low frequency data set. This is significantly higher than
the highest performance of 72.4% reported by Clark and Weir (2002) on the same data
set (χ2(1) = 115.50, p < .01). The joint probability model performs worse than the
conditional model, at 81.1%. However, this is still significantly better than the best re-
sult of Clark and Weir (2002) (χ2(1) = 63.14, p < .01). The same pattern is observed
for the high frequency data set, where the conditional probability model achieves 87.7%
correct, and thus significantly outperforms Clark and Weir (2002), who obtained 73.9%
(χ2(1) = 283.73, p < .01). The joint probability model achieved 85.3% on this data set,
also significantly outperforming Clark and Weir (2002) (χ2(1) = 119.35, p < .01).

To summarize, we demonstrated that the simple web-based approach proposed in this
paper yields results for pseudo-disambiguation that outperform class-based smoothing
techniques, such as the ones proposed by Resnik (1993), Li and Abe (1998), and Clark and
Weir (2002). We were also able to show that a web-based approach is able to achieve the
same performance as an EM-based smoothing model proposed by Rooth et al.’s (1999).
However, the web-based approach was not able to outperform the more sophisticated
EM-based model of Prescher, Riezler, and Rooth (2000). Another result we obtained
was that web-based models that uses joint probabilities (where unigram frequencies are
used to normalize the bigram frequencies) generally outperforms a more simple-minded
approach that relies directly on bigram frequencies for pseudo-disambiguation.

There are a number of reasons why our results regarding pseudo-disambiguation have
to be treated with some caution. First of all, the two smoothing methods (i.e., EM-based
clustering and class-based probability estimation using WordNet) were not evaluated on

10 The probability estimates are P (a, b) = f(a, b)/N and P (a|b) = f(a, b)/f(a) for the joint probability
and the conditional probability, respectively. However, the corpus size N can be ignored, as it is
constant.
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the same data set, and therefore the two results are not directly comparable. For instance,
Clark and Weir’s (2002) data set is substantially less noisy than Rooth et al.’s (1999)
and Prescher, Riezler, and Rooth’s (2000), as it only contains words and nouns that
occur in WordNet. Furthermore, Stephen Clark (personal communication, 2003) points
out that WordNet-based approaches are at a disadvantage when it comes to pseudo-
disambiguation. Pseudo-disambiguation assumes that the correct pair is unseen in the
training data; this makes the task deliberately hard because some of the pairs might be
frequent enough to obtain reliable corpus counts without having to use WordNet (using
WordNet is likely to be more noisy than using the actual counts). Another problem
with WordNet-based approaches is that they offer no systematic treatment of word sense
ambiguity, which puts them at a disadvantage with respect to approaches that do not
rely on a predefined inventory of word senses.

Finally, recall that the results for the EM-based approaches in Tables 13 and 14
were obtained on the development set (as pseudo-disambiguation was used as a means of
parameter tuning by Rooth et al. (1999) and Prescher, Riezler, and Rooth (2000)). It is
possible that this fact inflates the performance values for the EM-based approaches (but
see Footnote 8 above).

3 Conclusions

This paper explored a novel approach to overcoming data sparseness. If a bigram is unseen
in a given corpus, conventional approaches recreate its frequency using techniques such as
back-off, linear interpolation, class-based smoothing or distance-weighted averaging (see
Dagan, Lee, and Pereira (1999) and Lee (1999) for overviews). The approach proposed
here does not recreate the missing counts, but instead retrieves them from a corpus that
is much larger (but also much more noisy) than any existing corpus: it launches queries
to a search engine in order to determine how often a bigram occurs on the web.

We systematically investigated the validity of this approach by using it to obtain
frequencies for predicate-argument bigrams (adjective-noun, noun-noun, and verb-object
bigrams). We first applied the approach to seen bigrams randomly sampled from the
BNC. We found that the counts obtained from the web are highly correlated with the
counts obtained from the BNC. We then obtained bigram counts from NANTC, a corpus
that is substantially larger than the BNC. Again, we found that web counts are highly
correlated with corpus counts. This indicates that web queries can generate frequencies
that are comparable to the ones obtained from a balanced, carefully edited corpus such
as the BNC, but also from a large news text corpus such as NANTC.

Secondly, we performed an evaluation that used the web frequencies to predict hu-
man plausibility judgments for predicate-argument bigrams. The results show that web
counts correlate reliably with judgments, for all three types of predicate-argument bi-
grams tested, both seen and unseen. For the seen bigrams, we showed that the web
frequencies correlate better with judged plausibility than corpus frequencies.

To substantiate the claim that the web counts can be used to overcome data sparse-
ness, we compared bigram counts obtained from the web with bigram counts recreated
using a class-based smoothing technique (a variant of the one proposed by Resnik (1993)).
We found that web frequencies and recreated frequencies are reliably correlated, and that
web frequencies are better at predicting plausibility judgments than smoothed frequen-
cies. This holds both for unseen bigrams and for seen bigrams that are treated as unseen
by omitting them from the training corpus.

Finally, we tested the performance of our frequencies in a standard pseudo-
disambiguation task. We applied our method to three data sets from the literature.
The results show that web counts outperform counts recreated using a number of class-
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based smoothing techniques. However, counts recreated using an EM-based smoothing
approach yielded petter pseudo-disambiguation performance than web counts.

To summarize, we have proposed a simple heuristic method for obtaining bigram
counts from the web. Using four different types of evaluation, we demonstrated that this
simple heuristic method is sufficient to obtain valid frequency estimates. It seems that
the large amount of data available outweighs the problems associated with using the web
as a corpus (such as the fact that it is noisy and unbalanced).

A number of questions arise for future research: (a) Are web frequencies suitable for
probabilistic modeling, in particular since web counts are not perfectly normalized as
Zhu and Rosenfeld (2001) have shown? (b) How can existing smoothing methods benefit
from web counts? (c) How do the results reported in this paper carry over to languages
other than English (for which much less web data is available)? (d) What is the effect of
the noise introduced by our heuristic approach? The last question could be assessed by
reproducing our results using a snapshot of the web, on which argument relations can be
extracted more accurately using POS tagging and chunking techniques.

Finally, it will be crucial to test the usefulness of web-based frequencies for realis-
tic NLP tasks. Preliminary results are reported by Lapata and Keller (2003), who use
web counts successfully for a range of NLP tasks, including candidate selection for ma-
chine translation, context-sensitive spelling correction, bracketing and interpretation of
compounds, adjective ordering, and PP-attachment.
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