
Using TLS Fingerprints for OS Identification
in Encrypted Traffic

Martin Laštovička∗†, Stanislav Špaček∗†, Petr Velan∗ and Pavel Čeleda∗
∗Masaryk University, Institute of Computer Science, Brno, Czech Republic

†Masaryk University, Faculty of Informatics, Brno, Czech Republic

Email: {lastovicka|spaceks|velan|celeda}@ics.muni.cz

Abstract—Asset identification plays a vital role in situational
awareness building. However, the current trends in communica-
tion encryption and the emerging new protocols turn the well-
known methods into a decline as they lose the necessary data to
work correctly. In this paper, we examine the traffic patterns of
the TLS protocol and its changes introduced in version 1.3. We
train a machine learning model on TLS handshake parameters
to identify the operating system of the client device and compare
its results to well-known identification methods. We test the
proposed method in a large wireless network. Our results show
that precise operating system identification can be achieved in
encrypted traffic of mobile devices and notebooks connected to
the wireless network.

I. INTRODUCTION

The first step in understanding the situation in a network

is obtaining the knowledge of what devices connect to it.

However, this is not easily fulfilled, especially in unmanaged

networks where devices can connect without any network ac-

cess control mechanism. These devices are typically identified

through dynamically assigned IP addresses. Administrators

and researchers address this issue with device identification

(fingerprinting) from network traffic. Most methods leverage

the HTTP User-Agent strings, which directly describe the

device and are inherently present in device communication.

However, the current trends in communication evolution go in

the direction of user privacy. They tend to move as much of

the traffic as possible into encrypted payloads to counter the

identification and tracking.

A typical solution to the encryption challenge is to scan the

devices in the network actively or to inspect the encryption

handshake parameters from packets using deep packet inspec-

tion. The contribution of our work lies in the analysis of TLS

(Transport Layer Security) handshake parameters suitable for

OS (Operating System) identification in IP flows. This shift

towards passive flow identification allows security admini-

strators to asses the OS of each device even in large networks.

Moreover, enabling identification from encrypted traffic will

ensure the identification usability in the ever-evolving network

communication.

First, we describe in detail the parameters of TLS handshake

and the nuances of distinct versions of the protocol and how

TLS 1.3 [1] redefined the semantics of some of the data

fields. The information from the handshake is incorporated

into network flows, exported using IPFIX [2], and further

processed. We employ machine learning classifier to build a

model mapping the TLS parameters feature vector to the OS of

the client device. We further explore the OS identification from

encrypted traffic by extending our previous work on TCP/IP

parameters fingerprinting [3] where we replaced manual sta-

tistical analysis with a decision tree algorithm.

We evaluate the methods on a large dataset collected from

campus wireless networks. Students and employees can bring

and connect any device which guarantees high diversity of the

devices. We pair records from infrastructure servers logs to the

collected traffic to establish ground truth and calculate the ac-

curacy metrics of our methods. Furthermore, we measured OS

identification results for two established methods (i.e., based

on HTTP User-Agent and connections to specific domains) to

provide a comparison with methods based on plaintext traffic.

II. RELATED WORK

We surveyed the state of the art in the field of device

fingerprinting in our previous work on this topic [3]. Hence,

we focus mainly on the new contributions in the area. Shen

et al. [4] published an article concerning the fingerprinting of

devices in the industrial control system environment. Sanchez

et al. [5] proposed hardware features, specifically the internal

clock signals, to discern different devices. However, none of

these publications deals with the challenge to identify the

operating system of a device from network traffic, posed by

the currently common encryption.

The recent approach to network communication is favoring

user privacy and promotes encrypting as much of the trans-

ferred data as possible. The purpose is to hide the content and

other relevant information about the transfer that might be

captured and analyzed by an external observer. However, even

encrypted connections might disclose some information about

the participants and the purpose of the transfer [6]. During the

handshake, before the encrypted connection is established, all

the exchanged data can be seen unencrypted.

The TLS handshakes have already been analyzed in the

past. Anderson et al. [7] provide a comprehensive study of

malware’s use of TLS by observing the unencrypted TLS

handshake messages. They also identify handshake features,

that can be used to cast some light on the data transferred by

TLS, e.g., Server Name Indication (SNI), and server certificate.

The usage of SNI for flow analysis was further explored

by Shbair et al. [8]. However, these articles focus more on978-1-7281-4973-8/20/$31.00 c© 2020 IEEE

NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management Symposium

Authorized licensed use limited to: Cyprus University of Technology. Downloaded on August 18,2020 at 10:47:44 UTC from IEEE Xplore. Restrictions apply.

the server side of the handshake, while the identification of

connected devices is based on the client-side parameters.

Identification of client applications using TLS handshake

monitoring was proposed by Korczyński et al. [9]. The authors

showed the identification from encrypted data to be possible.

A client device identification algorithm based on the specific

parameters of the TLS handshake was proposed by Husák

et al. [10]. They utilized the simultaneous monitoring of the

HTTP and HTTPS connections to create a dictionary, pairing

the User-Agent from HTTP with the TLS handshake from

HTTPS connections generated by one device. The dictionary

was then used to assign User-Agents to HTTPS connections

captured in the network.

III. NETWORK DATA ACQUISITION

To be able to identify the operating system of a particular

device from its network traffic, we need to measure and

analyze relevant features from the traffic of the device. For

this purpose, we utilize IPFIX data provided by a flow mon-

itoring system [2]. The flow monitoring system uses multiple

Flowmon probes [11] and IPFIXcol flow collector [12].

The accuracy of any identification method depends on the

number and quality of features used as an input. We use

several different features in this work: TCP/IP parameters of

observed connections, values from plaintext HTTP headers,

and parameters of TLS connections. The rest of this section

describes the features we use for OS identification.

A. TCP/IP Features

Each flow record contains the basic fields, i.e., flow start

time, flow end time, source IP address, source port, destination

IP address, and destination port. Existing analyses show that

the size of TCP SYN packet, initial TCP window size, and

TTL (Time to Live) value of packets differ between operating

systems. Therefore, these fields are recorded as well for the

flows describing TCP connections.

B. HTTP Headers

Although most of the HTTP traffic is secured by TLS

protocol nowadays, there are still services using plaintext

HTTP. When a device communicates using this protocol, the

flow probe analyses the HTTP request header and extracts

the visited domain name from the URL and the User-Agent

field. Since there are domains tied to operating system specific

update services, they can be used as an indication of the used

OS. The User-Agent field usually contains not only the name

of the application but also the platform (i.e., operating system)

on which it is running. Moreover, some applications, such as

antivirus software, are often platform-specific, and its presence

can reveal the used OS as well. Therefore, the HTTP User-

Agent is often used for OS identification.

C. TLS Handshake

To identify the operating system of devices that commu-

nicate through encrypted protocols, we have to rely on the

information remaining in cleartext. Since the unencrypted ini-

tialization phase precedes every encrypted communication, as

shown in Figure 1, we can inspect the negotiation (handshake)

between the client and the server.

Connection
Request

TCP	3-Way	Handshake
Connection

Acknowledged

Client	Hello
TLS	1.3	Handshake

Server	Hello
Finished

Application
Data

Encrypted	Data
Application

Data

Time Time

Client Server

Fig. 1. TLS 1.3 handshake – negotiation of the encrypted connection.

The first parameter we explore is the Client Version of the

TLS protocol sent by the client. The version influences further

parameters and extensions the client uses, which plays an es-

sential role in the OS identification. However, stating the client

version from Client Hello message is not as straightforward as

one would expect. Every version of TLS is identified differ-

ently due to backward compatibility, and each version sends

0x0301 bytes (TLS 1.0) in the record header field Version of

the TLS handshake which specifies the version of TLS used.

Then the client constructs the Client Hello header, in which

it fills in another Version field identifying the TLS version

of the client application. This identification was valid until

TLS 1.3 was introduced. TLS 1.3 clients send their version

as 0x0303 (TLS 1.2) [1], and their correct version is located

in extensions of the Client Hello message. Specifically, in the

extension Supported Versions it sends a list of all versions it

can use, and one of the versions is the TLS 1.3. This leads to

the current situation when TLS 1.3 clients use identifiers of

three different versions of the protocol. Flowmon monitoring

probes rely on the Version field from Client Hello header

and export this value into the flow. Hence, probes correctly

identify TLS versions 1.0 to 1.2, and TLS 1.3 clients are

exported as TLS 1.2 flows. To distinguish those two versions,

we look at extension types list and look for extension number

43 Supported Versions, which is exclusively and mandatorily

used by TLS 1.3 clients. However, this version mapping was

not implemented in the version (v10.02.05) of the Flowmon

probe used for our experiments.
The Cipher Suites is a field from Client Hello header which

specifies a list of supported encryption algorithms together

with the key length and hash algorithm to be used. This list is

ordered descendingly according to the client preference, and

we assume this preference can help identify the underlying

operating system. The TLS 1.3 specification defines only five

cipher suites to be used with TLS 1.3, but the clients usually

append more suites at the end of the list to ensure compatibility

with older servers. The list has variable length depending on

the client and the flow exporter stores only the first 16 bytes

of the field to the flow. As a result, we have IDs of the first

eight cipher suites most preferred by the client.

NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management Symposium

Authorized licensed use limited to: Cyprus University of Technology. Downloaded on August 18,2020 at 10:47:44 UTC from IEEE Xplore. Restrictions apply.

Similarly to cipher suites, the client can offer named groups

for the key exchange and cryptography based on elliptic

curves. This upgrade was introduced in TLS 1.2 as ellip-

tic curves extension and defined 25 named curves to chose

from [13]. TLS 1.3 specification then reduced this number to

only five supported curves, but added the option to use finite

field groups and defined five groups with audited parameters

resistant to known attacks [14]. This change also led to the

renaming of the extension to supported groups and introduced

ordering with the most preferred group first. Flowmon exporter

store the IDs of the first eight groups in the flow records.

Other parameters parsed from the TLS handshake are the

extension types and lengths. The extensions can specify ad-

ditional options for the handshake and greatly varies between

TLS versions and implementations. IANA maintains a list of

known extensions [15]; however, in the real traffic, we can

see unassigned extension types in use. Most of those are so-

called GREASE (Generate Random Extensions And Sustain

Extensibility) values which are nowadays only an Internet-

Draft [16] but already deployed in many TLS implementations.

Flowmon exporter parses the extensions and stores IDs of the

first 23 extensions used together with a list of their lengths.

The final parameter extracted from the TLS handshake is the

value of Server Name Indication extension [17]. It is present in

almost every HTTPS communication to differentiate between

multiple virtual servers so that the server know which TLS

certificate to send to the client. We treat the extracted server

name the same way as the domain name (host) extracted

from HTTP headers. Table I shows the features we measure

from the traffic using flow monitoring and use for passive OS

identification.

TABLE I
FEATURES EXTRACTED FROM NETWORK DATA.

TCP, HTTP Flow Features TLS Flow Features

TCP SYN packet size TLS server name indication
TCP window size TLS client version
TTL of TCP SYN packet TLS cipher suites
HTTP User-Agent TLS extension types
HTTP hostname TLS extension length

TLS supported groups
TLS elliptic curves point formats

IV. DATASET

To test the OS identification methods on real-world data,

We measured the flow data from the university uplink to

the Internet. The dataset consists of data from three different

sources; flow records collected from the university backbone

network, log entries from the two university DHCP (Dynamic

Host Configuration Protocol) servers and a single RADIUS

(Remote Authentication Dial In User Service) accounting

server. The data was collected from 2019-07-12 00:00 to

2019-07-16 23:59 with a few hours overhead on both sides

of the interval for the log entries to cover long connection

sessions overlapping to and from the time frame. We made

the anonymized dataset publicly available on the Zenodo

platform [18]. In the dataset, we kept only flows with source

IP addresses from university wireless networks (Eduroam).

This step significantly reduced the amount of data and left

only the relevant flows to identify the OS of devices in our

network, which we can enrich with information from DHCP

and RADIUS servers.
The DHCP log data was chosen as the ground truth for our

experiment. The log typically archives the information that

connects a unique MAC (Media Access Control) address of

a specific device with the IP address it got assigned within

a specific time frame. However, it is not possible to estimate

the length of the session initiated by a specific device just

from the DHCP log. A device might end the connection long

before its IP lease time expires and the DHCP server does not

log this action. The RADIUS accounting logs supplement the

DHCP logs in this regard, as they contain the session start

and session end parameter for a specific device identified by

its IP and MAC address.
The DHCP log data was collected from the two central

PPPoE concentrators of the university network. The original

DHCP logs contained a large amount of data not relevant or

redundant to OS identification, so we applied several filters

to keep them as concise as possible. The resulting DHCP

log includes following parameters: timestamp, IP address, IP

range, MAC address, and hostname of the client device. The

timestamp denotes the precise time of the request and with

the requested IP address and the device’s MAC address allows

pairing an address to a specific device within the given time

frame. The information that identifies the device’s operating

system is provided by the hostname parameter. We discovered

that some of the DHCP REQUESTS in the dataset demanded

IP addresses that do not belong to any of the known Eduroam

address pools. We removed these addresses and to confirm that

the device requests a valid Eduroam IP address, we specify for

each one the corresponding Eduroam address pool.
After that, all data sources needed to be combined to

connect the captured sessions with the ground truth. At first,

we have correlated both logs sources. We created a log pair if

both logs entries contained the identical IP and MAC addresses

and the DHCP REQUEST timestamp lied within the interval

of RADIUS start and end timestamps with a tolerance of

one minute to deal with possible time dyssynchronization of

logging servers. This correlation resulted in tuples containing

ID, IP, MAC, device name, start time, end time, and ground

truth OS derived from the hostname. Finally, we have enriched

every flow record with the session ID and ground truth. The

key was the flow source IP address and flow start timestamp,

which had to fall exactly into the session time interval. We

experimented with different time tolerances for this mapping,

but even tolerances of tens of minutes added only a negligible

number of unpaired flows (i.e., ten minutes tolerance added

0.38 % of flows). Altogether, our dataset consists of or is a

result of the activity of:

• 18 708 983 enriched flows,

• 10 734 unique users,

• 45 602 unique Wi-Fi sessions,

• 11 962 unique MAC addresses,

• 8 071 unique IPv4 addresses assigned.

NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management Symposium

Authorized licensed use limited to: Cyprus University of Technology. Downloaded on August 18,2020 at 10:47:44 UTC from IEEE Xplore. Restrictions apply.

V. OS IDENTIFICATION METHODOLOGY

We utilize four different methods to identify the OS of each

flow record. In this section, we describe the processing of

collected data, computing ground truth, and the settings of the

identification methods with a focus on the machine learning

algorithms. A brief overview of the identification level of detail

for each approach is presented in Table II.

TABLE II
OS IDENTIFICATION METHODS LEVEL OF DETAIL

Method Vendor Name
Major
Version

Minor
Version

TCP/IP parameters ! ! (!) (!)

TLS handshake ! ! (!) (!)

User-Agent ! ! ! !

Specific domains ! ! ✗ ✗

Ground truth X (!) ✗ ✗

A. Preprocessing

Machine learning algorithms were used for two methods,

TCP/IP, and TLS, and they require data transformations before

the learning or classification phase. We had already experi-

mented with machine learning for TCP/IP parameters in our

previous work [19] and the methodology stayed the same. The

three selected features (i.e., IP TTL, TCP Window Size, and

the size of initial TCP SYN packet) are all numerical values,

and during preprocessing we only round up the TTL value

to the nearest higher power of two according to Lippmann et

al. [20] to remove the influence of monitoring probe location.

In the case of TLS, we treat each feature as categorical.

The TLS version is an identifier which numerical value has no

real meaning, and the semantic of order relation on numbers

does not hold. The cipher suites and supported groups are

both ordered lists of IDs where the ordering is relevant for

the identification as it represents the preference of the client.

Similarly, we take the lists of extensions IDs and their lengths

as ordered to keep their semantics and position in the original

packet. During the preprocessing, we encode each feature into

a binary vector using one-hot encoding. The encoding ensures

all features retain their information value and that the encoding

does not introduce any new relations as if the values would

be treated as numbers. The encoder is persistently stored and

used on both learning and testing datasets.

For the User-Agent method, we did not use any preprocess-

ing. For the specific domains method, the information from

SNI is exported as a binary vector and HTTP host (domain

name) as a string. Therefore, the SNI values were converted

to string as well during the preprocessing.

B. OS Identification

The TCP/IP and TLS methods use a Decision tree to classify

the flows with labels corresponding to a specific minor version

of the OS. To train the classifier, we use the methodology

proposed by Husák et al. [10] and further extended by Ma-

toušek et al. [21] for flow monitoring. We pair the TCP/IP

parameters and User-Agents directly as they are present in the

same flow. For TLS, we pair HTTP and HTTPS requests from

the same device. Finally, we split the dataset into a training

one consisting of the annotated flows from the first day of

collected traffic. The rest of the flows were used as testing

dataset. Specific domains and User-Agent method stayed the

same as presented in previous paper [3] and could serve as a

comparison of traffic evolution in time.

C. Ground Truth

The ground truth of our experiment is based on the data

obtained from combining the DHCP and RADIUS auditing

logs, specifically, from the hostname parameter of DHCP RE-

QUEST events. Using this parameter to establish the devices’

OS works well for Apple and Google operating systems. Those

use identifiable device name set by default, and the user is

usually unable to change it freely. On the other hand, the

prevailing desktop operating systems, Windows and Linux,

are not as easily discerned. The Windows hostname is readily

editable, and by default, it is derived from the user name during

OS installation. The Linux hostname represents a similar

case; it is easily editable, and its default value is set during

installation, but also may vary for different Linux distributions.

Despite the aforementioned shortcomings, the ground truth

gained from DHCP log’s hostname should prove sufficient for

our experiment. The university network that we collect the

dataset from, Eduroam, is a wireless network environment,

so mobile devices, whose operating systems’ are rather easily

determined, prevail over the desktop ones by a large margin.

VI. RESULTS

In this section, we present how the implemented OS iden-

tification methods performed on our dataset. We also include

basic statistics of the traffic based on the usage of different

operating systems and versions of TLS and SSL protocols.

A. OS Identification Coverage

The first important measure of identification method capa-

bilities is its ability to identify the operating system from avail-

able data regardless of the result accuracy. We have evaluated

the coverage from two points of view. The first one represents

the ratio of flow records containing all features needed for the

identification method. The second is an aggregation of flows

into connection sessions where a session represents all flows

since the device connected to the network until it disconnected.

If the device sends at least one flow with all required features

during the session, the device OS for the whole session can

be identified.

The coverage results are summarized in Figure 2. A gener-

ally working method proved to be the TCP/IP parameters as it

depends on network and transport layer information and over

71 % of the captured traffic used TCP, and only a marginally

low number of sessions did not establish any TCP connection.

Similarly, almost every device (97.1 %) sent at least one TLS

NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management Symposium

Authorized licensed use limited to: Cyprus University of Technology. Downloaded on August 18,2020 at 10:47:44 UTC from IEEE Xplore. Restrictions apply.

 0 %

20 %

40 %

60 %

80 %

100 %

TCP/IP
Parameters

TLS
Handshake

Specific
Domains

User-Agent

Flow Coverage Session Coverage

Fig. 2. Coverage of operating system identification methods.

handshake message, and the TLS traffic was responsible for

more than half (50.86 %) of the flows. The amount of traffic

for the other methods is significantly lower. As of Specific

domains and User-Agent parsing, the number of flows is 5 %,

resp. 3 %. Even so, they were able to identify the OS for

87 %, resp. 74 %, of the connections of the devices. This ratio

indicates their usability in large networks as they can filter out

a large amount of traffic before the identification and still keep

high coverage.

B. OS Identification Accuracy

We measure the identification accuracy using standard per-

formance metrics of accuracy, precision, recall, and F-score.

To deal with the multi-class classification of our methods,

we calculated the confusion matrix with true positive (TP),

false positive (FP), true negative (TN), and false negative (FN)

values for each of the l classes (OS names), treating each

class as separate binary classifier. We assigned classification

prediction as TP if the ground OS name of the flow matched

the OS name of prediction regardless of the version as ground

truth does not cover this level of detail. From those values, we

calculated average accuracy and micro averaging of precision,

recall and F-score (β = 1) according to Sokolova et al. [22].

Detailed results of our experiments are listed in Table III,

and for visual comparison also on Figure 3. At first, we

discuss the results of repeated measurements of unchanged

methods (i.e., User-Agent and Specific domains) followed by

a description of the new or upgraded ones. The User-Agent

method produced the best and most consistent results. It is

based directly on the OS filled-in by the device itself and the

50 %

60 %

70 %

80 %

90 %

100 %

TCP/IP
Parameters

TLS
Handshake

Specific
Domains

User-Agent

Accuracy Precision Recall F-score

Fig. 3. Micro averaging of accuracy metrics.

TABLE III
MICRO AVERAGING OF ACCURACY METRICS

Method Accuracy Precision Recall F-score

TCP/IP parameters 0.9711 0.9137 0.9130 0.9133

TLS handshake 0.9312 0.8048 0.7749 0.7896

Specific domains 0.8659 0.5978 0.5974 0.5976

User-Agent 0.9764 0.9797 0.8763 0.9251

number of devices (intentionally) sending wrong information

in this field is very low, which is consistent with our previous

results. Also, Specific domains method provides consistent

results but with much lower F-score.

Our method based on TCP/IP parameters change was

twofold. The error in flow exporter which was present in

our previous work was fixed and it significantly increased the

coverage and provided correct data for prediction. The second

change was the shift from statistical analysis to machine

learning which improved the accuracy metrics notably. The

precision and recall over 90 % and almost complete coverage

makes TCP/IP method widely usable. Its main drawback is in

distinguishing versions of the same OS core used. Examining

the predictions, we found out that the primary source of false

positives and false negatives are the OS names iOS and MAC

OS which the classifier has troubles to distinguish as Apple

uses too similar parameters.

The new method based on TLS handshake parameters

generally proved very good results with the accuracy metrics

around 80 %. Surprisingly, this method was not able to identify

a single flow from Windows Phone and classified every one

of them as different versions of desktop Windows.

C. Traffic Statistics

Operating systems identified in the dataset are depicted on

Figure 4. Google Android takes the first place with 39.93 %

followed by Apple iOS and MAC OS with 30.03 % and

Microsoft Windows with 28.49 %. The remaining operating

systems (1.55 %) represent several Linux distributions and

minor mobile devices vendors (e.g., BlackBerry).

Google

Apple

Microsoft

Linux

Other

 0 % 10 % 20 % 30 % 40 % 50 %

39.93 %

30.03 %

28.49 %

1.48 %

0.07 %

Fig. 4. Operating system usage share grouped by vendor.

Figure 5 shows the use of TLS versions among the clients.

Recent TLS versions 1.2 and 1.3 dominate the network traffic.

SSL was used only in 1887 flows with 292 of them in version

2.0; the rest was SSL 3.0.

NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management Symposium

Authorized licensed use limited to: Cyprus University of Technology. Downloaded on August 18,2020 at 10:47:44 UTC from IEEE Xplore. Restrictions apply.

TLS 1.3

TLS 1.2

TLS 1.1

TLS 1.0

SSL

 0 % 10 % 20 % 30 % 40 % 50 % 60 %

48.72 %

50.13 %

0.06 %

1.07 %

0.02 %

Fig. 5. TLS and SSL protocol versions used by clients.

VII. CONCLUSION

In this paper, we proposed a method of passive identification

of the operating system based on flow monitoring data that

leverages information from TLS handshake. To support the

idea of OS identification in encrypted traffic, we enhanced OS

identification from TCP/IP parameters by exploiting machine

learning algorithms. Finally, we repeated our experiment with

OS identification using Specific domains and HTTP User-

Agent for comparison of the new methods to established ones.

Our results prove that the OS identification from encrypted

traffic is possible, and the used methods exhibited high ac-

curacy metrics. The method based on TCP/IP parameters is

comparable to unencrypted User-Agent identification with F-

score 91.33 % (compared to 92.51 % of User-Agent method).

The method based on TLS handshake parameters performed

a bit worse with accuracy metrics around 80 %, however,

excelled in the coverage. It was able to identify more than

97 % of the devices connected to the network, which is

significantly better portion than the Specific domains or User-

Agent methods could achieve.

Concerning lessons learned from the experiments, we would

argue that methods for OS identification are mature enough

and work in dynamic networks with the majority of traffic en-

crypted. However, data acquisition is becoming more complex.

The source flow data need to be enhanced with information

from applications protocols which are continuously evolving

and changing the specifications of the data fields from previous

versions. This evolution requires the flow exported to be

continuously updated as new protocols and protocol versions

are created. Also, the correlation of data from multiple data

sources required a lot of manual work and the use of heuristics

to correctly match log records to corresponding flows. In our

future work, we plan to focus on the automation of data re-

trieval from the infrastructure elements and their normalization

for (near) real-time flow annotation. We will also keep our

close cooperation with Flowmon Networks to apply results of

this research in their monitoring solution.

ACKNOWLEDGEMENT

This research was partly supported by the CONCORDIA

project that has received funding from the European

Union’s Horizon 2020 research and innovation programme

under grant agreement No 830927 and partly by the

ERDF project “CyberSecurity, CyberCrime and Critical

Information Infrastructures Center of Excellence” (No.

CZ.02.1.01/0.0/0.0/16 019/0000822). Martin Laštovička is

Brno Ph.D. Talent Scholarship Holder – Funded by the Brno

City Municipality.

REFERENCES

[1] E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.3,”
RFC 8446.

[2] R. Hofstede, P. Čeleda, B. Trammell, I. Drago, R. Sadre, A. Sperotto,
and A. Pras, “Flow Monitoring Explained: From Packet Capture to Data
Analysis With NetFlow and IPFIX,” IEEE Communications Surveys

Tutorials, 2014.
[3] M. Lastovicka, T. Jirsik, P. Celeda, S. Spacek, and D. Filakovsky, “Pas-

sive OS Fingerprinting Methods in the Jungle of Wireless Networks,”
in NOMS 2018-2018 IEEE/IFIP Network Operations and Management

Symposium. IEEE, 2018, pp. 1–9.
[4] C. Shen, C. Liu, H. Tan, Z. Wang, D. Xu, and X. Su, “Hybrid-augmented

device fingerprinting for intrusion detection in industrial control system
networks,” IEEE Wireless Communications, vol. 25, no. 6, pp. 26–31,
2018.

[5] I. Sanchez-Rola, I. Santos, and D. Balzarotti, “Clock Around the Clock:
Time-Based Device Fingerprinting,” in Proceedings of the 2018 ACM

SIGSAC Conference on Computer and Communications Security, ser.
CCS ’18. ACM, 2018, pp. 1502–1514.

[6] P. Velan, M. Čermák, P. Čeleda, and M. Drašar, “A Survey of Methods
for Encrypted Traffic Classification and Analysis,” Netw., vol. 25, no. 5.

[7] B. Anderson, S. Paul, and D. McGrew, “Deciphering malwares use of
TLS (without decryption),” Journal of Computer Virology and Hacking

Techniques, vol. 14, no. 3, pp. 195–211, 2018.
[8] W. M. Shbair, T. Cholez, A. Goichot, and I. Chrisment, “Efficiently

bypassing SNI-based HTTPS filtering,” in 2015 IFIP/IEEE International

Symposium on Integrated Network Management (IM). IEEE, 2015, pp.
990–995.

[9] M. Korczyński and A. Duda, “Markov chain fingerprinting to classify
encrypted traffic,” in IEEE INFOCOM 2014-IEEE Conference on Com-

puter Communications. IEEE, 2014, pp. 781–789.
[10] M. Husák, M. Čermák, T. Jirsı́k, and P. Čeleda, “HTTPS traffic anal-

ysis and client identification using passive SSL/TLS fingerprinting,”
EURASIP Journal on Information Security, 2016.

[11] Flowmon Networks. Flowmon Probe. [Online]. Available: https:
//www.flowmon.com/en/products/flowmon/probe

[12] P. Velan and R. Krejčı́, “Flow Information Storage Assessment Using
IPFIXcol,” in Dependable Networks and Services, ser. Lecture Notes in
Computer Science, vol. 7279. Springer, 2012, pp. 155–158.

[13] S. Blake-Wilson, N. Bolyard, V. Gupta, C. Hawk, and B. Moeller,
“Elliptic Curve Cryptography (ECC) Cipher Suites for Transport Layer
Security (TLS),” RFC 4492.

[14] D. K. Gillmor, “Negotiated Finite Field Diffie-Hellman Ephemeral
Parameters for Transport Layer Security (TLS),” RFC 7919.

[15] Internet Assigned Numbers Authority. Transport Layer Security (TLS)
Extensions. [Online]. Available: https://www.iana.org/assignments/
tls-extensiontype-values/tls-extensiontype-values.xhtml

[16] D. Benjamin, “Applying GREASE to TLS Extensibility,” Internet Engi-
neering Task Force, Tech. Rep., 2019.

[17] D. Eastlake, “Transport Layer Security (TLS) Extensions: Extension
Definitions,” RFC 6066.

[18] M. Laštovička, S. Špaček, P. Velan, and P. Čeleda, “Dataset Using TLS
Fingerprints for OS Identification in Encrypted Traffic,” 2019.

[19] M. Laštovička, A. Dufka, and J. Komárková, “Machine learning fin-
gerprinting methods in cyber security domain: Which one to use?” in
2018 14th International Wireless Communications & Mobile Computing

Conference (IWCMC). IEEE, 2018, pp. 542–547.
[20] R. Lippmann, D. Fried, K. Piwowarski, and W. Streilein, “Passive op-

erating system identification from TCP/IP packet headers,” in Workshop

on Data Mining for Computer Security, 2003, p. 40.
[21] P. Matoušek, O. Ryšavý, M. Grégr, and M. Vymlátil, “Towards Identifi-

cation of Operating Systems from the Internet Traffic: IPFIX Monitoring
with Fingerprinting and Clustering,” in 2014 5th International Confer-

ence on Data Communication Networking (DCNET), 2014.
[22] M. Sokolova and G. Lapalme, “A systematic analysis of performance

measures for classification tasks,” Information Processing & Manage-

ment, vol. 45, no. 4, pp. 427–437, 2009.

NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management Symposium

Authorized licensed use limited to: Cyprus University of Technology. Downloaded on August 18,2020 at 10:47:44 UTC from IEEE Xplore. Restrictions apply.

