
Using Tool Abstraction
to Compose Systems

David Garlan, Carnegie Mellon University

Gail E. Kaiser, Columbia University

David Notkin, University of Washington

Two complementary
paradigms support the

evolution of large-scale
software systems. Data

abstraction eases
design changes in the
representation of data

structures, while tool
abstraction does the

same with system
functions.

M
anaging complexity and supporting evolution are two fundamental

“i , problems with large-scale software systems.’ Although modularization
,. has long been accepted as the basic approach to managing complexity,

as David Parnas observed nearly 20 years ago, not all modularizations are equally
good at handling evolution.’

Data abstraction is a popular, important style of modularization. In this style, an

abstract data type is defined by an explicit interface that specifies operations on

instances of the data type. This approach defers design decisions about represent-
ing concrete data structures and implementing algorithms on those structures.

These concrete decisions can be changed without modifying the module’s clients,

which are written in terms of the stable interface.
Enhancing a system’s function typically accounts for about 60 percent of

maintenance costs in a large system’s life cycle. and hence roughly 40 percent of

total software life-cycle costs.’ If the interfaces to abstract data types are kept the
same to protect clients from evolutionary changes, enhancements must often be

constructed in terms of existing abstract data types. This restriction can lead to two
problems. The desired function may not be computable from the existing inter-

faces, or implementing the function in terms of these interfaces may be unaccept-
ably inefficient.

Thus, modifying the abstract interface itself may be the most effective-or the
only - way to enhance functionality. Changing the abstract interface, however,

implies that the concrete implementation must be understood and changed, which
increases the complexity of the task. While one such change to an existing data

abstraction may not be a serious problem, as the number of enhancements
increases so does the complexity of the interactions between them.

Therefore, designers need an approach to handling changes that permits the

system to be enhanced incrementally and modifications to be developed indepen-

dently, even when the changes cannot be achieved by using traditional data-
abstraction techniques. Several existing kinds of systems approximate these objec-

tives. For example, spreadsheets are often enhanced by adding new equations that

30 "018-9l6?i9?/0600-~~~~~~~~~.00 C 1992 IEEE COMPUTER

use the values in data cells to inter-
act indirectly with existing equations.

In another example, production sys-
tems - a popular implementation

paradigm for expert systems -con-
sist of a collection of independent

pattern-action pairs (called rules)

that fire when the patterns match
values in a shared database (called
working memory). In principle, a

production system can be enhanced

I I

I I

Figure 1. Collection of toolies that share a set

of abstract data structures.

by adding new rules that match and

manipulate the working memory.
We call the diverse set of systems

structured in this style the tool-abstrac-

tion paradigm. That is, despite some

differences, each system of this sort has
a common structure that encourages

and eases incremental enhancement of

system function, just as data abstraction
encourages and eases changing design
decisions about data representation.

Rather than detract from the central

idea of tool abstraction by introducing a
new tool-abstraction mechanism, we use

existing approaches to describe and ar-

gue the benefits of tool abstraction. The
s idebars throughout this article describe
several of these approaches.

Systems that support tool abstraction

are structured as a pool of abstract data
structures shared by a collection of co-

operating “toolies,” where each toolie

provides a piece of the overall system
function. When one toolie updates the
shared data, other toolies must be noti-

fied; otherwise, cooperating-but-inde-

pendent toolies may not execute, and
the overall system function may be com-
promised. Figure 1 illustrates this archi-
tecture.

Spreadsheets
Spreadsheet programs have gained

enormous popularity as flexible, exten-

sible tools for financial accounting.’ A

spreadsheet can be viewed as a

shared data pool represented by a ma-

trix of values, with toolies represented

by equations associated with positions

in that matrix. When data in one of the

matrix entries changes, the runtime

system automatically reevaluates all

equations that depend on that entry,

updating the appropriate entries. Sup-

pose an equation defines the rightmost

value in a row as the sum of the row’s

other values. If a user changes one of

those values, the spreadsheet will au-

At this level, tool abstraction resem-
bles trigger-based database-manage-

ment systems that provide access to
shared data through a common set of
schemas. As discussed later, each sys-

tem handles notification differently, al-

though most use an event-based ap-
proach.

Tool abstraction complements, rather

than supplants, data abstraction. Data
abstraction allows design decisions about

the representation of data structures to

change easily, while tool abstraction al-
lows system functions to change easily.

A simple example

Consider a small message system cen-

tered on a queue module that exports

enqueue and dequeue operations only.
Using abstract data types, how could we
enhance the system so that it will not

add duplicate messages? One approach

is to modify the clients of the queue.
However, this is unsatisfactory because
to detect duplicates by using the origi-

nal interface. the client would have to

tomatically reevaluate the sum. This in

turn may trigger the reevaluation of other

equations, such as one to add all values

in the rightmost column.

A spreadsheets toolie invocation mech-

anism thus depends on dataflow analysis

to determine which matrix entries affect

which equations. Many spreadsheets

have simple mechanisms that do not han-

dle, or even identify, circular relationships

among the tooiies. Luckily, in the domains

most generally addressed by spread-

sheets, such circularities rarely arise.

A spreadsheet system is not a general-

purpose tool environment but a special-

ized application generator. Consequently,

the range of toolies that a spreadsheet

implementer can describe is constrained.

dequeue each message already on
the queue, compare it to the new
message to be enqueued, and then

re-enqueue the original messages,

plus perhaps the new one. Even
though this activity could be encap-
sulated in a new client, the perfor-

mance penalty is severe. Specifical-

ly, the number of enqueueldequeue
operations executed would be lin-

ear in queue length.
Another approach is to change

the queue module implementation.
The number of enqueue operations

would drop to one, and no dequeue
operations would be needed. However,
this approach is unsatisfactory because

the semantics (although not the syntax)

of the enqueue operation must change.

Thus, clients that want the original queue
semantics (perhaps for some other use

of queues) are not isolated from the
change. Using data abstraction, this kind

of problem must be handled by creating
distinct abstract interfaces, each with

different semantics.
Both approaches are less attractive in

the face of multiple enhancements. Con-
sider a second enhancement that adds a
time stamp to each message; this neces-

sarily interacts with the prohibition
against duplicate messages. In particu-

lar, both enhancements must modify

the implementation even though they

may be conceptually independent. Fur-
ther, the clients must usually be modi-
fied to gain any advantage from the

time-stamp enhancement. Again, this is

further complicated when various cli-
ents desire different semantics. Some

clients might prefer to queue the dupli-

Nonetheless, spreadsheets exhibit the

architectural hallmark of tool abstrac-

tion: a shared pool of data together

with event-driven control of function.

Moreover, they effectively handle

functional evolution: Circularities

aside, equations can be added to the

system independently of other equa-

tions in the system. While complex de-

pendencies may exist between these

equations, the system rather than the

programmer

tions.

manages those interac-

Reference

1. Ft. Ross, Design of Personal Computer
Softwere, IEEE Press, New York,
1985, pp. 282-300.

June 1992 31

cate with the earliest time stamp, while

others prefer to use the latest time stamp.
Although this example is especially

simple, it illustrates some tensions that

arise when systems evolve. The use of
tool abstraction shows how problems of
evolution can be reduced.

The message buffer serves as the

shared data structure. One toolie pro-

vides the basic enqueue and dequeue
operations. To handle the first enhance-

ment, a “remove duplicates” toolie is
defined; after the initiation of each en-

queue operation, this toolie is invoked
to compare the message about to be

inserted with all other messages. abort-
ing the enqueue operation if the mes-
sage is already in the queue. Because it
has direct access to the message buffer.

the toolie can be implemented with rea-
sonable efficiency. (If needed, the too-

lie can maintain an auxiliary represen-
tation of the buffer, keyed by whatever
component of a message is checked for

duplication.) The “add time stamps”
toolie, which defines the second en-
hancement, is invoked when the en-

queue operation terminates successful-

ly. This toolie augments the newly
inserted message with a field that repre-
sents the current time. Maintaining cor-

rectness is relatively easy. since each

new toolie interacts only with the mes-
sage-buffer representation and any oth-
er toolit invoked by the same opera-

tion, not with other toolies associated
with the message queue. In this case. it’s
unnecessary to specify the invocation

Production systems
This popular implementation para-

digm for expert systems typically con-

sists of a collection of rules, where

each rule is a pattern-action pair. The

pattern defines the conditions under

which the associated action should be

applied (or triggered). Patterns are

written in terms of the values of ob-

jects in a shared database, called

working memory. When several pat-

terns apply to a particular database

state, the system automatically con-

trols the sequencing of corresponding

actions, as determined by rule-order-

ing policies that vary with the kind of

production system. These systems are

based on tool abstraction, with working

memory representing the shared data

pool and the production rules repre-

order of these two toolies, since “re-
move duplicates” is invoked upon initia-

tion of enqueue, while “add time stamps”
is invoked upon its termination.

The KWIC index
production system

As Parnas pointed out, the issue is
not whether to modularize a system -
since modularization is essential to the

control of complexity-but rather how

to design the best criteria for decom-
posing a system design into modules.
Parnas contrasted data abstraction with

functional decomposition, showing that

systems based on the former can better
handle evolution for certain classes of
change. We have taken this one step
further. Tool abstraction reintroduces

decomposition criteria according to func-
tion but uses a composition paradigm
based on sharing abstract data struc-

tures (low-level abstract data types)

among a collection of cooperating tools,
together with an event-driven integra-
tion mechanism. A bundle of toolies

represents a higher level abstract data

type. amenable to a wide range of en-
hancements. This approach contrasts

with the strict use of data abstraction

and leads to better support for the more
common classes of functional enhance-

ments.

Parnas used the KWIC (Key Word in
Context) index production system to
compare two modularizations with re-

senting the toolies. Interactions between

the enhancement and existing functions

are controlled by the production system

itself.

The Formalized System Development

(FSD) systemi,* and Marvel3 are rule-

based software-development environment

architectures that are relatively close to

pure tool abstraction. Each combines

ideas from production systems and active

data, and represents the software artifacts

under development in an object-oriented

database. Tool fragments are automati-

cally invoked in response to chaining on

the rules, which in turn can be triggered

by changes to the data. In FSD, new rules

and subclasses of existing objects can be

added at any time to accommodate addi-

tional Lisp tools. In Marvel, new rules,

new classes of objects, and extensions to

existing classes can be added at any time

spect to ease of evolution. To further

illustrate the idea of tool abstraction,

we do the same. The first design we
present is Parnas’s second decomposi-
tion, which uses data abstraction to de-
compose the system into modules. Our

second design is based on the tool-ab-

straction paradigm. We show how tool
abstraction (along with data abstrac-

tion) supports evolutionary enhance-

ments more effectively than does data
abstraction per se. Parnas describes the

KWIC system as follows:*

The KWIC index system accepts an ordered
set of lines, each line is an ordered set of
words, and each word is an ordered set of
characters. Any line may be “circularly
shifted” by repeatedly removing the first
word and appending it at the end of the
line. The KWIC index system outputs a
listing of all circular shifts of all lines in
alphabetical order.

As Parnas explains, this is a small

system and consequently none of the
motivating issues actually arise. Simi-

larly, it’s hard to properly evaluate evo-
lution issues in a system of this size.

However, because it does let us point

out the key issues and problems of tool
abstraction. we follow Parnas’s lead in
treating it as a large project that pre-

sents realistic problems.

Design 1: Parnas’s decomposition.

Parnas decomposes the KWIC system

into modules that hide specific data-

representation and algorithm choices
so that these choices can be changed.

to integrate additional commercial off-

the-shelf tools into the environment.

References

R. Balzer. “A 15-Year Perspective on
Automatic Programming,” /EEE Trans.
Sofnvare Eng., Vol. SE-1 1, No. 11, Nov
1985, pp. 1,257-i ,268.

D.S. Wile and D.G. Allard, Worlds: An
Organizing Structure for Object-Bases,”
in Proc. SIGSoWSIGPlan Software Eng.
Symp. Practical Software Development
Environments, P. Henderson, ed., ACM,
New York, 1986, pp. 16-26; and in Spe-
cial Issue of SlGflan Notices, Vol. 22,
No. 1, Jan. 1987.

G.E. Kaiser, P.H. Feiler. and S.S. Pop-
ovich, “Intelligent Assistance for Soft-
ware Development and Maintenance,”
/EEE Software, Vol. 5, No. 3, May 1988,
pp. 40-49.

32 COMPUTER

*The Line Storage module imple-

ments a sequence of lines, with rou-

tines to create, access, and delete char-
acters, words, and lines.

l The Input module reads and stores
the original lines.

*The Circular Shifter module pro-

vides routines to access individual char-
acters, words, and lines of the circular

shifts of the stored lines.
l The Alphabetizer module provides

routines to access shifted lines in al-

phabetical order.
l The Output module prints the cir-

cular shifts in alphabetical order.

The top-level program first invokes

the Input module, which stores the lines
using the Line Storage module. The

actual representation used by Line Stor-

age is hidden from Input. Functions

exported by the Circular Shifter mod-
ule are then invoked. Circular Shifter

retrieves the stored input using Line

Storage, hiding decisions about data
representation and algorithms from the
top-level program. Then functions from

the Alphabetizer module are used to

sort the shifted data. Alphabetizer ac-
cesses the data through Circular Shift-

er, while hiding the sorting algorithm
from the top-level program. Finally,

the Output module accesses the sorted
list using Alphabetizer (and perhaps

Circular Shifter). In contrast to the com-
mon functional decomposition, alter-

native control structures are easy to
construct.

Potential changes in the context of

Design 1. Parnas’s data decomposition
is effective in handling such alternative

representations and implementations

as packed-versus-unpacked characters,
explicit-versus-implicit representation
of shifts, and monolithic-versus-incre-

mental alphabetization. However, Par-

nas’s decomposition does not directly
support other kinds of enhancements.
This is not surprising, since Parnas was

concerned primarily with situations in
which a system’s functional specifica-
tions remained unchanged, although

the implementations could vary. Look-

ing at how some proposed enhance-
ments might be supported in Parnas’s
decomposition of KWIC demonstrates

some evolution problems in systems

modularized according to the principle
of data abstraction.

Consider augmenting KWICwith the

capability to omit shifts that start with

June 1992

one of a set of noise words, such as

articles. Parnas’s decomposition admits

two approaches to this modification.
The first one is to include a simple

filter in the Output module (or add a
small module that provides this filter).
The filter checks the first word of each
shift, printing the associated line only if

it does not start with a forbidden word.

This approach is straightforward but
unnecessarily inefficient. In particular,
all shifts must be alphabetized, includ-

ing those that will ultimately be omitted

from the output. This added cost can be
significant, as can be seen by looking at

the KWIC index for Unix manual en-

tries, which is based on a one-line head-
er associated with each Unix command.
If this index listed all shifts, there would

be about 5,000 entries. But the actual

index omits shifts starting with about
150 noise words: Only about 1,000 shifts
actually appear when the noisy ones are

filtered out. Sorting dominates the over-

all cost. In this case, the cost is 0 (N lg
N), where N is the initial number of
entries, so this decrease in sortable en-

tries saves at least a factor of five in

execution time. This cost is indicative of
the performance penalties that may be

required by restricting access to encap-

sulated data.

The second approach to implement-
ing the omit version of KWIC is to mod-

ify the Circular Shifter. (The Alphabet-
izer module could also be modified, but

this approach is less attractive for simi-
lar concerns about performance.) As
each call is made to the Circular Shifter

to insert a new line, the line is checked

against the set of prohibited words. If a
match is found, the line is not inserted

into the shifted list. The code to imple-

ment this approach is simple, and it
keeps the structure of the shifter imple-

mentation straightforward. However, as

we shall see, this kind of solution be-

comes complicated when further changes
are considered.

A second possible enhancement closely
relates to the first: Given a set of words,
include only those shifts that start with
one of them. This approach might be

used to cull a set of smaller KWIC indi-

ces, each related to a subtopic.

The same implementation approach-
es are available, with the same trade-

offs. Filtering is easy, leaving the exist-
ing modules unchanged, but it is
inefficient. Or the “include” check can

be incorporated into the shifter, adding

complexity to shifter code and raising

the question of how to handle other

shifter clients.

In this small example, modifying the
shifter is not a serious problem. Howev-
er, including both omission and inclu-

sion enhancements in the shifter makes

the module more complex. Rewriting it
from scratch might produce a clean ver-
sion, but it’s not practical to rewrite a

module each time an enhancement is

made. So, in practice, module complex-
ity tends to explode as repeated en-

hancements are made.
Two additional possible enhance-

ments closely relate to the first two. In
these, omission and inclusion are again

provided, but on the original list of lines

rather than on the shifts. These enhance-
ments, when combined with the first

two, help produce KWIC indexes that

meet a wide range of needs. The same
implementation trade-offs arise. Filter-
ing can be done after the line storage is

initialized, again at added cost (although
not so bad as in the shifter’s case, since

the insertion cost is linear). Or the Line
Storage module itself can be modified,

just as the shifter was.
One problem with modifying the shift-

er and line-storage modules as suggest-

ed is that the decision to include a given

line should not be the responsibility of
those modules. This is not a serious
problem for the simple enhancements

we have discussed, but it becomes much
more significant as other enhancements

and modifications are introduced. For
instance, what if a user wanted an en-
hancement where individual words could

be included or excluded, as opposed to
including or omitting shifts that start

with these words? Implementing such
changes efficiently in the line-storage

or shifting modules would make the

implementations confusing. Also, the

capability to reuse modules (such as
Line Storage) for storing other lists of

words (such as the noise words) would
be compromised because orthogonal
enhancements might be needed for each

list. In any case, module focus on line
storage or shifting would fade, which is
inappropriate because it compromises

the separation of concerns. It should be

possible to treat each enhancement as
an independent unit, with the only in-
teractions being through operations on

the shared data structures.

Design 2: Tool abstraction. In Design
1, the enhancements - while possible
- are unnecessarily complicated. In

33

particular, it’s unfortunate that log-
ically independent requirements are
difficult to implement efficiently
without intertwining logically inde-

pendent implementations. For in-
stance, deciding whether to include

a shifted line should not affect the

implementation of the shift module,

different ways; see the sidebars for
examples.) Alternatively, the shift

creation code could be associated
with the complete input buffer, rath-
er than with single lines, and there-

fore could be triggered when all

input lines are inserted as the Input
toolie signals completion. Thus, in

but that’s the most effective imple- ’ Figure 2. Toolies that share line-buffer and
this example at least, tool abstrac-

mentation in practice. Tool abstrac-
tion, in contrast, allows each toolie

shifted-line abstract data structures.
tion is suited for defining incre-

mental and batch computations.
The input lines and the shifted lines
are conceptually separate buffers.

to act as a (largely) independent

entity that focuses on a single func-

tion, decreasing the complexity of suc-
cessive enhancements.

With tool abstraction, the input,shift-
ed, and alphabetized data are kept as

shared (although still abstract) data
structures. When a given toolie modi-

fies the common data. other dependent

toolies are invoked indirectly. This keeps
each toolie clear of functionally unre-
lated code. The shared data are still

abstract because they are not “opened”

completely. In particular, the physical
representations are still hidden by the

data-abstraction mechanisms. The func-
tions on these shared data entities are,

however, factored into toolies. In con-
trast. traditional abstract data typescom-
bine these two concerns.

Design 2 is based on a collection of
toolies that manipulate shared buffers
representing sequences of lines. The

following toolies define the basic oper-
ations of KWIC. Figure 2 illustrates their
interaction.

*The Input toolie creates a new in-
stance of a shared buffer. It reads lines

from the input file, inserting each suc-

cessive line into the shared line buffer.
*The Circular Shifter toolie creates

another instance of a shared buffer to

hold the shifted lines. It associates its

action, in the sense of a duemon or
active data. with the termination of the
insert operation of the Input toolie. As

each line is originally inserted, the shift-
er is implicitly invoked to create the
shifts for that line. The Circular Shifter
is not concerned with the internals of

the Input toolie but only with its regis-
tered insert operation. (In practice. dif-
ferent systems handle registration in

Active data in object-oriented systems

Many object-oriented programming

languages support some form of

event-driven control, which is often

used to update gauges and dials in

user interfaces. Sometimes the lan-

guage itself provides a notation to as-

sociate a method invocation with the

changing value of an object’s instance

variable. In other object-oriented lan-

guages, event-driven control is provid-

ed as a set of kernel facilities. In

Smalltalk-80,1 for example, the system

maintains a list of dependent objects

for each object. An object can send it-

self the changed message, which

causes an update message to be sent

to each of its dependents. This mecha-

nism underlies the Model-View-Con-

troller paradigm2 that drives many as-

pects of Smalltalk’s user interface.

Another approach is exemplified by

Flavors,3 where methods inherited

from multiple ancestor superclasses

are combined by invoking method frag-

ments before and after the main meth-

od. Most modern object-oriented data-

bases also include some style of

“trigger.”

References

1. A. Goldberg, Smalltalk-BU: The Interac-
tive Programming Environment, Addison-
Wesley, Reading, Mass., 1984.

2. G.E. Krasner and S.T. Pope, “A Cook-
book for Using the Model-View-Controller
User Interface Paradigm in Smalltalk-80,”
J. Object-Oriented Programming, Vol. 1,
No. 3, Aug./Sept. 1988, pp. 26-49.

3. D.A. Moon, “Object-Oriented Program-
ming with Flavors,” in Proc. Object-Ori-
ented Programming Systems, Languag-
es, and Applicarions Conf., N. Meyrowitz,
ed., 1986, ACM, New York, pp. 1-8; and
in Special Issue of SlGPlan Notices, Vol.
21, No. 11, Nov. 1986.

34 COMPUTER

Changing between creating a new buffer

and using the input buffer directly, or
between using an explicit or an implicit

representation of the shifts, can be done

by redefining the Circular Shifter too-
lie. This illustrates how toolies can aug-

ment data as well as function.

l The Alphabetizer toolie associates

its action with the shared shift buffer.
The Alphabetizer is triggered by the
completion of shifter activities to sort

lines in the buffer. In the case of an

implicit shift buffer, this results in a
coroutine interaction between the two

toolies. Another shared buffer could
be created to hold the alphabetized

shifts, if desired, or the alphabetized
buffer and the shift buffer could be

equated to the same data structure.

The sort could also be incremental,
associating incremental insertions with

the insertion of each shift into the shared

shift buffer.
l The Output toolie provides a dis-

play scheme for printing the alphabet-

ized shift buffer.

The top-level program invokes In-

put followed by Output. The actions
of Input cause the Circular Shifter to

execute, the shifter actions cause the
Alphabetizer to execute, and Output

simply accesses the sorted, shared buff-

er. An alternative approach would be
for Alphabetizer to trigger an event
when it’s done sorting; Output would

be invoked to print the results auto-

matically.

Potential changes in the context of

Design 2. Enhancements are accom-
modated more effectively and efficient-

ly in this approach. Tool abstraction
provides the capability to naturally de-

fine multiple enhancements indepen-

dently of existing code, while still pro-

ducing programs that execute
efficiently.

An Omit toolie can be associated

with the insert operation (provided by
the original Input toolie) on the shared

shift buffer. If the first word of the shift

being inserted is in the set of noise words,
the toolie aborts the insert (that is, the

Omit toolie is triggered by the initiation

of the insert operation rather than its
termination). The code for programs
that insert into the shift buffer need not
be changed. The cooperation between

these toolies and the Omit toolie is trig-
gered implicitly by operations invoked
on the shared data rather than on ex-
plicit calls between operations. This

eases evolution because multiple too-
lies can be triggered by the same oper-

ation without any changes to the trig-

gering operation. The same approach
holds for the Include toolie on the shift
buffer. It also works for the Omit and

Include toolies on the shared input buff-
er. When the input and shift buffers are

made explicit, separate toolies can be
associated with each one.

Discussion

Tool abstraction relates to a variety
of other concepts.

Tool abstraction versus pipes. Too-
lies are similar in intent to Unix pipes,
which link together a preplanned se-

quence of small functional units. Each
unit in the pipeline takes as input the
output produced by the previous unit;

execution is triggered by the arrival of
this input. Pipes are much more limited

than toolies because pipes must be con-
nected sequentially, while toolies share

abstract data and are permitted to have

much richer control interactions. A unit

cannot react to operations on the data
made by subsequent units in the pipe.

Furthermore, in contrast to toolies, units

connected by a pipe share only a single
predefined data representation - a se-

quence of characters-with no capabil-
ity for shared data definitions. When
this is not a suitable representation for

the internal processing of a particular
unit, the unit must parse its input from

and unparse its output to the standard
character stream form. In contrast, each

bundle of toolies can define its own data
representation, with later enhancements

perhaps adding components to the data

structure.
These two restrictions do not pose a

problem for the previously suggested
enhancements to KWIC. For instance,

June 1992

tribute of an abstract syntax tree, node

as a funct~orl of the attribute V8fUeS of

pipes are a natural (although not partic-
ularly efficient) solution to omit/include
on original/shifted lines. The input sim-

plystreamsthroughapipelinedsequence

of sorters and filters, and more filters
can always be inserted in the pipeline.

In other situations with more complex

interactions among functional units,
pipes are inadequate. The trade-off is
not simple. The restrictions on pipes

can be viewed as a way of managing
complexity, but with the restrictions

comes a reduction in the kinds of sys-
tems that are easy to build.

Tool abstraction versus inheritance.

Inheritance in object-oriented languag-
es can be used to provide some aspects

of tool abstraction. In particular, inher-

itance is an especially good approach to
extending abstract data types. In many
cases, a subclass can provide additional

operations on an existing data type with-

out modifying the base type.

However, inheritance doesn’t provide

all the features needed for tool abstrac-
tion. The most notable exception is

events. These can be added to object-

orientedsystems (as with the Smalltalk-

80 Model-View-Controller“), but inher-
itance doesn’t do the job by itself. Also,

when inheritance is used to achieve code

sharing rather than behavior sharing,
the relationship to tool abstraction is
even less clear. Handling triggering ef-

fectively is especially difficult. Perhaps

more fundamentally, most object-ori-
ented systems do not encourage pro-
gramming in the paradigm of tool ab-

straction, even when they provide many
of the underlying mechanisms.

Additionally, inheritance imposes a

hierarchy on data abstractions. Toolies,
in contrast, are equals. In particular, one

could define a system that uses a subset
of existing toolies, picking and choosing
from desired functions. This is not

straightforward with inheritance, where

selecting a subclass implies selecting the
properties of its superclasses.

Finally, inheritance can be viewed as
a model for merging toolies into a cohe-

sive system. This is the approach taken
in the Meld language.5

Events. Our examples rely on using
an event (or trigger) mechanism. The
basic reason is that triggers allow great-

er independence among toolies. With-

out triggers, toolies would be directly

responsible for cooperatively manag-
ing their collective control flow. This

process might be simple at first but would

become increasingly complicated as en-
hancements were introduced.

Triggering can be implemented as an
implicit. underlying mechanism or as an

explicit, programmer-level mechanism.
In attribute grammar-based structure-
oriented environments, for instance, de-

signers of specific environments are un-

aware of a triggering mechanism. They
simply write the desired set of attribute
equations. The same is true for spread-
sheet users. But the underlying imple-

mentation triggers incremental evalua-

36

tion when values are updated by the
user. In production systems, the pro-
grammer is aware of how rules fire and

must build systems based on these se-
mantics.

When triggering is used as an implicit
mechanism, many difficulties are man-

aged by the underlying system. Circular-
ity, for instance, can be a serious prob-
lem. Toolies can indirectly invoke

themselves, producing an unbounded

execution. Most attribute grammar and
spreadsheet systems, however, check (ei-

ther statically or dynamically) for such

circularities, so their designers need not
be overly concerned about circularities
of an attribute grammar or a spread-

sheet. In action routine-based structure-
oriented environments, however, the
programmer must be aware of this prob-
lem. The difficulties of trigger-based
programming can be significant. The ben-

efits, however, are also significant.

There is now a wealth of practical
(although perhaps not systematically

understood and documented) experience
with trigger-based programming, from

such domains as structure-oriented

environments, production systems,
recent relational and object-oriented

databases, object-oriented systems, and

access-oriented programming (as in
Loops+).

Effkiency. We have addressed sever-
al dimensions of efficiency in this article.

One dimension is the question of al-

gorithmic complexity of the underlying

system. Abstract data types, and their

associated implementations, are gener-
ally designed to efficiently support a set
of operations. If the interface remains

inviolate, it may no longer support new

functions efficiently as the system
evolves. In the example discussed in the
introduction, checking for duplicates by

using the simple enqueueldequeue in-
terface is an instance of this problem;
the fixed interface makes what ought to
be a constant-time operation into a lin-

ear-time operation (in terms of the num-

ber of invocations on the interface). In
some cases, the complexity is the same,
but the constant can increase signifi-

cantly, which may not be acceptable in
practical systems.

COMPUTER

Another dimension is whether trig-
gering mechanisms slow down systems

too much. There are at least two issues

here. First. designers have quite a bit of

experience with triggering mechanisms
in a wide variety of domains (see side-

bars). Many realistic systems have been
based on triggering mechanisms,so there

seems to be no inherent hurdle to over-
come. Second, any added costs would

be a matter of a constant factor, since
the operation would have to be invoked
anyway. With triggers, it’s just a ques-
tion of haggling about the price. This
contrasts with the algorithmic dimen-

sion, since restricted interfaces can slow

programs down by greater-than-constant

costs.

Table 1. Instances of tool abstraction.

r System Shared Data Toolies Control Mechanism

2D matrix Equations Dependency analysis

Structure-oriented
environments

Abstract syntax
tree

Action

routines

Operations

Structure-oriented
environments

Abstract syntax

tree

Attribute

equations

Dependency
analysis

Production
systems

Object-oriented

systems

Working
memory

Object base

Rules

Methods

Patterns and
rule resolution

Active values

Language issues. Parnas’s initial pa-
per presented the notion of data ab-

straction largely separate from language
and implementation issues. In fact, data

abstraction can be practiced without
special language features if the program-
mers are sufficiently disciplined. With

tool abstraction, however, language and
runtime support are necessary because
implicit invocation of toolies eases in-
cremental evolution. This is not a seri-

ous problem, however, since the sys-

tems described in the sidebars provide
concrete evidence that tool abstraction

can be efficiently realized (although
perhaps in restricted domains).

be made by adding toolies to the bun-

dle. The Meld language takes this ap-

proach.5
What, then, is to be gained from all

this? The abstraction paradigm or par-
adigms that drive a system’s design
should be chosen to reflect the system’s
expected evolution. If functional en-

hancements are expected to be the pri-

mary form of change (as they are in most

large systems), tool abstraction repre-
sents a particularly attractive and realiz-
able addition to existing approaches.

T
here can be no absolute judg-
ment about which criteria

and integration mechanisms are
best. A structuring technique that’s ap-

propriate in one circumstance may be

inappropriate in another. System struc-
tures based on the functional decompo-

sition criterion criticized by Parnas may

be appropriate when physical data for-
mats are unlikely to change, but new
paths for processing existing data are

expected as the system evolves. Witness

the success of Unix pipes. On the other

hand, decomposition based strictly on
data abstraction may be appropriate
when data representations are likely to

change, but not when external interfac-

es are also likely to change. Finally, as
we have argued, composition by using

tool abstraction is appropriate when a

system evolves through enhancements
to the function supported by existing
data structures.

ment does happen in complex situa-

tions. Consider the complexities that
arise when basic telephone services are

enhanced with such services as call for-
warding and call waiting. For example,

if call forwarding is turned on and the
phone is in use, should the call-waiting
tone sound when an incoming call ar-

rives or should the call be forwarded?

In each case, data from the same sen-
sors must be processed, the same billing
data updated, and so forth. While the

message queue and KWIC examples

could reasonably be reimplemented
from scratch when an enhancement oc-

curs, this is not feasible for most phone
system features. Thus it becomes espe-
cially important for the implementation
of optional new telephone services to

be as independent as possible of the
implementation of plain old telephone

services.

This has ramifications for three class-
es of software engineers. Language im-

plementers need to incorporate tool-

abstraction principles into new language
designs and develop general implemen-
tation techniques. Environment build-
ers need to develop facilities that sup-

port system design based on tool

abstraction (and analysis, testing, and
debugging aids that support adding new

toolies to existing systems). Finally, sys-

tern designers need to be aware of the
tool-abstraction paradigm and actively
seek a system that supports shared data
and event-driven tool integration. As

explainedin thesidebars,manyinstances
of tool abstraction are widely used (also
see summary in Table 1).

Although our examples have been
especially simple, functional enhance-

Luckily, it’s not necessary to choose

one abstraction paradigm over the oth-

ers. This is partly because no hard bound-
aries exist between these abstraction

techniques. Parnas’s decomposition of
KWIC based on data abstraction ap-

pears very much like the functional de-
composition. The difference is that his

interfaces hide representations of data
and other implementation decisions.
Similarly, tool abstraction is not anti-
thetical to abstract data types: Indeed,

the data pool shared by a collection of
toolies can itself be an abstract data

type. Moreover, it’s reasonable to ex-
pect that a collection of toolies would

be bundled as an abstract data type that

hides the details of a particular decom-
position and that enhancements would

The tool-abstraction paradigm raises

several interesting and difficult research
problems. When multiple toolies react
to the same event, ordering becomes an

issue. There is also the potential prob-

lem of circularities among the depen-
dencies implied by toolie events. When

events are a programming-level para-

digm, how can toolie independence be
retained while circularities are prevent-

June 1992 37

ed? Another problem is how to handle

lazy-versus-eager invocations of toolies.
For applications concerned with meet-

ing timing constraints, how can the time

costs of indirect invocation be under-
stood and managed?

We have discussed toolies only in the

context of the kinds of data structures

typically encapsulated in abstract data
types. But tool abstraction might sup-
port events other than operations on

shared data structures. For example, it

should be possible to attach toolie invo-
cation to lack of data (when or where
data is expected) and other exceptional

conditions, to timer interrupts and oth-
er signals, and to events accessible only

through polling some external entity
(such as sockets and sensors). Because
software systems involving these kinds

of events are typically quite complex,
the tool-abstraction paradigm should

prove particularly fruitful. n

Acknowledgments

We thank Bill Griswold, Ralph London,
Chip Maguire, Josephine Micallef, Harold
Ossher. Steve Pooovich. Kevin Sullivan.
Michael van Biema, Travis Winfrey, and
Ursula Wolz for their detailed comments on
drafts of this article. Nancy Griffeth suggest-
ed the telecommunication example.

Garlan is supported by National Science
Foundation Grants CCR-9109469 and CCR-
9112880, by a grant from Siemens Corporate
Research, and by DARPA Grant MDA972-
92-J-1002.

Kaiser is supported by National Science
Foundation Grants CCR-9000930, CDA-
8920080. and CCR-8858029. by grants from
AT&T, Bell Northern Research, Citicorp,
Digital Equipment Corp., IBM, Software
Research Associates, Sun Microsystems, and
Xerox, by the Center for AdvancedTechnol-
ogy, and by the Center for Telecommunica-
tions Research.

Notkin is supported in part by National
Science Foundation Grant CCR-8858804, Air
Force Office of Scientific Research Contract
AFOSR-88-0023, and grants from Digital
Equipment Corp. and Xerox.

References

1. F.P. Brooks Jr., “No Silver Bullet: Es-
sence and Accidents of Software Engi-
neering,” Computer, Vol. 20, No. 4, Apr.
1987. pp. 10-19.

2. D.L. Parnas, “On the Criteria To Be
Used in Decomposing Systems into Mod-

38

ules,” Comm. ACM,Vol. 15,No. 12, Dec.
1972, pp. 1,053-1,058.

B. Lientz and E. Swanson, Software Main-
tenance Management: A Study of the
Maintenance of Computer Application
Software in 487 Data Processing Organi-
zations, Addison-Wesley, Reading, Mass.,
1980.

G.E. Krasner and S.T. Pope, “A Cook-
book for Using the Model-View-Con-
troller User Interface Paradigm in Small-
talk80,“J. Object Oriented Programming,
Vol. 1, No. 3, Aug./Sept. 1988, pp. 26-49.

G.E. Kaiser and D. Garlan, “Melding
Software Systems from Reusable Build-
ing Blocks,” IEEE Software, Vol. 4, No.
4, July 1987, pp. 17-24.

M.J. Stefik, D.G. Bobrow, and K.M. Kahn.
“Integrating Access-Oriented Program-
ming into a Multiparadigm Environ-
ment,” Computer, Vol. 19, No. 1, Jan.
1986, pp. 10-18.

K.J. Sullivan and D. Notkin, “Reconciling
Environment Integration and Component
Independence,” Proc. ACM SlGSoft 90:
Fourth Symp. Software Development Envi-
ronments, ACM, New York; and in Special
IssueofSIGSofriVotices,Vol. 15,No.6,Dec:
1990, pp. 22-33.

David Garlan is an assistant professor of
computer science in the School of Computer
Science at Carnegie Mellon University. His
research interests include the application of
formal methods to the construction of reus-
able software architectures, programming
environments, tool integration, and interac-
tive maps. He has recently been active in
developing formal models of embedded in-
strumentation software and in building envi-
ronments to support the development of these
models.

Garlan received the BA from Amherst
College, the MA from the University of Ox-
ford, and the PhD in computer science from
Carnegie Mellon University in 1987. He is a
member of the IEEE Computer Society.

Gail E. Kaiser is an associate professor of
computer science at Columbia University.
She was selected as a National Science Foun-
dation Presidential Young Investigator in
Software Engineering and was awarded a
Digital Equipment Corp. Incentives for Ex-
cellence award, an IBM Research Initiation
Grant, and several AT&T Foundation Spe-
cial-Purpose Grants. Kaiser’s research in-
terests include software-development envi-
ronments, testing and debugging tools,
cooperative transaction models, reusability,
application of artificial intelligence technol-
ogy to software engineering, object-oriented
languages and databases, and parallel and
distributed systems.

Kaiser received the ScB degree from the
Massachusetts Institute of Technology in
computer science and engineering, and the
MS and PhD degrees in computer science
from Carnegie Mellon University. She is a
member of the AAAI and the ACM, and is a
senior member of the IEEE.

David Notkin is an associate professor in the
Department of Computer Science and Engi-
neering at the University of Washington.
During 1990-91, he was a visiting faculty
member at the Tokyo Institute of Technolo-
ev and at Osaka Universitv. In 1988. he re-
“ 2 ,

ceived a National Science Foundation Pres-
idential Young Investigator Award. His
research interests include software enaineer-
ina. environments. and evolution.

Notkin received the ScB degree from
Brown Universitv in 1977 and the PhD de-
gree in computer $cience from Carnegie Mel-
lon University in 1984. He has served on
numerous oroeram committees and is a char-
ter memb& if the editorial board of the
ACM Transactions on Software Engineering
and Methodoloev. He is a member of the
IEEE ComputeFSociety and the ACM, where
he is secretary/treasurer of SIGSoft.

Readers can contact Garlan at Carnegie Mellon University, School of Computer Science,
5000 Forbes Ave., Pittsbureh. PA 15213: Kaiser at Columbia Universitv. Department of
Computer Science, 500 W. fi0th St., New’York, NY 10027; and Notkin acthe University of
Washington, Department of Computer Science and Engineering, FR-35, Seattle, WA 98195.

COMPUTER

