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Abstract—We present a lane-based clustering algorithm de-
signed to provide stability in cluster lifetime for vehicular ad-
hoc networks (VANETs) in urban scenarios. Stable clustering
methods reduce the overhead of re-clustering and lead to an
efficient hierarchical network topology. During the creation of
VANET clusters, cluster members select one member to be the
clusterhead. Fewer clusterhead changes result in a more stable
cluster. To achieve this goal, cluster members must select a
member that has the potential to be a clusterhead longer than
other cluster members. Our method aims to select a clusterhead
based on the lane where most of the traffic will flow.

I. INTRODUCTION

Vehicular Ad Hoc Networks (VANETs) are considered to
be a class of Mobile Ad Hoc Networks (MANETs); they share
the same underlying philosophy. In the US, VANETs use 75
MHz of spectrum in the 5.850 to 5.925 GHz band specially
allocated by the U.S. Federal Communications Commission
for Vehicle-to-Vehicle communication (V2V) and Vehicle-to-
Infrastructure communication (V2I) using Dedicated Short-
Range Communication (DSRC) technology [19]. The main
goal of VANETs is to share information such as traffic data
and road conditions to increase the safety of drivers.

Even though VANETs are considered to be a class of
MANETs, they have a number of specific characteristics that
make many solutions for general MANETs unsuitable for
VANETs. Some of the VANET characteristics are a high num-
ber of nodes, high node mobility, frequently changing network
topology, network disconnection caused by the partitioning
of the network, driver behavior and the anticipated mobility
of nodes. However, VANETs have some advantages over
MANETs. Nodes in VANETs have more processing power
and storage space and typically have no battery limitations.

As an ad hoc network, a VANET cannot rely on specialized
hardware for infrastructure to support network stability. Each
node in a VANET is required to maintain its own connectivity
to other nodes in the network. With the large number of nodes
and the lack of routers, a flat routing scheme, where each
node acts as a router, may cause serious scalability and hidden
terminal problems. One possible solution to these problems is
hierarchical clustering. In addition, using clustering can lead
to more node coordination and fewer nodes interfering with
each other.

A cluster is a group of nodes that can communicate without
disconnection and that identify themselves to be part of a
cluster. These nodes select a clusterhead to coordinate the
communication among them. Clustering in VANETs requires
selecting a clusterhead that results in a stable cluster. This
process is carried out by each node broadcasting its infor-
mation to all other neighboring nodes. After the nodes have
decided on the clusterhead, the clusterhead will be able to
communicate directly to all other cluster members and may act
as the relay node of communications to other cluster members
and other nodes in different clusters. Significant time and
channel bandwidth will be consumed to complete this process.

A considerable amount of work has gone into the develop-
ment of clusterhead selection algorithms that would be suitable
to form highly stable clusters [20], [12]. All the algorithms
are trying to minimize cluster reconfiguration and clusterhead
changes, which are unavoidable due to the dynamic nature
of the network. Having a good clustering algorithm requires
selecting the clusterhead that will serve most of the vehicles
for the longest possible time. Knowing the traffic flow and
the general information of a vehicle, such as speed, direction,
location and lane, should lead to better clusterhead selection.

In this paper, we present a new clustering algorithm whose
objective is to extend the lifetime of a clusterhead. We take
advantage of knowing the exact lane of vehicles on the road
and then broadcast this knowledge to other nearby vehicles
to determine the optimal clusterhead. Our method of selecting
the clusterhead is the key to achieving a more stable cluster.
We compare our selection of the clusterhead with three other
approaches: Lowest-ID [11], Highest-Degree [16] and the
Utility Function [6].

This paper is organized as follows. Section II reviews back-
ground and related work. Section III presents our approach and
the elements that will be measured. Section IV presents our
simulation and the scenario setup, followed in Section V by
performance evaluation. Finally, Section VI offers concluding
remarks.

II. BACKGROUND AND RELATED WORK

A cluster is conceptual structure where a group of nodes,
cluster members, identify themselves to be part of cluster. The
node designated to be the clusterhead will broadcast packets



to other nodes in the cluster. All cluster members are within
one-hop communications range of the clusterhead, thus the
potential cluster size increases with the transmission range.
Each clusterhead may act as a relay point for communication
between the cluster’s members [7]. Some clustering schemes
assign another node to act as a relay node for communication
with other clusters [20], as shown in Fig. 1.

This research focuses on the process of selecting the clus-
terhead that will last the longest. We ran our experiments
considering one cluster traveling through two intersections
under different clusterhead selection algorithms.

In the remainder of this section, we will describe work
on lane detection and provide an overview of the Lowest-
ID, Highest-Degree and utility function clustering algorithms
which we will compare our work against.

A. Lane Detection

Our proposed algorithm is based on the assumption that
each vehicle knows its exact lane on the road via a lane
detection system and an in-depth digital street map that
includes lane information, such as NAVTEQ’s NAVSTREETS
[14]. A lane detection system is an important element of many
applications in VANETs, such the Extended Emergency Brake
Light system [9].

The Global Positioning System (GPS) is the primary system
that is used for vehicle localization. However, GPS has weak-
nesses when it comes to updating the positioning data and
when there is no signal. GPS has a 5 m error which is larger
than the distance between lanes. There has been much research
on detecting and localizing lanes on roads. Several algorithms
have been proposed using different techniques. Some methods
use GPS combined with a wheel odometer [4], which provides
relative localization as it detects changes in pose relative to
the previous pose. The advantage of the wheel odometer is
that it is high resolution and simple to use. It can typically
detect movements on the order of tenths of millimeters. Other
algorithms do not use GPS, and instead use techniques such
as vision [2], [3], [15], LIDAR (Light Detection and Ranging)
[10] and a beacon network using infrastructure to triangulate
vehicle position [13].

B. Clustering Algorithms

Here we present the three clusterhead selection algorithms
that we will be comparing our work against.

1) Lowest-ID: The Lowest-ID clustering algorithm [11] is
based on selecting the clusterhead with the lowest ID, where
each node has a fixed ID. Simply, each node broadcasts its ID
to other nodes in range. When a node receives the messages
from other nodes, it determines the clusterhead as the node
with lowest ID. This algorithm is very simple and stable
for general MANET applications. However, in VANETs, the
lowest ID clusterhead is not always the ideal selection because
the movement of the vehicles is not considered.

2) Highest-Degree: The Highest-Degree algorithm [16] se-
lects the clusterhead based on the node connectivity to the
other nodes in the same cluster. Each node knows the number

Fig. 1. Two clusters communicating with each other through relay nodes
(RN) that are assigned by the clusterhead (CH) of each cluster.

of other nodes in range and then broadcasts this knowledge to
the others. The node with the maximum number of neighbors
is selected as the clusterhead. This algorithm is one of the basic
techniques for clusterhead formation in MANETs. However,
it is not stable for VANETs due to the nature of the nodes’
movement. If the clusterhead changes its behavior at any
moment, the connectivity level could change dramatically.

3) Utility Function: The Utility Function algorithm [6] of
clusterhead selection in VANETs performs better than the
previous two algorithms, Lowest-ID and Highest-Degree. This
algorithm is based on a multiple-metric weighting algorithm.
In the process of the clusterhead selection, the closest position
to the average and the closest velocity to the average of all
proximal vehicles are calculated along with connectivity level
to determine the most stable clusterhead. Periodically, each
node broadcasts its status to other nodes in range. When the
node receives this information, it starts to evaluate each node
by using the utility function. The node with the highest value
is chosen to be the clusterhead.

In a highway environment, this algorithm has been shown
to provide better results than the classic MANET algorithms.
It puts the position and velocity, which are major VANET
characteristics, into consideration. However, it still ignores the
traffic flow on the road. For example, in an urban scenario
where are many intersections, if the clusterhead is located
on the leftmost lane, it has to turn left even if most of the
vehicles are going straight. In this case, the vehicles will need
to perform the process of clusterhead selection again.

III. APPROACH

We considered urban scenarios with intersections in the
design of our proposed algorithm. The clusterhead will be
selected based on the flow of the majority of traffic. For
example, if the road has four lanes and three of them are going
straight, the clusterhead should be selected from the lanes that
are going straight. This research applies the knowledge of each
vehicle’s lane and the flow direction of each lane.

In urban scenarios, traffic flow splits at each intersection.
There are three main traffic flows at an intersection: Left Turn
(LT), Right Turn (RT), and No Turn (NT). The intersection
may have all three types of traffic flows or only some of them.
LT is applied to the leftmost lane(s) if it splits the traffic to
the left, RT is applied to the rightmost lane(s) if it splits the
traffic to right, while NT is applied to the lane(s) in the middle
if traffic goes straight.

Our proposal follows the same general idea as the Utility
Function [6], but employs a different set of rules. We consid-



ered the effect of traffic flow, using lane information, on the
process of clusterhead selection. Each vehicle computes and
broadcasts its Clusterhead Level (CHL) along with its speed,
position, etc. The vehicle with the highest CHL will be selected
as the clusterhead. If the selected clusterhead is a member of
another cluster, the nodes will choose the second highest, etc.
CHL is defined as

CHLi = NCL(t)i +ADLi +AV Li (1)

where NCL is the network connectivity level, ADL is average
distance level, and AVL is average velocity level. The com-
putation of each of these metrics is described below.

A. Lane Weight
The key to our approach is to consider the lane a vehicle

belongs to. We apply to each metric a lane weight (LW) for
each traffic flow (LT, RT and NT). The weight is determined
based on the total number of lanes on the roadway (TNL) and
the number of lanes for each traffic flow (NLTF). If the road
has three different traffic flows, we will have three different
LWs. LW is defined as

LWk =
1

TNL
×NLTFk (2)

where k is the lane number. For example, if we have a road
of four lanes where one lane is LT, one lane is RT, and two
lanes are NT, then the LW for each traffic flow will be LWLT

= LWRT = 0.25 and LWNT = 0.50. If a vehicle is on a lane
with traffic flow LT, then it will use LWLT . In the equations
that follow, LWTF represents the LW for the traffic flow of
the vehicle performing the computation.

B. Network Connectivity Level
To compute the Network Connectivity Level (NCL), we

need to calculate the overall NCL and the NCL for each traffic
flow. The overall NCL, α, is the maximum number of vehicles
that are directly connected to vehicle i. This is defined as

αi (t) =
∑
j

A(i, j, t) (3)

where j is a potential neighboring vehicle. A(i, j, t) is equal
to 1 if a connection between i and j exists at time t, and is
equal to 0 otherwise. At this point, we have calculated the
connectivity level between a vehicle and all other vehicles on
the road. Now, we calculate the connectivity level for a vehicle
and the vehicles in the traffic flow it belongs to. The traffic
flow connectivity level β for vehicle i is defined as

βi(t) =
∑
jTF

A(i, jTF , t) (4)

where jTF is a vehicle in the same traffic flow as vehicle
i. After calculating both levels of network connectivity, we
define the total connectivity level for vehicle i on a lane
belonging to traffic flow TF as

NCLi(t) = βi(t) + αi(t)× LWTF (5)

where LWTF is the lane weight for the lane that vehicle i
occupies.

C. Average Distance Level

To calculate the Average Distance Level (ADL), we calcu-
late the overall average absolute distance, δi between vehicles
that are directly connected to vehicle i. This is defined as

δi =

∑
j

√
(xj − xi)2 + (yj − ji)2

NV
(6)

where j is any vehicle connected to i, and NV is the total
number of vehicles that are directly connected to i in any lane.

Next, we calculate the average absolute distance, χi, be-
tween vehicle i and other vehicles in the same traffic flow,
TF . This is defined as

χi =

∑
jTF

√
(xj − xi)2 + (yj − ji)2

NVTF
(7)

where j is any vehicle in the same traffic flow and connected
directly to i, and NVTF is the total number of vehicles that
are directly connected to i and in the same traffic flow.

The ADL for vehicle i in traffic flow TF is defined as

ADLi = χi + δi × LWTF (8)

D. Average Velocity Level

We calculated the overall Average Velocity Level (AVL) as
the difference between the average velocities of all vehicles
in range and the candidate clusterhead velocity. Then, we add
this to the product of LW and the average velocity for the
traffic flow. The overall AVL, σi, for vehicle i is defined as

σi =
∑
j

|V eli − V elj | (9)

where j is a potential neighboring vehicle, and V eli is the
velocity of vehicle i.

Now, we calculate the AVL, ρi, for vehicle i and the traffic
flow it belongs to. This is defined as

ρi =
∑
jTF

|V eli − V elj | (10)

where jTF is a vehicle in the same traffic flow as vehicle i.
The AVL for vehicle i in traffic flow TF is defined as

AV Li = ρi + σi × LWTF (11)

IV. SIMULATION

Our proposed clusterhead selection algorithm was evaluated
through detailed simulation. We used the ns-3 network simula-
tor [8], which is a follow-on to the popular ns-2 simulator. For
VANETs, we used modules [1] that added well-known traffic
mobility models, the Intelligent Driver Model (IDM) [18] and
the MOBIL lane change model [17].

The scenarios shown in Figs. 2 and 3 were implemented
for two intersections of Hampton Boulevard in Norfolk, VA.
The length of the road is set to 3 km. The intersections split
the traffic into three different directions. The first intersection
(Fig. 2) has five lanes, dividing the traffic into three directions:
two lanes to the left, two lanes going straight and one lane
going right or straight. The second intersection (Fig. 3) has



Fig. 2. Intersection of Hampton Blvd. and 43th Street. It shows 5 lanes,
2 areturning left, 2 are going straight and 1 lane is going right/straight.

Fig. 3. Intersection of Hampton Blvd. and 45th Street. It shows 4 lanes,
1 isturning left, 2 are going straight and 1 lane is going right/straight.

four lanes, dividing the traffic into three directions: one lane
to the left, two lanes going straight and one lane going right
or straight. We focused only on one traffic direction, since on-
coming traffic is not part of the studied cluster. The clusterhead
that will be selected by our algorithm will be towards the
middle of the cluster and continuing in the same direction as
the majority of the traffic flow, as shown in Fig. 4. The traffic
density we used for our simulation was a medium level (60
vehicles per lane per km), averaging a 10 m gap between
vehicles. The vehicle type ratio used for this simulation was
20% trucks and 80% sedans. We inject vehicles on the road for
the first 120 seconds of simulation time, and then we follow
the vehicles until they leave the road. We ran 10 different runs
for each scenario.

TABLE I
SCENARIOS TESTED DURING THE SIMULATION

Scenario Transmission Range Max Speed Limit
1 100 m-150 m 40 km/h
2 100 m-150 m 80 km/h
3 100 m-150 m 120 km/h
4 150 m-200 m 40 km/h
5 150 m-200 m 80 km/h
6 150 m-200 m 120 km/h
7 200 m-250 m 40 km/h
8 200 m-250 m 80 km/h
9 200 m-250 m 120 km/h

10 250 m-300 m 40 km/h
11 250 m-300 m 80 km/h
12 250 m-300 m 120 km/h

We test the stability of the cluster by counting the number
of clusterhead changes. Before each intersection, we use
clusterhead selection algorithm to choose the clusterhead and
observe if the clusterhead changes for the majority of traffic
after the intersection.

We varied the transmission range and speed limit to test the
stability of the clusterhead. Different transmission ranges and
speeds will affect the clusterhead selection when connectivity
is part of the clusterhead selection algorithm. All of our
scenarios are listed in Table I.

With our proposed scheme, a vehicle sends its calculated
CHL along with the general traffic data using periodic
beacons. The cluster formation will be processed every 20
seconds.

Both MANET clustering algorithms we discussed earlier
were simulated, as well as the VANET Utility Function
algorithm, which was implemented as explained in [5].

V. RESULTS

The simulation results show the performance of the differ-
ent clustering algorithms, Lowest-ID, Highest-Degree, Utility
Function and our traffic flow algorithm under different wireless
transmission ranges (100-300 meters) and different maximum
vehicle speeds (40-120 kilometers/hour). For all other algo-
rithms besides ours, the clusterhead selected was not always
continuing in the same traffic flow as most of the vehicles.

Fig. 5 summarizes the effect of transmission range on the
clusterhead selection at the first intersection with the speed
limit of 40 km/h. We recorded if the clusterhead changed after
the intersection. The graph shows the number of clusterhead
changes summed over all 10 runs. The first intersection has

Fig. 4. One cluster showing the position of the clusterhead (CH) in the
middle. The majority of traffic is going straight and the clusterhead is
following that.



Fig. 5. Clusterhead changes vs. Transmission Range at the first
intersection, where we have 5 lanes with different traffic flows. The
maximum speed is 40 km/h (25 mph)

Fig. 6. Clusterhead changes vs. Transmission Range at the second
intersection, where we have 4 lanes with different traffic flows. The
maximum speed is 40 km/h (25 mph)

five lanes, two lanes turning left, two lanes going straight and
one lane turning right or staying straight.

Notably, our algorithm performed better than the other
algorithms because everytime the clusterhead is selected, it
belongs to one of the lanes where most of the traffic is
flowing in its direction. In one case using our algorithm, the
clusterhead changed because the selected clusterhead was in
one of the lanes where the traffic turned. The reason for that
is the clusterhead changed lanes to the left turn lane after the
clusterhead procedure was performed. For the Lowest-ID algo-
rithm, the transmission range does not have any impact on the
selection of the clusterhead, so its clusterhead selections were
the same with all of the transmission ranges that we tested.
As expected, the Highest-Degree and the Utility Function
algorithms performed differently when the transmission range
changed. Transmission range affects the number of nodes that
are connected to the clusterhead, and both of these algorithms
use degree of connectivity when choosing a clusterhead.

Fig. 6 shows the effect of transmission range on the cluster-
head selection at the second intersection with the speed limit
of 40 km/h. Our algorithm performed perfectly compared to
all other algorithms. The reason for that is the lanes at this
intersection are fewer than the first one, which means less
traffic is going in a different direction than straight.

We show only results for the speed limit of 40 km/h as
changing the speed limit did not affect our conclusions. Chang-
ing the speed limit does change the number of clusterhead
changes for the other algorithms, but our traffic flow algorithm
maintained almost 0 changes for any of the speed limits we
tested.

We wanted to verify that our algorithm would choose the
appropriate clusterhead for the majority of traffic, not just
those vehicles that are going straight. So, we tested our
algorithm at an additional intersection of 4 lanes, where 2 lanes
are turning left and 2 lanes are going straight. We changed
the traffic rate between the two directions (left and straight)
to 60% and 40%, respectively. The results for our algorithm
show that the clusterhead was always selected from one of the
lanes where the traffic rate was 60%. So, our algorithm does
select the clusterhead from the lane that follow the direction
of most of the traffic.

VI. CONCLUSION
We presented an algorithm for clusterhead selection based

on the traffic flow of vehicles in the cluster. With the avail-
ability of lane detection, lane direction and map matching, we
were able to select the most stable clusterhead. We tested our
algorithm using real life scenarios and followed the selected
clusterhead through two intersections. Our algorithm showed
longer clusterhead lifetime than Lowest-ID, Highest-Degree
and the Utility Function algorithms. Our future work will be to
apply our algorithm to inter-cluster communication algorithms.
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