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Abstract—Characterizing vegetation phenology is a highly
significant problem, due to its importance in regulating ecosys-
tem carbon cycling, interacting with climate changes, and
decision-making of croplands managements. While ground
based sensors, such as the AmeriFlux sensors, can provide
measurements at high temporal resolution (every hour) and can
be used to accurately calculate vegetation phenology indices,
they are limited to only a few sites. Remote sensing data, such as
the Normalized Difference Vegetation Index (NDVI), collected
using the MODerate Resolution Imaging Spectroradiometer
(MODIS), can provide global coverage, though at a much
coarser temporal resolution (16 days). In this study we use
data mining based time series segmentation methods to derive
phenology indices from NDVI data, and compare it with the
phenology indices derived from the AmeriFlux data using a
widely used model fitting approach. Results show a significant
correlation (as high as 0.60) between the indices derived from
these two different data sources. This study demonstrates
that data driven methods can be effectively employed to
provide realistic estimates of vegetation phenology indices using
periodic time series data and has the potential to be used at
large spatial scales and for long-term remote sensing data.
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I. INTRODUCTION

Vegetation (or plant) phenology is the study of the timing
of seasonal cycles of vegetation activity, such as onset of
greening in the spring, timing of the maximum of the
growing season, leaf senescence, vegetation dormancy, and
the total length of growing season [1], [2]. Many such events
are recurring plant life cycle states that are initiated by
environmental factors and are sensitive to climatic variation
and change [3], [4]. Thus, phenological studies can be
used to evaluate the effects of climate change. Vegetation
phenological stages of crops are also important indicators in

agricultural production, management, planning and decision-
making [2], [5]. In addition, vegetation phenology is impor-
tant for predicting ecosystem carbon, nitrogen, and water
fluxes [6], [7], as the seasonal and interannual variation
of phenology have been linked to net primary production
estimation, crop yields, and water supply [8], [9]. Variability
in growing season length is likely to have a direct impact
on the ecosystem carbon and water balances [9], [10]. Char-
acterization of vegetation phenology at site, regional, and
national scales has been recognized as important for many
scientific and practical applications [2]. Accurate assessment
of phenological events, therefore, becomes increasingly vital
for investigating vegetation-climate interactions, quantifying
ecosystem fluxes and croplands managements [11].

0 50 100 150 200 250 300 350 400
2000

3000

4000

5000

6000

7000

8000

9000

10000

Days

N
D

V
I

Maximum NDVI

Rate of Green
up

Start of Season (Green up)

Duration of Growth

End of Season

Rate of
Senescence

Figure 1. Phenological Characteristics from NDVI Time Series for a
Cropland Site (Bondville, USA, 2006)

Vegetation phenology can be assessed using different
approaches at scales from small plots to large spatial
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scales. Field phenology measurements can be conducted
using methods such as manual observations, digital camera
automatic recording [12], and plant area index measure-
ments using LAI-2000 Plant Canopy Analyzer [13], and
ecological modeling [14]. The data obtained from ground
sensors which are a part of the AmeriFlux network1 have
been used to study vegetation phenology. But such methods
are constrained to limited spatial extents and to limited
ecosystems. At large spatial scales, remotely sensed data
such as these from the Advanced Very High Resolution
Radiometer (AVHRR) and the MODerate resolution Imaging
Spectroradiometer (MODIS) sensors are commonly used
[15]. MODIS vegetation products such as Normalized Dif-
ference Vegetation Index (NDVI) and Enhanced Vegetation
Index (EVI) have been proved to be effective for quantifying
vegetation greenness, canopy carbon and water fluxes [16],
[17] and monitoring the phenological changes of vegetation
across large spatial scales and over long time periods [18]–
[20]. Figure I shows some of the phenological characteristics
in an annual NDVI time series. Particularly, the vegetation
products generated from MODIS onboard Terra and Aqua
offer an unprecedented opportunity for researchers to de-
velop long-term records of vegetation phenology at spatial
scales as small as 250 m [21].

Recent efforts in phenology studies have been focused on
developing new techniques or improving methods for esti-
mating specific dates of vegetation transitions with improved
satellite data e.g., MODIS-NDVI, EVI [15], [21], [22]. Most
of these methods analyze the vegetation time series (NDVI,
EVI) for each spatial location and can be grouped into the
following four broad categories [22]: threshold based [23],
derivatives based [24], smoothing functions based [25], [26],
and model fitting based [27]–[29]. These methods have
been developed for a particular vegetation type or specific
geographical areas, and thus are not globally applicable.
Data mining based methods, which do not rely on vegetation
specific and geographical assumptions, can provide such
globally applicable methods. While several data mining
based methods have been applied to remote sensing data for
tasks such as crop classification [30], [31] and change de-
tection [32]–[34], there has not been significant application
of data mining methods for identification of phenological
characteristics from remote sensing data.

In the paper we investigate how data mining based
methods can be used to extract phenology characteristics
from remote sensing data. We pose the problem of phe-
nology identification from remote sensing data, as a time
series segmentation problem. Several data mining based
time series segmentation methods have been proposed in
literature which identify homogenous segments in a given
time series. We investigated two such methods, bottom up
segmentation [35] and piecewise linear regression [36], [37].

1http://public.ornl.gov/ameriflux/index.html

These time series segmentation based methods have the
potential to detect key phenological indices such as the onset
of vegetation green-up, end of plant growth, and length of
growing seasons for a range of ecosystems and vegetation
types. We applied this method to 43 AmeriFlux sites and
derived phenological indices using the MODIS NDVI data.
To validate the methods, we also derived field phenology
using a model fitting method [29] based on Net Ecosystem
Exchange (NEE) data measured by the eddy covariance
sensors at the AmeriFlux sites. One frequently mentioned
pitfall for satellite derived phenology study is the lack of
comparable ground-based phenology measurements. Since
the NEE data measured ecosystem carbon flux of whole
ecosystem with footprints similar to a pixel of MODIS
NDVI measurement, these phenological indices were more
comparable. The major objectives of this study were 1)
to derive vegetation phenological indices using time series
segmentation based methods at selected AmeriFlux sites
using MODIS NDVI data; and 2) to compare the pheno-
logical indices with field estimations from NEE data. We
focused on identifying the green-up or start of season (SOS)
index, though same methodology can be applied for other
phenology indices.

II. RELATED WORK

Existing methods that analyze remote sensing data (specif-
ically, NDVI time series) for identifying SOS and other
phenological indices can be broadly grouped into four
categories [22], viz., threshold based, derivatives based,
smoothing functions based, and model fitting based. Thresh-
old based methods apply a pre-specified threshold on the
NDVI values and determine the day when the NDVI value
crosses the threshold to estimate SOS [23]. While such
methods are simple to apply, their performance is highly
reliant on specifying an optimal threshold, which is a
challenging task, especially since the NDVI time series
are often noisy. Derivatives based methods [24] generally
accept the maximal increase in NDVI as the SOS. Such
methods cannot handle the noise in the time series, and
hence often find it challenging to differentiate between actual
change in the NDVI and the change induced by the noisy
data. The smoothing function based methods account for
the noise by smoothing the time series data using methods
such as moving average [26] and fourier analysis [25]. The
drawback of such methods are that they tend to smooth out
the presence of interesting disturbances in the data. Model
fitting based methods fit multiple mathematical models to
the time series such as logistic models [29], Gaussian local
functions [27], and quadratic models [28]. A key limitation
of using mathematical models is that they entail estimation
of multiple parameters (sometimes more than 4), which is
challenging with limited annual observations in NDVI data.

Time series segmentation has been a widely researched
problem in statistics and data mining community. Methods
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for time series segmentation can be broadly classified into
four categories, viz., linear model based, polynomial model
based, signal processing based, and non-parametric meth-
ods. Linear model based methods identify segments in a
given time series, such that each segment can be explained
using a linear model, such as a linear regression model [36],
[37]. Polynomial model based methods employ non-linear
models for each segment [38]. Signal processing based
methods employ methods such as wavelets [39] and fourier
transforms [40] to approximate the given time series in terms
of a set of functions, where each function corresponds to a
segment. Non-parametric methods have been developed in
the data mining community. The objective of such methods
is to greedily obtain a segmentation of the given time series
which optimizes an objective criterion [32], [35]. In this
paper, we investigate two such time series segmentation
method [35] for identifying SOS from NDVI time series.

III. PROBLEM STATEMENT

The problem studied in this paper is to identify phenology
characteristics from a given annual NDVI time series (See
Figure I). Typically, following indices are retrieved:

1) Onset of vegetation green-up or start of the season
(SOS).

2) End of plant growth or end of the seasons (EOS).
3) Timing of the maximum of the growing season.
4) Length of the growing season.

In this paper we will focus on the SOS index only. Based
on the estimates of the SOS, the second problem studied in
this paper is to identify annual trends in the SOS for each
spatial location.

IV. METHODS FOR PHENOLOGY IDENTIFICATION

In this section, we briefly describe the methods that we
have applied for identifying the phenology characteristics
from observational time series. The first method is a model
fitting based technique which was developed for ground
sensor observations collected from AmeriFlux sites [29]. The
second method is a mining based time series segmentation
algorithm applied to the problem of phenology identification.

A. Model Fitting Based Phenology Identification

The double logistic curve fitting method [29] fits a com-
posite growth function to the plant canopy photosynthesis
observations, obtained from the AmeriFlux sensors. The
composite growth function can be written as:

A(t) = y0+
a1[

1 + exp (− t−t01
b1

)
]c1 +

a2[
1 + exp (− t−t02

b2
)
]c2

(1)
where A(t) is the observation on day t, and
(y0, a1, a2, b1, b2, c1, c2, t01, t02) are the model parameters

to be estimated from the given data. Based on the model
parameters, the SOS can be estimated as:

SOS = tPRD − Ap
tPRD

kPRR
(2)

where, tPRD or the peak recession day is computed as:

tPRD ≈ t01 + b1 ln c1 (3)

and, kPRR or the peak recovery rate is the growth rate of
A(t) (= dA(t)

dt ) on the peak recession day, i.e., kPRR =
k(tPRD). Other phenological indices, such as EOS, can also
be estimated in a similar fashion [29].

B. Time Series Segmentation Based Phenology Identification

The time series segmentation based methods “break” the
given time series into k segments, such that each segment
is homogenous based on an objective function. The most
widely used objective function is linear, i.e., the task is
to break the time series into k straight lines. While most
methods do not assume that k is known, for the purpose
of phenology identification, k is fixed at 5 (See Figure I).
This relaxation also makes the problem computationally
more tractable. It should be noted that the objective of the
segmentation algorithms is to find the segmentation with
lowest reconstruction error and are not specifically designed
to extract the phenological features. In this paper we are
exploring the hypothesis that such methods, though not
directly utilizing any phenology related information, are still
applicable to the task of phenology identification.

1) Piecewise Linear Regression: The first segmentation
method entails fitting multiple straight lines using linear
regression [37]. The objective function to evaluate a potential
segment is to compute the residual error of the fitted linear
regression model. The brute force segmentation method
finds all possible segmentations of the time series and then
evaluates each candidate segmentation using the sum of the
residual errors for each segment. The segmentation with the
lowest total residual error is chosen as the final segmentation.
But the same segmentation can be achieved using a faster
dynamic programming based implementation [41] which
computes the segmentation for a time series of length t using
the optimal segmentation obtained for t − k (k = 1, 2, . . .)
length prefixes of the tune series.

2) Bottom Up Segmentation: Keogh et al [35] describe
the heuristic based bottom up segmentation algorithm. The
algorithm starts with the finest possible segmentation of the
original time series of length t, i.e., with t/2 segments. Next,
the algorithm computes the cost of merging every adjacent
pair of segments and iteratively merges the lowest cost pair.
This process is repeated until only k segments are left. The
cost of merging can be computed in multiple ways, using
methods such as linear interpolation or linear regression. In
this paper we explore bottom up segmentation used with
linear interpolation.
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V. EXPERIMENTAL RESULTS

We present results comparing the SOS index estimated by
the segmentation based methods (See Section IV-B) using
the MODIS NDVI data to the index estimated by the model
fitting method (See Section IV-A) using the AmeriFlux data
across several AmeriFlux sites.

A. Data

1) AmeriFlux Data: The analysis on AmeriFlux data was
based on gross canopy photosynthetic rates (GPP) which
were derived from NEE. Compared to NEE, using GPP to
derive phenology indices avoids some short-term influences
of soil temperature and moisture influences on ecosystem
respiration, and provides more stable estimation of phenol-
ogy indices [29]. To compare the phenology indices derived
from MODIS data and NEE measurements at AmeriFlux
sites, we selected sites with at least three years of flux
measurements after 2002. 43 sites were selected, including
7 deciduous forests, 8 coniferous forests, 5 grasslands, and
9 croplands. Totally, we obtained 131 annual cycles for
these 43 sites where both AmeriFlux and MODIS data
was available. Level 4 GPP data for the chosen sites was
downloaded at the AmeriFlux website2. While original data
was available at half hour time intervals, we chose the
daily maximum value to construct daily time series for each
site. The gaps in the level 4 GPP data are filled using
two methods, Artificial Neural Network (ANN) based [42]
and Marginal Distribution Sampling (MDS) based [43]. We
experimented with both types of data and found that the
phenology indices derived were very similar. Thus, only the
MDS gap-filled data were used in the phenology analysis.

2) MODIS Data: For each of the 43 selected AmeriFlux
sites, we downloaded MODIS NDVI time series from 2002
onwards. Annual MODIS NDVI time series (See Figure I
consists of 23 observations (one observation every 16 days).
Each observation is accompanied with a reliability code;
observations with non-zero reliability code were treated as
missing. Missing values were imputed using a Gaussian
process based time series forecasting method [34]. The
NDVI time series were smoothed using the Savitzky Golay
time series filter [44] available in MATLAB.

B. Comparison of Results Using MODIS NDVI and Ameri-
Flux GPP Data

We compare the model fitting based SOS estimates using
the method proposed by Gu et al. [29] (referred to as MF)
on AmeriFlux data with the estimates using the bottom
up segmentation (BU) and piecewise linear regression (LR)
methods on MODIS data. For comparison, we also applied
the MF method on MODIS data. Note that when estimating
SOS for MODIS data using the MF method, only 59 annual
cycles (26 AmeriFlux sites) yielded estimates, while for

2http://public.ornl.gov/ameriflux/fairuse.cfm

Average Abs.
Method Correlation p-value Difference

BU 0.51 0.00 23.43
LR 0.65 0.00 22.16
MF 0.40 0.04 32.64

Table I
COMPARISON BETWEEN ESTIMATES USING DIFFERENT METHODS ON

MODIS DATA AND ESTIMATES USING MF METHOD ON AMERIFLUX
DATA

other 72 cycles the number of observations in annual NDVI
data was not sufficient for estimating the model parameters.
Figure 2 show the scatter plots for the three different
comparisons, each data point corresponds to the averaged
SOS estimates across multiple years for a single site. For
each plot, we also show the linear fit and the R2 values
for the fitted data. Comparison between the estimates using
three methods on MODIS data and the MF estimates using
AmeriFlux data (correlation and average absolute difference)
are shown in Table I.

Results in Figure 2 and Table I indicate that for MODIS
NDVI data, the time series segmentation based methods
are significantly better than the model fitting based method
in terms of agreement with the estimates obtained from
the AmeriFlux data. The correlation between the estimates
using the piecewise linear regression based method (LR) on
MODIS data and the estimates using the model fitting based
method (MF) on the AmeriFlux data is the highest (0.65)
while the correlation between the estimates using the MF
method on AmeriFlux and MODIS data is the lowest (0.40).
Additionally, a shortcoming of the MF method is that it fails
to estimate the model parameters for most of the MODIS
time series. The average absolute difference from the MF
estimates using AmeriFlux data for BU method is 23 and
for LR method is 22, which is reasonable given the fact
that NDVI observations are 16 day composites.

VI. CONCLUSIONS

The prime objective of this study was to evaluate data
mining based time series segmentation methods to determine
key phenological indices of terrestrial ecosystems based on
satellite remote sensing products. Our results demonstrated
that the two methods evaluated in this paper were able
to detect the start of the growing season for a range of
ecosystems and at different locations. The detection methods
were also quite robust and able to deal with a variety of
situations including missing values due to clouds, possible
outliers, and did not require ancillary information and expert
knowledge.

One classic criticism of remote sensing phenology stud-
ies is the validation of satellite data derived phenology,
as the field-based phenological observations are usually
sparse and do not cover the full climate range. Validation
is also complicated by the fact that the satellite derived

205205



0 50 100 150 200 250
0

50

100

150

200

250

SOS − Model Fitting (AmeriFlux)

S
O

S
 −

 B
U

 S
eg

m
en

ta
tio

n 
(M

O
D

IS
)

 

 

 
y = 0.3635*x + 67.45

R2 = 0.2649

(a) MF (AmeriFlux) vs. BU (MODIS)

0 50 100 150 200 250
0

50

100

150

200

250

SOS − Model Fitting (AmeriFlux)

S
O

S
 −

 L
R

 S
eg

m
en

ta
tio

n 
(M

O
D

IS
)

 

 

 
y = 0.6388*x + 32.61

R2 = 0.4229 

(b) MF (AmeriFlux) vs. LR (MODIS)

0 50 100 150 200 250
0

50

100

150

200

250

SOS − Model Fitting (AmeriFlux)

S
O

S
 −

 M
od

el
 F

itt
in

g 
(M

O
D

IS
)

 

 

 
y = 0.3491*x + 97.31

R2 = 0.1605 

(c) MF (AmeriFlux) vs. MF (MODIS)

Figure 2. Comparison of SOS estimates using different methods on
AmeriFlux GPP and MODIS NDVI data.

phenological indices are not compatible with traditional field
phenological indices. Direct comparisons of remote sensing
phenology with field observations are mostly problematic
because 1) field observations are measured for relatively
smaller areas (from 1 to 100 m2) compared to the remote
sensing observations which correspond to coarser spatial
resolution (> 250m2), 2) geo-location uncertainties, and 3)
limited temporal sampling for remote sensing observations.
Flux based phenology provides a general measurement of the
photosynthetic activity of the whole vegetation cover. In this
study, we derived field phenological indices based on eddy
covariance measurements which have footprints similar to

the scale of MODIS NDVI which had a high resolution of
250 m. Since the MODIS NDVI data were retrieved at pixels
where the eddy flux towers were centered, the phenological
indices derived from these two data sources were more
comparable. Indeed, our results demonstrate that there is a
good correspondence of the phenological indices between
the satellite approach and the eddy flux method, with a
correlation of 0.65 between the time series segmentation
based approach using satellite data and the traditional model
fitting based approach using the eddy covariance data.

This study demonstrated that the data mining based
time series segmentation methods can be applied to remote
sensing satellite data such as MODIS NDVI to derive the
vegetation phonology. Satellite phenology allows monitoring
of terrestrial vegetation on a global scale and provides an
integrative view at the landscape level [45]. Any requirement
to document vegetation phenology over large areas will have
to rely on remote sensing, even though these observations
may only be indirectly related to the events [46]. As more
satellite data is being collected, long-term vegetation phe-
nology at different spatial scales can be derived from these
measurements.
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