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 Using Transaction Prices to Re-Examine Price Dispersion in Electronic Markets 
 

ABSTRACT 

Price dispersion is an important indicator of market efficiency. Internet-based electronic 
markets have the potential to reduce transaction and search costs, thereby creating more efficient, 
“frictionless,” markets as predicted by theories in information economics. However, prior work has 
reported significant levels of price dispersion on the Internet, which is in contrast to theoretical 
predictions. A key feature of the existing stream of work has been its use of posted prices to estimate 
price dispersion. In theory, this can lead to an overestimation of price dispersion because a sale may 
not have occurred at the posted price. In this research, we use a unique dataset of actual transaction 
prices collected from both the electronic and offline markets of buyers in a B2B market to evaluate 
the extent of price dispersion. We find that price dispersion in the electronic market is as low as 
0.22%, which is substantially less than those reported in the existing literature. This near-zero price 
dispersion suggests that in some electronic markets the “law of one price” can prevail when we 
consider transaction prices instead of posted prices. We further develop a theoretical framework that 
identifies several new drivers of price dispersion using transaction data. In particular, we focus on four 
product-level and market-level attributes – product cost, order cycle time, own price elasticity and 
transaction quantity, and estimate their impact on price dispersion. We also examine the electronic 
market's moderating role in the relationship between these drivers and price dispersion. Finally, we 
estimate the efficiency gains accruing from transactions in the relatively friction-free market and find 
that the electronic market can enhances consumer surplus by as much as $97.92 million per year.  

 
Key Words: Electronic Markets, Internet commerce, Price Dispersion, Transaction Prices, Demand Estimation, 

Consumer Surplus, Econometrics. 
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1. Introduction 

Bakos (1997) and Bailey (1998) predict that electronic markets would be more efficient and 

friction-free than traditional markets because of the reduced search costs associated with matching 

buyers and sellers. Classic Bertrand competition suggests that in perfectly efficient and friction-free 

markets, prices for homogenous goods will be uniform, resulting in zero price dispersion. However, a 

vast body of literature has studied price dispersion and found significant levels of price dispersion on 

the Internet, ranging from around 4% to as high as around 50% across a wide variety of products. 

Such price dispersion has generally been attributed to a violation of one of the three Bertrand 

assumptions: homogeneous sellers and products, zero search costs and perfectly informed consumers 

(Salop and Stiglitz 1977, Varian 1980). In particular, prior empirical literature has identified a variety 

of retailer, product and market level factors that lead to price dispersion (Brynjolfsson and Smith 

2000, Baye et al. 2004, Baye et al. 2006, Chen and Hitt 2003, Clemons et al. 2002, Venkatesan et al. 

2007). 

 As some of these studies (Baye et al. 2004, Pan et al. 2004, Venkatesan et al. 2007) have 

recognized, a common characteristic of the data in prior research is the use of a product's posted price 

or list price to estimate price dispersion, instead of the transaction price at which the goods were actually 

purchased. Pan et al. (2004) and Baye et al. (2006) mention that some retailers bait and switch, i.e., 

they strategically advertise a low price but do not honor that price. Hence, using posted prices can 

lead to different estimates of the extent of price dispersion from using transaction prices. Consider 

Figure 1, a screenshot of search results for a pencil sharpener from the GSA Advantage!, the electronic 

market where we gathered our data. We see that the posted prices for this product range from $35.22 

to $47.41. However, the data on actual sales of the same product in our dataset reveal that the price 

dispersion is significantly smaller in magnitude than $12.19, on the order of a few cents. Because a sale 

could have only occurred at the lowest posted price, none of the higher posted prices might have 

actually experienced a sale. Hence, any analysis from such data would lead to an upper bound on the 

actual level of price dispersion. One potential remedy to the data limitation in prior work is to weight 

prices by a retailer’s popularity, a proxy for sales, as done by Brynjolfsson and Smith (2000a). Not 

surprisingly, they find less price dispersion, in terms of weighted prices, on the Internet than in 

conventional channels. Using un-weighted prices, the results are the opposite; that is, price dispersion 

online is slightly higher than in comparable conventional markets. 

Such possibilities motivate the development of a nuanced theoretical framework to better 

understand the drivers of price dispersion using transaction prices and to estimate price dispersion 
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using transaction data. Transaction prices are market clearing prices and reflect buyers’ choices made 

after observing the various prices offered by different sellers. The current literature has not yet 

examined these aspects.2

Besides the fact that the FSS dataset gives us access to transaction prices, it also offers a few 

other advantages. First, the FSS is regulated more closely than the various electronic markets 

established by online retailers or shopping bots. Unlike most of these markets, vendors in the FSS’ 

electronic market must be certified before participating in any transaction. This vendor screening 

process can, to a large extent, mitigate the effect of differences in branding or reputation among 

sellers, which may create potentially confounding effects on the levels of price dispersion. Second, the 

FSS offers both an Internet-based electronic market and a traditional, physical market. The provision 

of these two markets allows us to examine the differences in price dispersion across these two 

channels. Because both markets operate within the same context and have the same vendors, this 

renders better control over other factors that could affect pricing decisions. Finally, the time-series 

characteristic of the data enables us to evaluate price dispersion for thousands of products in a large 

number of product categories for a prolonged period of up to a year.  

 Towards investigating this, we use a unique dataset of 3.7 million records, 

encompassing transactions for the Federal Supply Service (FSS) of the U.S. federal government in 

fiscal year 2000, to estimate and compare the extent of price dispersion in the FSS’ electronic and 

traditional markets. We also investigate the drivers of price dispersion in electronic and traditional 

markets and the electronic market's moderating role on these drivers on price dispersion. 

Furthermore, we seek to understand the increase in consumer surplus from the increased convenience 

to buyers of searching and purchasing in electronic markets. Using data from the year 2000 also 

facilitates some comparison of price dispersion levels to earlier findings in literature that mainly used 

data generated around the same time period.  

Our paper aims to make the following contributions. First, we develop a conceptual model 

and formulate hypotheses for analyzing the drivers of price dispersion when using data consisting of 

transaction prices. In particular, we focus on four market- and product-level attributes: product cost, 

order cycle time, own price elasticity and transaction quantity, which have not been studied in prior 

literature on price dispersion in their exact form due to the absence of data on actual transactions. 

Second, we show that when measured using transaction prices, price dispersion in the electronic market 

can be close to zero. This is substantially lower than that reported in the prior literature using posted 

                                                
2 Some prior work in financial markets shows that price dispersion continues to exist even when there are institutional 
buyers (see, for example, Garbade and Silber 1976). 
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prices, but is in accordance with many of the theoretical predictions in the literature on information 

economics (e.g., the theory of search costs). Our paper thus makes a contribution by highlighting the 

outcome from using transaction prices to make inferences about price dispersion instead of posted 

prices. Furthermore, we also show that price dispersion in the electronic market is significantly lower 

than in the traditional market. This result is consistent with some work in the prior literature, all of 

which used posted prices, supporting the theoretical argument that search cost in electronic markets is 

lower than that in traditional markets (Bakos 1997, Smith and Brynjolfsson 2001, Smith 2001). Given 

that our findings are different from those in many prior studies, we would like to point out that our 

findings should be interpreted in light of the differences in the research settings. Third, because the 

electronic market also has the potential to increase consumer welfare due to its greater shopping 

convenience and lower search costs, compared to traditional markets, we estimate the efficiency gains 

accruing from transactions in such friction-free markets. Our analysis reveals that consumer surplus is 

enhanced by as much as $97.92 million per year due to the availability of the electronic market. This 

finding thus contributes to the literature on the welfare benefits of the Internet (Brynjolfsson et al. 

2003, Ghose et al. 2006, Bapna et al. 2008, Forman et al.  2009). Consistent with an emerging stream 

of work (Granados et al. 2006), we find that online markets exhibit higher own price elasticity 

compared to offline markets. Thus, our paper also contributes to the literature that compares demand 

estimation in electronic markets with that in traditional markets (Chellappa et al. 2007). 

 The rest of the paper is organized as follows. Section 2 reviews the relevant literature and 

theory, and develops hypotheses with a nuanced theory of price dispersion. Section 3 describes the 

empirical context, data and descriptive analyses. Section 4 presents our econometric analyses and 

results. Section 5 presents the analysis of consumer welfare estimation. Section 6 discusses our 

findings. Section 7 concludes the study and discusses its limitations. 

  

2. Theory and Hypothesis  

2.1 Literature Review 

  Two streams of research are relevant to our study. One stream estimates the level of price 

dispersion online, tests whether online price dispersion is lower than that in offline markets, and 

examines market and product-level drivers of price dispersion. The second stream of work has 

examined changes in consumer surplus from the introduction of markets and goods. We discuss the 

relevant work from the first stream in this section, and from the second stream in Section 5.  
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A growing body of empirical research has examined the issue of price dispersion in electronic 

markets. All of these studies have found a significant level of price dispersion on the Internet. Based 

on Pan et al. (2004), we summarize this body of research and its findings in Table 1, with a few 

modifications. The summary shows that published price dispersion varies greatly, from as low as 4% 

to as high as 57%.3

<<Insert Table 1 about here>> 

 Prior theoretical and empirical work suggests that price dispersion may result from 

bundling products with services (Brynjolfsson and Smith 2000, Baye et al. 2004); differences in brand, 

reputation and trust across sellers (Brynjolfsson and Smith 2000, Baye et al. 2006, Chen and Hitt 

2003); retailer heterogeneity (Smith and Brynjolfsson 2001, Baylis and Perloff 2002, Bailey et al. 1999); 

product heterogeneity (Baye et al. 2006); price discrimination (Clemons et al. 2002); randomized 

pricing strategies by firms (Varian 1980, Chen and Hitt 2003, Ghose et al. 2007); interaction between 

retailer and market characteristics (Venkatesan et al. 2007), multiple channel operations (Ancarani and 

Shankar 2004, Pan et al. 2003) and differences in vendor price format such as Every Day Low Prices 

(EDLP) (Sin et al 2007, Chellappa et al 2007). 

A number of studies have compared online price dispersion to offline price dispersion. These 

studies are summarized in Pan et al. (2004). We have reproduced their table in this paper as Table 2 

with modifications. Although some studies have found that online price dispersion is higher than 

offline price dispersion (e.g., Bailey 1998, Brynjolfsson and Smith 2000, Erevelles et al. 2001, Clay et 

al. 2002), others have found that online dispersion is lower than offline dispersion (e.g., Scott-Morton 

et al. 2001, Brown and Goolsbee 2002). In addition, Scholten and Smith (2002) study price dispersion 

in grocery products and cameras and find no significant difference between online and offline price 

dispersion.4

<<Insert Table 2 about here>> 

  

Prior studies have examined some market and product level drivers of online price dispersion. 

Pan et al. (2004) present a framework of drivers of online price dispersion, which includes e-tailer 

characteristics, market characteristics and product characteristics. In a separate study, Pan et al. 

(2003a) find that high price dispersion is associated with products with high average prices and few 

                                                
3An exception is the work by Ellison and Ellison (2005), which examine price dispersion on the Internet for computer 
memories using a limited data set of transaction prices collected from Pricewatch.com. They find a price dispersion of 4%, 
much lower than the average reported in other studies. 
4These empirical findings are in tune with theoretical work such as MacMinn's (1980), who shows the conditions under 
which price dispersion actually increases when search costs are decreased. 
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competitors. Venkatesan et al. (2007) find that market characteristics moderate the relationship 

between retailer characteristics and online price dispersion. Clay et al. (2001) analyze data from the 

online book industry and conclude that more competition reduces price dispersion, and that widely 

advertised items also have lower prices than less advertised items. 

In summary, our approach in this study differs from prior work in price dispersion in four key 

ways. First, we use transaction prices, namely market clearing prices as opposed to posted prices, to 

measure and compare price dispersion in both electronic and traditional markets. This allows us to 

make inferences on the differences in search costs between the two markets. Second, we map the 

existing sources of price dispersion identified in prior studies to new market- and product-level 

variables that are applicable in analyzing transaction price data and formulate novel hypotheses based 

on these drivers. This enables us to come up with a nuanced theory of price dispersion that can be 

examined using data on actual transactions, which has not been done before due to the unavailability 

of such data. We also delve into an electronic market's moderating role on these drivers. Third, our 

data allow us to examine four broad product categories (discussed in Section 3) that include over 

17,000 unique products across a 12-month time period. The data are thus much larger in scope than 

most of prior work. We also examine prices by the same set of firms in both online and offline markets 

over this longitudinal period. With the exception of Chellappa et al. (2007), this is a feature missing in 

prior work. Finally, prior work in price dispersion has not linked transaction price data with estimation 

of buyer surplus in Business-to-Business (B2B) markets. Our analysis thus sheds some light on the 

efficiency of these markets. 

 

2.2 Conceptual Model 

 In addition to quantifying the magnitude of price dispersion, we build a conceptual model to 

examine the product-level and market-level drivers of price dispersion, as well as the moderating 

effects of the electronic market. Figure 2 presents the conceptual model. 

In this paper we focus our analysis on the product-level and market-level characteristics that 

are available to us based on the data from actual transactions. Our dataset has several such attributes: 

(i) product cost, (2) order cycle time, (3) own price elasticity, and (4) transaction quantity. The product 

cost is the average cost of a product during a selected time frame (week or month). It is a measure of 

the product value that sellers in B2B or industrial markets are able to provide to buyers and hence 

strongly correlated with product prices (Goettlieb 1959, Borenstein 1989, Sin et al. 2007). Products 

with different prices (and thus different average costs) exhibit different levels of price dispersion in 
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both Business-to-Consumer (B2C) as well as B2B markets (Sorensen 2000, Stigler and Kindahl 1970). 

Order cycle time is the average time difference in days between when the order for a product is placed 

and when the product is shipped. It is a measure of service levels for a product across vendors in B2B 

or industrial markets (Lilien 1987, Ford et al 2002), which can be a substantial source of price 

dispersion (Baylis and Perloff 2002). A longer order cycle time implies lower service levels (i.e., a 

greater possibility of the product being unavailable (Arcelus et al. 2002). Own price elasticity measures 

buyers’ sensitivity to changes in the price of a firm’s product. It is an indicator of market 

competitiveness. Because of its potential to affect the final transaction price, own price elasticity can 

affect price dispersion. Finally, transaction quantity is the average quantity for a product over all 

transactions during a selected time frame (week or month). It is used to assess the effect of order size 

on price dispersion because the size of the order can affect the transaction price of that product in 

B2B or industrial markets (e.g., through quantity-based price discounts which is common in B2B 

commerce). See for example, Kelkat et al. (2002).  

Electronic markets utilize information and communication technologies to bring buyers and 

sellers together, transcending geographical and temporal constraints. Compared to traditional markets, 

electronic markets offer three features that can have important implications on price dispersion. First, 

electronic markets reduce search costs (Bakos 1997). Smith and Brynjolfsson (2001) and Smith (2001) 

estimate that search costs in electronic markets may be reduced by “at least 30-fold” compared to 

telephone-based shopping, and even more compared to physically visiting the retailers. Second, 

electronic markets increase information transparency in both B2C and B2B scenarios (Granados et al. 

2006) and reduce information asymmetry (Clemons et al. 1993). For example, electronic markets can 

increase information availability and processing capability, thus facilitating the monitoring of other 

participants' performance and behavior. Finally, electronic markets expand sellers' reach (Ghose et al. 

2006). As a result, a vendor in an electronic market may have a larger customer base than in a 

traditional market. Because of these features, we also hypothesize that these drivers' impact on price 

dispersion should differ in electronic markets from that in traditional markets. Figures 4a-4e show 

how these drivers of price dispersion vary over time in electronic and traditional markets.  

<<Insert Figures 2 and 4 about here>> 

2.3 Hypothesis 

The features described in the conceptual model in Section 2.2 give rise to the four hypotheses 

that shape our analysis. We state them in their most succinct form as follows.  
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As is well known from the literature on industrial marketing and B2B markets (Gottlieb 1959), 

the average price of a product is correlated with the average cost of the product. This is also true in 

markets that exhibit both B2B and B2C transactions, for example airlines (Borenstein 1989, Sin et al. 

2007). We motivate our first hypothesis by examining the literature that has analyzed the relationship 

between product price and price dispersion. Prior research based on the Weber-Fechner law of 

psychophysics posits that a response to a change in a stimulus is inversely related to the absolute 

magnitude of the original stimulus (Grewal and Marmorstein 1994, Monroe 1971). This stream of 

work has found a positive relationship between price and price dispersion. Grewal and Marmorstein 

(1994) further argue that consumers engage in less pre-purchase search for high priced items 

(durables) than for low priced items because they view savings in relative versus absolute terms. As 

the price of an individual item goes up, consumers value the relative savings less than before and, as a 

consequence, they spend little time in price comparison shopping. The aggregate effect of this lack of 

price comparison shopping for big ticket items is likely to increase price dispersion. Lindsey-Mullikin 

and Grewal (2006) consistently demonstrate that as the mean price of an item increases, price 

dispersion also increases. Prior work in economics, information systems and marketing also find a 

positive relationship between price and price dispersion. Pratt et al. (1979) and more recently Clay et 

al. (2001) and Smith (2001) have found a positive relationship between product price and price 

dispersion. There are other examples in markets where both B2C and B2B transactions may occur. 

For example, in Internet car retailing, Scott-Morton et al. (2001) show that prices on Autobytel are 

lower and exhibit lower variance than other competitors. In industrial markets, Stigler and Kindahl 

(1970) show that prices affect price dispersion in the hydraulic cement industry. Since price is 

positively correlated with cost (Gottlieb 1959), we posit a positive relationship between price 

dispersion and product cost.  

Electronic markets not only reduce buyers’ search costs but also increase sellers’ market reach 

and, consequently increase their ability to tap more consumers (Ghose et al 2006). Prior research has 

shown that the market expansion effect may dominate the competitive effect resulting from more 

searches, thereby leading to higher price dispersion. For example, Samuelson and Zhang (1992) show 

that a decrease in search costs increases price levels and price dispersion. A decrease in search costs 

has two effects. First, it increases consumers' ability to sample firms to look for an alternative, which 

reduces prices. Second, it increases the number of consumers that sample a firm's products (i.e., 

increases demand), which raises prices. If the second effect dominates the first, price dispersion 

increases. Cachon et al. (2007) also show that while making searches easier intensifies competition, it 
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also gives firms access to more consumers than before, thereby increasing prices. They further 

demonstrate that the market expansion effect can dominate the competition intensifying effect leading 

to higher price dispersion. Kuksov (2004) draws similar conclusions. An examination of our data 

shows that the number of buyers of higher priced products in the electronic market (23,879) is greater 

than in traditional market (20,681)5, suggesting that the market expansion effect resulting from the use 

of the electronic market may be a key driver of price dispersion in our setting.6

 

 Since price is 

correlated with cost, products with higher cost are likely to exhibit greater price dispersion in the 

electronic market than in the traditional market. Therefore, we have the following hypothesis: 

H1. Products with higher cost are associated with higher price dispersion. Moreover, this 
effect is reinforced in an electronic market. 

 

 The presence of service quality differentiation has been cited as a source of price dispersion in 

electronic markets because different levels of service are typically associated with different levels of 

prices (Betancourt and Gautschi 1993, Smith et al. 2000, Baylis and Perloff 2002, Pan et al. 2002, Cao 

et al. 2003, Cao and Gruca 2004). Betancourt and Gautschi (1993) find that service quality 

significantly affects price dispersion in traditional markets such that firms with higher service quality 

charge higher prices. Smith et al. (2000) discuss that shopping convenience and reliability in 

fulfillment, which are two examples of service quality, contribute to price variation in electronic 

markets. Pan et al. (2002), who investigate the role of vendor service quality as an antecedent to price 

dispersion, find partial support for the effects of e-tailer service quality's effects on price. Cao et al. 

(2003) indicate that consumers are willing to pay higher prices if they are satisfied with ordering or 

fulfillment processes, and in this context, Chellappa et al. (2007) find that higher reservation prices for 

tickets with higher overall quality are associated with higher levels of price dispersion, along the lines 

of Varian (1980). Venkatesan et al. (2006, 2007) find that a high service quality retailer is able to seek 

similar high premiums in markets with potential for service differentiation. They suggest that in 

product-markets at higher price levels, retailers who are able to foster trust by way of better service 

quality are afforded scope for price differentiation and would charge relatively higher. In the context 

of GSA Advantage!, service quality level may be evident in the order cycle time patterns of different 

products. A longer order cycle time implies lower degree of product availability or lower service 
                                                
5 Among the total number of buyers in our data, 1221 are dual channel buyers.  
6 We categorize high vs. low priced products using both the mean and median values of the products' price. Both yielded 
consistent results. The number displayed above is the result using the mean. Moreover, upon visualizing the data we also 
see some evidence that the number of buyers has been growing over time in the electronic market. 
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quality levels, reducing the number of buyers of such products and the scope for differentiation for 

those sellers.7

Product availability differences among sellers can be private information and hard to find in a 

traditional market. However, in electronic markets such as GSA Advantage!, such information is made 

available to all buyers before purchase (as shown in Figure 1). When product availability information 

is private, all sellers tend to charge similar prices (for example, an inferior seller with low product 

availability can also pretend to be a superior one and charge a high price). Because of increased 

supplier transparency in electronic markets (Granados et al. 2006), sellers are likely to set their price 

based on their actual service level, thereby resulting in greater price dispersion. This is particularly true 

for products with longer order cycle times because these products tend to have a greater variation in 

offerings among sellers than do products with shorter order cycle times.

 This leads sellers to reduce prices which in turn, results in lower price dispersion (Pratt 

et al. 1979, Clay et al. 2001, Scott-Morton et al. 2001, Venkatesan 2007). Prior literature in B2B 

markets have also suggested that order cycle time is an intrinsic characteristic of industrial markets 

(Lilien 1987, Ford et al 2002) and that differences in order cycle times lead to differences in product 

prices (Arcelus et al. 2002). 

8

 

 Thus, we posit that 

electronic markets will moderate the decrease in price dispersion due to an increase in the order cycle 

time. Therefore, we have the following hypothesis: 

H2: Products with longer order cycle times are associated with lower price dispersion. 
However, this effect is moderated in an electronic market. 

 

Various papers in the literature on competition on the Internet have analyzed the own price elasticity 

of offers listed at shopbots and shopbot-like marketplaces (Brynjolfsson et al. 2004, Baye et al. 2004, 

Ellison and Ellison 2005, Ghose et al. 2006). Elasticity measures at Internet shopbots are relevant in 

our context because the display of information at these services is comparable to the information 

displayed on the FSS’ electronic market. Own price elasticity is an indicator of market 

competitiveness. A decrease in product or seller level differentiation generally leads to a higher own 

price elasticity since buyers become more sensitive to the changes in the price of a seller for a given 

product. Because most products in our data are commodities, and all sellers are pre-screened for 

quality, there is very little differentiation among sellers or products. This lack of differentiation 
                                                
7 Descriptive statistics from our data show that this is indeed the case. Using the mean value to split order cycle time into 
long and short values, we found that products with longer order cycle times had 39,585 buyers; whereas products with 
shorter order cycle times had 63,578 buyers.  
8 For example, the correlation between order cycle time and order cycle time gap is high, at 0.39, as shown in Table 7. 
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increases the own price elasticity of demand and lead to lower equilibrium prices. Because an increase 

in own price elasticity lowers the average price of products (Perloff and Salop 1985), it leads to lower 

levels of price dispersion (Pratt et al. 1979, Clay et al. 2001, Scott-Morton et al. 2001, Gatti and 

Kattuman 2006). Walsh and Whelan (1999), among others, have adopted the notion of heterogeneous 

demand elasticity as a key source of price dispersion. Barron et al.  (2004) show that an increase in the 

own price elasticity of demand will result in a decrease in the average markups. This will lead to a 

reduction in price dispersion as the increase in own price elasticity lowers prices of all sellers toward 

their respective marginal costs. Prior literature in B2B markets have also suggested that price elasticity 

is a characteristic of industrial markets (Lilien 1987). Hence, we posit that price dispersion would 

decrease with an increase in own-price elasticity.  

Furthermore, because the density of sellers is typically much higher in online markets than in 

traditional markets for most commodity products (Ghose et al. 2006), own price elasticity should be 

higher in the online world because it is easier there for buyers to search across multiple sellers’ 

offerings than in the offline market. Other studies like Ellison and Ellison (2005) and Granados et al. 

(2006) also find that prices in electronic markets are more elastic than in traditional markets due to 

increased market transparency and competition. Hence, we expect that the inverse relationship 

between own price elasticity (i.e., a buyer’s sensitivity to the change in the price of a seller) and price 

dispersion to be even stronger in electronic markets than in traditional markets. Thus, we have the 

following hypothesis: 

 
H3: Products with higher own price elasticity are associated with lower price dispersion. 
Moreover, this effect is reinforced in an electronic market. 
 

It is well known from the theories of second-degree price discrimination (Tirole 1988) that sellers 

often offer a menu of contracts with different price and quantity offers. These offers are based on 

traditional nonlinear pricing or quantity discounts which price the marginal unit lower than the 

average unit. In such instances, high volume buyers often receive a quantity-based price discount from 

sellers. Prior literature in B2B markets have suggested that transaction quantity is a characteristic of 

industrial markets (Lilien 1987, Webster 1991, Wilson 2002) and that differences in transaction 

quantities in a given order lead to differences in product prices (Arcelus et al. 2002, Kelkar et al. 

2002). There are several examples of these practices documented in prior work in B2B or industrial 

markets. In a study of wholesale purchases by institutional buyers (such as drugstores and hospitals) in 

the pharmaceutical market, Scott-Morton et al. (1997) find that products that face competition in a 
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molecular market have high levels of price dispersion caused by quantity-based price discounting. 

Reuters and Caulkins (2004) discuss that volume discounts are positively related to price dispersion in 

the drug industry, and other studies such as Nieberding and Cantor (2007) also suggest the same 

relationship. In our research setting, some sellers offer volume discounts for a given product (for 

example, seller 4 in Figure 1), whereas others do not (for example, seller 5 in Figure 1). Furthermore, 

even among the sellers who offer volume discounts, their discounting schemes differ across products. 

Therefore, price dispersion is higher when transaction quantity is high than when transaction quantity 

is low, due to the diversity in the volume discounts offered for different products.  

Although an increase in transaction quantity is expected to increase price dispersion, this 

effect is likely to be greatly moderated by the electronic market due to increased price transparency 

and lower search costs for buyers to parse through the offerings of different sellers of a given 

product. For example, a greater proportion of buyers can find the best volume discount schemes in 

electronic markets than they can in traditional markets leading to smaller price dispersion. Hence, we 

have the following hypothesis: 

 

H4: Products with higher transaction quantity are associated with higher price dispersion. 
However, this effect is moderated in an electronic market. 
 
3. Empirical Context, Data and Descriptive Analysis 

3.1 The FSS Markets 

The FSS, which acts as an intermediary, is a core component of the U.S. government’s supply 

chain. The FSS is designed to match buyers from a large number of government agencies to a variety 

of vendors. Both buyers and vendors are certified by the U.S. government. Vendors must meet a 

rigorous set of standards to qualify for inclusion in the GSA’s supply business or on the federal supply 

schedules. The FSS and the contracted commercial vendors provide government buyers with access 

to over four million products and services.  

The FSS system includes an electronic market (i.e., the Internet-based GSA Advantage!) and a 

traditional market that allows placing orders over the phone, fax and proprietary EDI systems, as well 

as physical stores. The electronic market was introduced in 1997 and was soon recognized as one of 

the world’s largest online ordering and tracking system. It provides a convenient way for federal 

purchasers to browse, compare and order products online. As of 2001, GSA Advantage!  offered more 

than two million products and had 312,000 registered users, among which 149,000 were identified as 

frequent buyers (compared to one-time shoppers) and 20,000 were identified as large, powerful buyers 
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(i.e., those who transact in large quantities) (GSA Annual Report 2001). The number of browsers 

using the catalog sites has been estimated at around 1,250,000 annually. Figure 3 presents the structure 

of the FSS’ markets. 

All buyers have access to both the electronic and traditional markets, and all vendors are 

required to support both the electronic and traditional markets. A key difference between the 

electronic and traditional markets is the availability of a search engine in the electronic market that 

facilitates product and vendor searches. The electronic market lists products side-by-side on the 

screen (as shown in Figure 1), so that buyers can easily engage in price comparison shopping. In this 

sense, the electronic market plays a similar role to that of shopbots in the B2C markets such as 

shoppers.com, dealtime.com, etc. In the traditional market, government buyers obtain price 

information by looking up products in paper catalogs. Due to the additional convenience of shopping 

in the electronic market, the final product and transaction bundle experienced by buyers in the 

electronic market differs from that available in the offline market. Moreover, despite the fact that 

most buyers were government buyers, they were not required to purchase only from the lowest price 

vendor at the time the data was gathered. In this respect, the transactions in our dataset are similar to 

those in other commercial markets.  

<<Insert Figures 1 and 3 about here>> 

3.2 Data Description 

The data consist of the FSS’ transaction and fulfillment records of goods shipped during fiscal 

year 2000. The source data consist of 3.7 million records, each corresponding to one purchase order 

and fulfillment. Given the diversity of its products, we include in our analysis only product categories 

with over 100,000 transactions per year. This criterion yields four product categories as defined by 

FSS. They are: hand tools and hardware (category 1); office supplies and devices (category 2); brushes, 

paints, sealers and adhesives (category 3); and containers, packaging and packing supplies (category 4). 

The total number of transactions in these product categories accounts for approximately 85% of the 

total records.  

In order to measure price dispersion, we define the unit of measurement along two 

dimensions. One is by product and the other is by time. Because our data are based on transaction 

records, we aggregate the transactions at the product level. The FSS system uses the National Stock 

Number (NSN), a 13-digit number, to uniquely identify a product. Because our data identify the date 

of each transaction, we can measure price dispersion at the week and month level. That is, we can 



 14 

conduct analyses at the product-week and product-month levels.9

Table 3 presents descriptive statistics on the number of observations by product categories, 

aggregated at the week and month levels, and in the electronic and traditional markets. Table 3 shows 

that all product categories have a substantial number of transactions occurring through either the 

electronic market or the traditional market, with a higher proportion of transactions occurring 

through the traditional market. Furthermore, the four product categories are quite distinct in the 

extent of their sales on the electronic market (e.g., more sales of office supplies and devices than sales 

of containers, packaging and packing supplies), and represent different levels of product homogeneity 

(e.g., office supplies and devices are likely to be more homogenous than other product categories). 

Therefore, including multiple categories in our analysis can increase the robustness of our results. 

 The final aggregated data include 

328,945 and 152,988 observations, respectively, at the product-week and product-month levels. Since 

the qualitative nature of our results from the product-week level is very consistent with those from the 

product-month level, we focus our discussion primarily on the product-month level estimates, for 

brevity.  

<<Insert Table 3 about here>> 

3.3 Descriptive Analysis 

Price in the data set is the amount a buyer pays for one unit of an item. It is the total of the 

item's price and shipping cost. Prior research has suggested that Internet retailers manipulate 

products' price and shipping charges to gain a competitive advantage (Dinlersoz and Li 2006). 

Measuring total cost (i.e., a product's price and shipping charges), as done by Brynjolfsson and Smith 

(2000a) and Pan et al. (2002 & 2003a), can eliminate potential price dispersion resulting from such 

manipulation. We use two metrics that are widely used in the literature, percentage price difference 

(PD) and coefficient of variation (CV) to measure price dispersion. PD is defined as the highest 

transaction price minus the lowest transaction price for a product, among all transactions during a 

week or month, divided by the mean price. CV is defined as the ratio of the standard deviation of a 

product's prices during a week or month over its mean price. Both PD and CV are calculated using 

transaction records from the electronic and traditional markets. As a result, we have two sets of PDs 

and CVs, one for the electronic market and one for the traditional market, for each product-time level 

of analysis. It is worth noting that PD and CV have different numbers of observations. If a product 

                                                
9 At the month level, the average number of transactions for a product is 17.64 in the traditional channel and 10.35 on the 
Internet. At week level, it is 8.88 for the traditional channel and 7.55 for Internet channel.  
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has only one transaction in a given time period, the calculation of PD yields a value of 0; whereas the 

calculation of CV yields a missing value (CV exists only for a sample of more than two observations). 

For example, at the product-month level, PD and CV have 226,194 and 152,988 observations, 

respectively. Thus, we exclude observations for products that had only a single transaction during a 

given period of time when performing our analyses. This is a conservative way to present our results 

because price dispersion is even smaller if including those observations. 

Table 4 shows price dispersion measured by PD and CV at the product-week and product-

month levels. Note that the table shows little price dispersion in either the electronic or traditional 

market. At the product-month level of analysis, the PD and CV in the electronic market are 1.29% 

and 0.52%, respectively. In the traditional market they are 9.81% and 3.31%, respectively. A t test 

rejects the null hypothesis that the difference in price dispersion between the electronic and traditional 

markets is equal to 0, indicating that price dispersion in the traditional market is significantly larger 

than in the electronic market. In addition, price dispersion is generally smaller when measured at the 

weekly level than when measured at the monthly level because the longer the time period, the greater 

the temporal price dispersion. 

<<Insert Table 4 about here>> 

Similar to Table 4, Table 5 shows the number of zero and non-zero price dispersions 

measured by PD and CV at the week and month levels.10

<<Insert Table 5 about here>> 

 From Table 5 we find that only a small 

percentage of products exhibit price dispersion. For example, at the product-month level, only 2,433 

out of 152,988, or 1.59% of products transacted in the electronic market, have non-zero levels of 

price dispersion as measured by either PD or CV; whereas in the traditional market 33,033 out of 

152,988, or 21.59% of products transacted, display positive price dispersion.  

4. Econometric Model 

We describe the econometric models used to estimate and compare price dispersion between 

the electronic and traditional markets (Model 1), and to test our proposed hypotheses (Model 2). As 

discussed earlier, we separate records based on whether a transaction occurred in the electronic or 

traditional market. Then we aggregate the transaction records to product-time (week or month) level. 

That is, for a particular product over a particular unit of time (week or month), we have two 
                                                
10 The number tracks the products during a specific period (week or month) and shows whether there is any variation in 
transaction prices during that period. If a product's price does not vary during the period, it yields a value of zero. 
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observations of price dispersion, one for the electronic market and one for the traditional market. Let  

i denote product, j denote market and t denote time. We estimate models of the following form: 

 

Model 1 

PDijt = β0 + β1 EMj + β2 COSTijt + β3 CYCLEijt + β4 Eijt + β5 QTYijt + β6 QTYGAPijt + β7 CYCGAPijt + 

β8 TIMEijt + 
3

1
k kj

k
CATα

=
∑  +  εijt  (1) 

CVijt = β0 + β1 EMj + β2 COSTijt + β3  CYCLEijt + β4 Eijt + β5 QTYijt + β6 QTYGAPijt + β7 CYCGAPijt + 

β8 TIMEijt + +  εijt (2) 

Model 2  

PDijt = β0 + β1 EMj + β2 COSTjt + β3 CYCLEijt + β4 Eijt + β5 QTYijt + β6 QTYGAPijt + β7 CYCGAPijt + β8 TIMEijt 

+ + β9 Xijt +  εijt  (3) 

CVijt = β0 + β1 EMj + β2 COSTijt + β3 CYCLEijt + β4 Eijt + β5 QTYijt + β6 QTYGAPijt + β7 CYCGAPijt + β8 

TIMEijt + + β9 Xijt +  εijt (4) 

 EM is an indicator variable denoting whether a transaction was conducted in the electronic or 

traditional market. The product cost (COST), order cycle time (CYCLE), own price elasticity (E) and 

transaction quantity (QTY) are defined in Section 2. The only difference between Models 1 and 2 is 

that Model 2 adds an interaction term (X) between EM and one of the following variables: COST, 

CYCLE, E and QTY. The interaction term tests the moderating effect proposed in our hypotheses. 

We include a number of control variables in both models. In particular, we include 

Transaction Quantity Gap (QTYGAP) and Order Cycle Time Gap (CYCGAP) to control for 

alternative sources of price dispersion resulting from demand variation and service differences for a 

product during a given time frame. QTYGAP is the difference in transaction quantity between the 

largest and the smallest quantity of product transacted during a time period. It is used to control for 

the effect of demand variation on price dispersion because demand adversely affects price (e.g., 

3

1
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k
CATα

=
∑

3

1
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k
CATα

=
∑

3

1
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k
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=
∑
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through volume discounts). CYCGAP is the difference in cycle time between the longest and the 

shortest order times for a product during a time period, and is included to control for the effect of 

heterogeneity in service levels across the vendors. TIME is a trend variable11

4.1 Results: Model 1 – Estimation of Price Dispersion 

 (from 1 to 52 for 

product-week level analysis, and from 1 to 12 for product-month level analysis) included to control 

for any possible seasonality effects during the year. Because we have four product categories, we 

include three dummy variables (CAT) to control for unobserved category-level effects. Finally, ε is the 

disturbance term and αs and βs are parameters to be estimated.  

Table 6 presents the descriptive statistics and Table 7 presents the correlation matrix for the 

variables at the product-month level.12

<<Insert Tables 6 & 7 about here>> 

 The dependent variables PD and CV are either zero or a 

positive number. Moreover, the percentage of data points that equal zero is larger than what we would 

expect under a normal distribution. For example, at the month level of analysis, 117,497 observations 

are zeros, accounting for 76.80% of all cases. This suggests that the PD and CV variables have a 

censored distribution; that is, they are left-censored at zero. For a censored dependent variable, OLS 

estimates are econometrically inconsistent (Greene 1999), and hence inappropriate in our setting. A 

Tobit model accounts for such censored distribution, thereby resulting in consistent estimates 

(Amemiya 1973, Greene 1999). The Tobit technique uses all observations, both those at the limit and 

those above it, to estimate a regression line, and it is to be preferred, in general, over alternative 

techniques that estimate a regression only with the observations above the limit (McDonald and 

Moffitt 1980). Hence, we use Tobit regressions. Further, we also report robust standard errors to 

alleviate any concerns about the impact of heteroskedasticity on the estimates from the Tobit model. 

The Tobit results for Model 1 are presented in Table 8. At the product-week level, the 

coefficients for the electronic market are negative and statistically significant (β =-0.60 and p<0.001 in 

the PD equation, β =-0.27 and p<0.001 in the CV equation), indicating that the price dispersion in the 

electronic market is lower than that in the traditional market. Similarly, at the product-month level, the 

coefficients for the electronic market are negative and statistically significant (β =-0.62 and p<0.001 in 

                                                
11 We also estimated time dummies (i.e., replaced the trend variable with a series of time dummies) to control for 
seasonality. The results were consistent with our current results and are omitted for brevity. 
12 Due to brevity, the product-week level statistics are not presented. To check for potential multi-collinearity, we compute 
variance inflation factor (VIF) scores for all independent variables. The VIF scores for all independent variables are 
between 1.01 and 5.19, lower than the commonly accepted level of 10 (Kennedy 2003). 
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the PD equation, β =-0.22 and p<0.001 in the CV equation). The consistency of the coefficients 

across both levels demonstrates the robustness of our results. We then use these Tobit estimates to 

predict price dispersions in the electronic and traditional markets, while keeping other variables at 

their means. Table 9 presents the predicted price dispersion. The numbers are consistent with those in 

Table 4, showing that price dispersion in the electronic market is close to zero and significantly 

smaller than that in the traditional market. 

 The coefficients for TIME are positive and significant suggesting that price dispersion tends 

to grow larger over time. This is consistent with Pan et al. (2002) who show that e-tailer and market 

characteristics become more influential drivers of price dispersion among retailers over time. Our 

analysis shows that price dispersion increases over time suggesting that buyers in this market do not 

seem to exhibit any potential learning over time. The coefficients for QTYGAP and CYCGAP are 

both positive and statistically significant, indicating that products with high variation in transaction 

quantity and order cycle time are associated with high price dispersion. This result suggests that 

differences in transaction quantity and order cycle time are possible sources of price dispersion. This 

could be due, for example, to volume discounts offered by some vendors and differential service 

levels across vendors. After controlling for these potential sources of price dispersion, our results 

show that the level of price dispersion in the electronic market is close to 0, and that price dispersion 

in the offline market is higher than in the electronic market. Because COST, CYCLE, E and QTY are 

hypothesized and tested in Model 2, we discuss them in Section 4.2.  

<<Insert Tables 8 and 9 about here>> 

4.2 Robustness Tests 

In order to validate the robustness of our estimations we performed several different 

robustness checks. First, we ran OLS models with product-fixed effects at both the product-week and 

product-month levels. Those results are also consistent with the results reported, and are shown in 

Table SA1 in the Supplementary Appendix.13

                                                
13 The parameter estimates the product level fixed effects model are omitted for brevity but are available from the authors 
upon request.  

 For example, at the product-month level, the price 

dispersion is 0.52% and 3.31% in online and offline markets, respectively, based on the CV metric. 

Second, in order to address concerns about different buyers buying different products across the two 

channels, we have estimated the models after including only the transactions with common products 

that were sold in both channels. In particular, we have done these analyses using the top-100 common 
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products (by sales), top-500 common products, top-1000 common products, top-5000 common 

products and all common products (7283) in online and offline channels. We have run these analyses 

for both the CV and the PD at both the product-week and product-month level of analysis. The 

results are consistent with those in Table 9 and the results for all common products are presented in 

Table SA2 in the Supplementary Appendix. For example, at the product-month level, the price 

dispersion is 0.42% and 4.39% in online and offline markets, respectively, based on the CV metric. 

We have also estimated the model based on the sample of common buyers who bought across both 

channels in order to address concerns about different buyers selecting different channels. Those 

results are also consistent with those presented in Table 9 and are presented in Table SA3 in the 

Supplementary Appendix. For example, at the product-month level and based on the CV metric, price 

dispersion is 0.35% and is 0.86% in online and offline markets, respectively. Third, we excluded all 

repeat purchases for each buyer and analyzed the sub-sample of single purchases. This was motivated 

by the possibility that buyers may have low propensity to conduct a thorough search for repeat 

purchases. As a result, they might keep buying from the same source, thereby resulting in little price 

dispersion. The results are consistent with those in Table 9 and are presented in Table SA4 in the 

Supplementary Appendix. For example, at the product-month level, the price dispersion is 0.57% and 

1.84% in online and offline markets, respectively, based on the CV metric. Fourth, to alleviate 

concerns about the impact of variation in shipping costs by transaction quantity on price dispersion, 

we have estimated the models after splitting the sample by transactions involving high and low 

transaction quantities. Those results are also consistent with those presented in Table 9 and are 

presented in Tables SA5 and SA6 in the Supplementary Appendix. For example, for the sample 

involving low transaction quantities, at the product-month level, the price dispersion is 0.95% and 

1.49% in online and offline markets, respectively, based on the CV metric. Fifth, in response to 

concerns about the year 2000 being a unique year, we have examined the results by splitting the 

sample into two 6-month sub-samples as well as 4 quarterly sub-samples. The results are consistent 

with those reported in Table 9 and are presented in Tables SA7 and SA8 in the Supplementary 

Appendix. For example, at the product-month level, the price dispersion is 0.42% and 3.94% in 

online and offline markets, respectively, based on the CV metric from the analysis of the sample in 

the first half of the year. The empirical estimates from the semi-annual analyses are presented in Table 

SA16. Sixth, to alleviate concerns on the presence of GSA transactions, we have performed a number 

of analyses by isolating the impact of GSA’s stock program from the transactions involving direct 

sales by vendors. The results are consistent with those reported in Table 9 and are presented in Table 
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SA9 in the Supplementary Appendix. For example, at the product-month level, the price dispersion is 

0.68% and 0.88% in online and offline markets, respectively, based on the CV metric from the 

analysis of the sample consisting of direct vendor sales only (non-GSA transactions). The empirical 

estimates from the non-GSA analysis are presented in Table SA17. Seventh, to check for additional 

ways to rank top selling products, we have used the number of distinct buyers of the product to rank 

products. The results are consistent with our main results when we use “sales volume in dollars” to 

rank products and are presented in Table SA10-SA12 in the Supplementary Appendix. For example, 

at the product-month level for the top-100 common products, the price dispersion is 0.27% and 

4.98% in online and offline markets, respectively, based on the CV metric. Finally, the most extreme 

form of filtering we have used is for only those products (i) that have sufficient observations during a 

month, (ii) that are common across both offline and online channels, and (iii) that have transactions 

for a sufficient number of months. This is a three step rigorous filtering process gradually reducing 

the large sample into a small but highly relevant sample. The results are consistent with those reported 

in Table 9 and are presented in Tables SA13-SA15 in the Supplementary Appendix. For example, at 

the product-month level, the price dispersions for the common products sold in both channels with 

an average more than 10 observations during a month and having been transacted at least 6 months 

out of a year are 0.42% and 6.70% in online and offline markets, respectively, based on the CV metric.  

4.3 Results: Model 2 - Drivers of Price Dispersion 

We also estimate Model 2 at product-week and product-month levels. Table 10 presents the 

estimation results at the product-month level.14

Column (2) presents the results of assessing the effect of order cycle time. The coefficient for 

CYCLE is negative and significant (β =-3.63x10-3 and p<0.001 in the PD equation, β =-0.95x10-3 and 

p<0.001 in the CV equation), and the coefficient for the interaction term of CYCLE and EM is 

 Column (1) presents the results of assessing the effect 

of product cost. The coefficient for COST is positive and significant (β =65.80x10-6 and p<0.001 in 

the PD equation, β =23.10x10-6 and p<0.001 in the CV equation), and the coefficient for the 

interaction term of COST and EM is also positive and significant (β =1.2x10-3 and p<0.001 in the PD 

equation, β =0.42x10-3 and p<0.001 in the CV equation). These results lend support to both parts of 

Hypothesis 1, which proposes that price dispersion is higher for products with higher product costs 

than for products with lower product costs, and this effect is reinforced by the electronic market.  

                                                
14 The Pseudo R-Squared statistics for all estimations of Models 1 and 2 are between 0.22 and 0.41, indicating a good fit 
for these regression estimations. Due to space constraints, the product-week level results are omitted but are available 
upon request. 
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positive and significant (β =7.14x10-3 and p<0.001 in the PD equation, β =2.49x10-3 and p<0.001 in 

the CV equation), indicating that price dispersion is lower for products with longer order cycle time 

than for products with shorter order cycle time in the traditional market. However, this effect is 

significantly moderated in the electronic market such that price dispersion is higher for products with 

a longer order cycle time than for products with a shorter order cycle time in the online channel, 

suggesting that the electronic market plays an important role in facilitating information transparency. 

These results lend support to Hypothesis 2 in the traditional market but not in the electronic market. 

The moderating effect of Hypothesis 2, however, is supported.  

Column (3) presents the results of assessing the effect of own price elasticity. Notice that the 

coefficient of E is significant and negative in product-week level analysis in Table 8, supporting the 

first half of Hypothesis 3. Moreover, when we run the various robustness tests such as those at the 

product-week level analyses, we find that the coefficient of E and the interaction term is significant 

and negative. However, in Table 10, the coefficients for both E and the interaction term are generally 

insignificant, suggesting that Hypothesis 3 is unsupported at the product-month level but supported at 

the product-week level. Thus, Hypothesis 3 is partially supported. 

Column (4) presents the results of assessing the effect of transaction quantity. The coefficient 

for QTY is positive and significant (β =0.44x10-3 and p<0.001 in the PD equation, β =0.20x10-3 and 

p<0.001 in the CV equation), but the coefficient for the interaction term of QTY and EM is negative 

and significant (β =-0.52x10-3 and p<0.05 in the PD equation, β =-0.17x10-3 and p<0.05 in the CV 

equation). These results lend support to Hypothesis 4 based on the results of CV equation, which 

posits that price dispersion is higher for products with higher transaction quantity. However, based on 

the results of PD equation, this effect on PD is significantly moderated by the electronic market such 

that, in the electronic market, price dispersion is higher for products with a lower transaction quantity 

than for products with a higher transaction quantity. This result, again, highlights the important role 

of the electronic market in facilitating information transparency. Table 11 summarizes our results.  

Finally, column (5) presents the estimation results from the full model which included all 

interaction terms. The qualitative nature of the main results remains unchanged. The only change is 

that the interaction of electronic market and transaction quantity is now statistically insignificant at the 

product-month level in the CV equation although it is in the right direction. However, in our 

robustness checks, we see that the interaction continues to remain statistically significant at the 

product-week level. 

<<Insert Tables 10 and 11 about here>> 
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5. Implications for Consumer Welfare 

One impact of reduced price dispersion in electronic markets is that it increases consumer 

welfare. None of the previous studies in the literature, as discussed in Pan et al. (2004), was able to 

estimate the implications of reduced price dispersion for consumer welfare due to the data limitation 

arising from the absence of transaction prices. They assert that “[i]f most sales in online markets take 

place at relatively low prices, and high price sellers have relatively low volumes, price dispersion could 

cost consumers much less if a high share of sales takes place at relatively high prices.” Using 

transaction prices, we are able to address this question by estimating the impact of reduced price 

dispersion on consumer welfare. 

A stream of research on developing techniques to estimate welfare effects from the 

introduction of new goods is based on Hicks’ (1942) compensating variation measure. This technique 

has been applied to measure welfare gains from new goods ranging from increased product variety on 

the Internet (Brynjolffson et al. 2003) to the establishment of used-good markets (Ghose et al. 2006). 

Following their approach, in this section we apply Hausman and Leonard’s (2002) methodology to 

estimate the electronic market's impact on consumer surplus.  

To impute this we need to estimate the own price elasticity of demand. Hence, we estimate 

models at transaction level with Log(SALES) as the dependent variable and Log(PRICE) as the 

independent variable. Note that the unit of analysis is a transaction, which is different from that used 

in the analyses of price dispersion. SALES, therefore, is defined as the total quantity of a product sold 

in a transaction. The control variables include the order cycle time (CYCLE), time trends (DATE) 

and product category dummies (CAT). We estimate the regressions separately for the electronic and 

traditional markets. Consistent with prior studies of Internet based demand (Chevalier and Goolsbee 

2003, Ghose et al. 2006) we use a log-linear model 

Ln (SALES) = α0+ α1 Ln(PRICE) + α2 CYCLE + α3 DATE +  +  ε (5) 

where α1 is the own price elasticity of demand, CAT represents the dummy variables for each product 

category, CYCLE and DATE are control variables and ε is a random error term. Column(1) in Table 

12 present the OLS results.  

Due to the potential endogeneity of price, we also estimate the model using a two stage least 

square (2SLS) with instrument variables. The instrumental variables are annual sales volume, total 

transaction frequency for a product during the year, and a seller-level shipping warehouse dummy 

which serves as a proxy for cost. Since the annual sales volume and total transaction frequency are 
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product-level variables, they are correlated with price but unlikely to be correlated with unobserved 

vendor heterogeneity. The shipping warehouse dummy variable identifies the shipping warehouse of 

GSA versus other sellers in our sample. Besides controlling for vendor heterogeneity, this cost-side 

variable is a valid instrument because it is correlated with prices but is uncorrelated with the error 

term. The intuition is that different sellers have warehouses situated in different locations and hence, 

their cost structure would be different due to differences in warehouse rental and maintenance costs 

and inventory carrying costs. As a result, this variable is likely to be correlated with prices but 

uncorrelated with unobservable factors that affect sales as is well known in the literature (for example, 

Berry 1994). 

Column (2) in Table 12 presents the results from the 2SLS estimation.15 All the coefficients 

are significant at the 0.01% level. The results indicate that the average own price elasticity in the 

electronic market is -1.47. Based on a similar analysis for the offline market, we find that own price 

elasticity in the offline market is -0.84. This implies that the demand in the electronic market is more 

elastic than in the traditional market. These estimates are consistent with the conclusions of earlier 

studies, which find that prices in electronic markets are generally more elastic than in traditional 

markets due to increased efficiency and market transparency (Ellison and Ellison 2005, Granados et 

al. 2006). In particular, Granados et al. (2006) find that own price elasticity for online travel agencies is 

-1.29, whereas for offline travel agencies it is -0.82.16

<<Insert Table 12 about here>> 

  

 

Having estimated the own price elasticity, we follow the approach used by Ghose et al. (2006) 

to estimate the gain in consumer surplus due to the use of the electronic market. This approach was 

originally developed by Hausman and Leonard (2002) to calculate the consumer surplus gain from the 

introduction of new goods; and it was further simplified by Brynjolfsson et al. (2003) to estimate the 

surplus arising from the availability of products which represent a small proportion of overall 

expenditures, so that the effect of income elasticity can be ignored. In our data, the expenses incurred 
                                                
15 Pair-wise correlations between variables were much lower than the 0.8 critical level suggested by Kennedy (2003). A VIF 
test also revealed that there was no concern for multi-collinearity.  
16 We have also experimented with a different set of instruments. Specifically, we used GMM-based estimators as in 
Arellano and Bond (1991), and Blundell and Bond (1998) and Arellano and Bover (1995). Arellano and Bond (1991) 
developed a GMM estimator that treats the model as a system of equations, one for each time period. The equations differ 
only in their instrument/moment condition sets. These are dynamic panel data estimators and they have used lagged first-
differences as instruments for equations in levels, along with combinations of lagged levels as instruments for equations in 
first-differences. The own price elasticity in the electronic market in these analyses ranges from -1.35 to -1.51, and is thus 
consistent with our main estimates.  
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by government agencies to buy these products (e.g., office products, hand tools and packaging 

supplies) usually constitute a tiny proportion of their overall budget. Therefore, we use the following 

formula (Brynjolfsson et al. 2003, Ghose et al. 2006) to compute the consumer surplus gain from the 

use of the electronic market:  

,  (6) 

where eeqp  represents the total sales in dollars of the products in the electronic market, and eη  is the 

own price elasticity of demand.  

Although we know that the electronic market was introduced more recently than the offline 

market, and that the former provides buyers with additional utility from its greater shopping 

convenience17

 Our consumer surplus estimate is comparable to the estimate in Ghose et al. (2006) who find 

that the online used-book market on Amazon.com increases consumer surplus by $67.21 million per 

year. However, it may be worth noting that the consumer surplus in Ghose et al. (2006) amounted to 

only one fourth of the total revenues from transactions in the used-book market. Furthermore, in our 

data, the revenues accruing from the buyers who use traditional channels only are $376 million. If the 

buyers were to spend all of that in the electronic market of GSA Advantage!, based on our calculation, 

, it is possible that some buyers still consider the offline market as a perfect substitute 

for the online market, especially those who buy across both channels. To alleviate this concern, we 

run our analysis on a smaller sample of transactions to underestimate the gains in buyer welfare. In 

particular, we exclude transactions that were conducted by buyers who have purchased products in 

both channels, and include transactions by buyers who have purchased only in the electronic market 

over the one-year period. The main idea is that in the absence of the electronic market these buyers 

would either have been forced to buy these products in the offline market, or they would have 

refrained from buying these products at all. This sample of transactions results in an own price 

elasticity of -1.52 in the electronic market. Based on the revenues accruing from these transactions 

($50.92 million) across the four product categories, the final consumer welfare gain from the 

electronic market works out to be $97.92 million per year, which is almost twice as much as the 

revenues from these transactions. 

                                                
17 Examples of such additional utility creating differences across the two markets include searching for items using 
keywords, part numbers, manufacturer names, contractor names or contract numbers; browsing by category of products 
and services; comparing features, prices and delivery options; configuring products and adding accessories; reviewing 
delivery options; selecting a convenient payment method; and viewing order history to track status, reorder or cancel. 
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the total consumer surplus gains can be as high as $723.07 million. These numbers are in the range of 

the estimates shown by Brynjolfsson et al. (2003) who find that the increased product variety of 

online bookstores enhanced consumer welfare by $731 million to $1.03 billion in the year 2000, which 

is the same time frame as that of our data. However, one needs to keep in mind that Brynjolfsson et 

al. (2003) and Ghose et al. (2006) analyzed B2C electronic markets while our buyer surplus estimates 

are for a B2B electronic market. 

 

6. Discussion  

The magnitude of price dispersion in the electronic market in our study is much lower 

compared to that reported in previous studies. Most previous studies have found that average price 

dispersion is between 20%-30% when measured by price gap or range, and 5%-20% when measured 

by coefficient of variation (e.g., Pan et al. 2004). In our research, we find price dispersion to be less 

than 1% under a number of different scenarios.  

Our results merit some discussion towards understanding why the estimated price dispersion 

is so low when we use transaction price to measure it. Prior studies (Brynjolfsson and Smith 2000, Pan 

et al. 2002, 2003a and 2003b, Baye et al. 2004) have recognized that, when using posted prices to 

measure price dispersion, some outliers (low-end prices) may not be honored by retailers once a 

customer comes to the market, and other outliers (high-end prices) may not generate any sales at all. 

These outliers contribute to price dispersion measured by posted prices but not to that measured by 

transaction prices. Moreover, GSA Advantage! is more closely regulated than many of the commercial 

electronic markets studied in prior work, which, to a large extent, mitigates unobserved heterogeneity 

among vendors in terms of brand or reputation effects. Finally, we have studied price dispersion in a 

single electronic market. GSA Advantage! is the only source for government buyers to purchase their 

office supplies on the Internet. Thus, these buyers' search costs are arguably low. Given that our B2B 

setting is different from that in many prior studies which are based on B2C scenarios, we would like 

to point out that our findings should be interpreted in light of the differences in the research settings. 

 We also find that price dispersion in the electronic market is significantly lower than in the 

traditional market. Since we use transaction prices, namely market clearing prices, this finding suggests 

that buyers in the electronic markets can more efficiently locate the lower prices due to reduced 

search costs, thus providing empirical support to the theoretical prediction that electronic markets 

have lower search costs (Bakos 1997). Previous empirical studies have not conclusively shown 

whether electronic or traditional markets have higher price dispersion. Rather, the evidence is quite 
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mixed. Our paper makes a contribution by providing empirical evidence using transaction prices, 

which has not been done before.  

Using transaction data, we have studied four product and market level drivers. In particular, 

we analyze the impact of product cost, order cycle time, own price elasticity and transaction quantity 

on price dispersion. We find that high value products (those having a high product cost) are 

associated with higher price dispersion than are low cost products. This finding suggests that in some 

B2B markets the effect of the Weber-Fechner law of psychophysics can indeed be greater than the 

effect of increased searches for high value products. This effect is even stronger in the electronic 

market than in traditional markets, indicating that the market expansion effect resulting from the 

electronic market dominates the competition intensifying effect resulting from reduced search costs in 

the electronic market. The finding that products' price dispersion falls as their own price elasticity 

increases is consistent with results from prior studies, which show that increased competition reduces 

price dispersion. To our knowledge, our study is the first attempt to directly utilize own price elasticity 

to measure competition and link it with price dispersion. Finally, we find that price dispersion is 

negatively associated with order cycle time in the traditional market but positively associated with it  in 

the electronic market, and that price dispersion is positively associated with transaction quantity 

although the effect becomes weaker in the electronic market than in the traditional market. Future 

research can explore the validity of these insights in a B2C electronic market such as in shopping bots 

or in markets established by online retailers.  

Furthermore, we estimate demand to infer own price elasticities towards estimating the 

increase in consumer surplus. Consistent with an emerging stream of work on demand estimation in 

electronic markets, we find that online markets exhibit higher own price elasticity compared to offline 

markets. This finding is consistent with theory that in more price transparent channels like online 

markets own price elasticity is relatively higher, while for more product transparent channels like 

offline markets, own price elasticity is relatively lower (Lynch and Ariely 2000, Granados et al. 2006). 

While our calculations of welfare focus on buyer surplus, retailers also face several countervailing 

effects. On one hand, they may gain from the additional sales they make due to the complementarity 

between the offline and online channels. On the other hand, they may also suffer from the 

cannibalization of online sales by the offline channel or vice-versa. Furthermore, while retailers may 

benefit from the wider market coverage created by the electronic market, they may also lose from 

increased competition due to higher price and supplier transparency. It would be interesting to use 

transaction data to explore implications for retailer welfare in future research. 
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7. Conclusion 

 In this research we first estimate and compare the magnitude of price dispersion using 

transaction price in both an electronic market and a traditional market. We then develop a nuanced 

theoretical model and test a number of hypotheses on both market and product level drivers of price 

dispersion and the moderating role of the electronic market. We use a data set collected from the FSS 

of GSA, which consists of their transaction records in both the electronic and traditional markets. We 

demonstrate the price dispersion has indeed been reduced to negligible levels in some electronic 

markets –  a finding contrary to prior empirical studies, but in accordance with several theoretical 

predictions in information economics. 

 Although our data provide many advantages in estimating price dispersion compared to those 

used in prior studies, the study also has some limitations. One limitation is that we study price 

dispersion in a single electronic market. Many other studies (e.g., Brynjolfsson and Smith 2000) 

collected price data from individual websites of multiple Internet retailers. Conceivably, buyers' search 

costs can be higher for sequential searches across individual Internet retailers, compared to a shopbot-

like electronic market, leading to higher price dispersion. Nonetheless, it is worth noting that some 

studies (e.g., Baye et al. 2004, 2006) that collected posted price data directly off a shopbot have 

reported much higher levels of price dispersion than our study. Another limitation is that the data 

does not identify the vendors; that is, we cannot attribute each transaction to a particular vendor. 

Thus, we have limited controls for vendor heterogeneity. A similar data limitation has also been 

acknowledged in prior work such as Baye et al. (2006). Such data unavailability does prevent us from 

evaluating the drivers of price dispersion in terms of market structure, which could interact with 

retailer characteristics as pointed out by Venkatesan et al. (2007). Despite these limitations, we hope 

our research paves the way for future research in this area.   
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 Table 1: Summary of Empirical Literature on Online Price Dispersion 

 Period of 
Data 

Percentage 
Difference 

Coefficient of 
Variation (%) 

Product Category 

Clemons et al. (2002) 
 

1997 Up to 28  Airline Tickets 

Bailey (1998) 
 

1997-1998  7.07-17.61 Books, CDs, Software 

Brynjolfsson & Smith (2000a) 1998-1999 25-33  Books, CDs 
Clay et al. (2002) 
 

1999 27-73  Books 

Clay et al. (2001) 
 

1999-2000 32-65 12.9-27.7 Books 

Clay and Tay (2001) 
 

2001 23-42  Books 

Baye et al. (2004, 2006) 1999-2001 57* 12.6 Electronics 
Baye et al. (2003) 
 

2000-2001 40* 10 Electronics 

Scholten and Smith (2002) 2000  12.87-14.5 Grocery and Camera, Books, 
Flowers, Electronics 

Pan et al. (2003a, 2003b) 2000-2003 25.70 - 51.04 7.03-27.1 CDs, DVDs, Desktop, 
Laptop, PDA, Software, 

Electronics 
Ratchford et al. (2003) 2001 15.01 - 48.08 5.46-16.63 Books, CDs, DVDs, Desktop, 

Laptop, PDA, Software, 
Electronics 

Ellison and Ellison(2005) 2000 4.00**  Computer Memories 
Baylis and Perloff (2002) 1999 29.00  Consumer Electronics 
Sin et al. (2007) 2004 30-46%  Airlines  
Chellappa et al. (2007) 2004 30-46%  Airlines  
Venkatesan et al. (2006, 2007) 2004 18-96%  Books, DVDs, Video Games, 

printers, scanners, PDAs. 
* Price range relative to the minimum price, not the average price.  
** Price range between the lowest and tenth lowest prices. 
Source: Pan et al. (2004) with modifications. 

 
Table 2: Summary of Findings in Prior Literature on Online vs. Offline Price Dispersion 

Online Dispersion Higher Off-Line Dispersion Higher Online and Off-Line Dispersion 
Same 

Bailey (1998) 

Brynjolfsson and Smith (2000a)  

Erevelles et al. (2001) 

Clay et al. (2002) 

Ancarani and Shankar (2004) 
(Range) 

Brynjolfsson and Smith (2000a) 
(Market share weighted) 

Scott-Morton et al. (2001) 

Brown and Goolsbee (2002) 

Ancarani and Shankar (2004) 
(Standard deviation) 

Chellappa et al 2007 
 

Scholten and Smith (2002) 
 
 
 
 
 

Source: Pan et al. (2004) with modifications. 
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Table 3: Number of Observations in Electronic and Traditional Markets 
 Product-Week Product-Month 

 Electronic 
Market 

Traditional 
Market 

Electronic 
Market 

Traditional 
Market 

Hand Tools and 
Hardware 

14,969 
(4.55%) 

 

95,793 
(29.12%) 

 

10,497 
(6.86%) 

 

47,505 
(31.05%) 

 

Office Supplies and 
Devices 

75,354 
(22.91%) 

 

94,901 
(28.85%) 

 

30,234 
(19.76%) 

 

39,616 
(25.89%) 

 

Brushes, Paints, Sealers, 
and Adhesives 

3,251 
(0.99%) 

 

26,099 
(7.93%) 

 

2,696 
(1.76%) 

 

13,487 
(8.82%) 

 

Containers, Packaging 
and Packing Supplies 

5,397 
(1.64%) 

 

13,181 
(4.01%) 

 

2,938 
(1.92%) 

 

6,015 
(3.93%) 

 
Total 328,945 (100%) 152,988(100%) 

 
Table 4: Average Price Dispersion at Week and Month Level (in Percentage) 

 Product-Week Product-Month 

 PD CV PD CV 

Electronic market 0.43 0.22 1.29 0.52 

Traditional Market 6.62 2.70 9.81 3.31 

t statistics (H0: diff=0) 116*** 105*** 85*** 82* 

***, ** and * denote significance at 0.001, 0.01 and 0.05, respectively 

 
Table 5: Number of Zero and Non-Zero Price Dispersion 

 Product-Week Product-Month 

 Zero Non Zero Zero Non Zero 

Electronic Market 96,176 2,795 43,932 2,433 

Traditional Market 180,899 49,075 73,590 33,033 

Total 328,945 152,988 
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 Table 6: Descriptive Statistics (Product-Month Level)  
 

 Electronic Market Traditional Market 

 N Mean S.D. Min. Max. N Mean S.D. Min. Max. 

1. Price Difference (PD) 
 

46365 0.013 0.15 0 13.79 106623 0.10 0.22 0 16.27 

2. Coefficient of Variation 
(CV) 

46365 0.05 0.05 0 2.52 106623 0.03 0.08 0 3.23 

3. Electronic Market (EM)  
 

46365 1 0 1 1 106623 0 0 0 0 

4. Product Cost (COST) ($) 46365  18.15 46.32 0.02 1328 106623 46.97 410.94 0.03 58699 

5. Order Cycle Time 
(CYCLE)  

46365 5.15 12.64 0 277 106623 13.21 21.18 0 303 

6. Own Price Elasticity (E) 
 

46365 -3.27 4.82 -22.4 8.06 106623 -1.43 2.42 -13.1 0.22 

7. Transaction Quantity 
(QTY) 

46365 9.46 26.75 1 1196 106623 17.40 69.66 1 7503 

8. Transaction Quantity Gap 
(QTYGAP) 

46365 3.63 5.57 0 137.8 106623 4.72 9.19 0 415.9 

9. Order Cycle Time GAP 
(CYCGAP) 

46365 10.17 18.37 0 331 106623 19.28 23.83 0 350 

10. Hand Tools and 
Hardware 

46365 0.23 0.42 0 1 106623 0.45 0.50 0 1 

11. Office Supplies and 
Devices 

46365 0.65 0.48 0 1 106623 0.37 0.48 0 1 

12. Brushes, Paints, Sealers 
and Adhesives 

46365 0.06 0.23 0 1 106623 0.13 0.33 0 1 

13. Containers, Packaging 
and Packing Supplies 

46365 0.06 0.24 0 1 106623 0.06 0.23 0 1 
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Table 7: Correlation Matrix (Product-Month Level) 
 

 1 2 3 4 5 6 7 8 9 10 11 12  

1. Price Difference (PD) 
 

1             

2. Coefficient of 
Variation (CV) 

0.89 1            

3. Electronic Market 
(EM)  

-0.19 -0.17 1           

4. Product Cost (COST) 
($) 

0.08 0.09 -0.04 1          

5. Order Cycle Time 
(CYCLE)  

0.01 0.05 -0.19 0.08 1         

6. Own Price Elasticity 
(E) 

0.03 0.02 -0.25 -0.04 0.004 1        

7. Transaction Quantity 
(QTY) 

0.09 0.10 -0.06 -0.02 0.01 0.02 1       

8. Transaction Quantity 
Gap (QTYGAP) 

0.22 0.09 -0.06 -0.04 -0.11 0.06 0.09 1      

9. Order Cycle Time 
GAP (CYCGAP) 

0.20 0.16 -0.18 0.02 0.39 0.04 0.04 0.21 1     

10. Hand Tools and 
Hardware 

-0.11 -0.12 -0.21 0.03 0.07 0.07 -0.08 -0.09 -0.05 1    

11. Office Supplies and 
Devices 

0.12 0.13 0.26 -0.02 -0.11 -0.11 0.04 0.13 -0.02 -0.72 1   

12. Brushes, Paints, 
Sealers and Adhesives 

-0.05 -0.05 -0.10 -0.01 0.08 0.06 0.04 -0.06 0.09 -0.27 -0.32 1  

13. Containers, 
Packaging and 
Packing Supplies 

0.03 0.05 0.01 -0.01 -0.01 -0.00* 0.03 -0.01 0.02 -0.19 -0.23 -0.09 1 

* denotes insignificance. The rest coefficients are significant at the 0.001 level. 
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Table 8: Results of Tobit Estimations (Model 1) 
 

 Column (1) Column (2) 
 Product-Week Product-Month 
 PD CV PD CV 

Intercept -0.45*** 
(0.01) 

-0.20*** 
(0.003) 

-0.30*** 
(0.02) 

-0.10*** 
(0.004) 

Electronic Market (EM)  -0.60*** 
(0.01) 

-0.27*** 
(0.003) 

-0.62**** 
(0.02) 

-0.22*** 
(0.003) 

Product Cost (COST) (x10-6) 76.90*** 
(15.60) 

31.70*** 
(6.02) 

68.40*** 
(19.10) 

24.00*** 
(5.77) 

Order Cycle Time (CYCLE) (x10-3) -1.06*** 
(0.13) 

-0.27*** 
(0.05) 

-2.86*** 
(0.19) 

-0.68*** 
(0.06) 

Own Price Elasticity (E) (x10-3) 
 

-1.61* 
(0.73) 

-0.60* 
(0.31) 

0.43 
(0.84) 

0.17 
(0.31) 

Transaction Quantity (QTY) (x10-3) 0.20** 
(0.06) 

0.10*** 
(0.03) 

0.43*** 
(0.07) 

0.20*** 
(0.03) 

Transaction Quantity Gap (QTYGAP) 
(x10-3) 

2.36*** 
(0.60) 

7.93*** 
(0.19) 

9.96*** 
(0.46) 

2.45*** 
(0.12) 

Order Cycle Time GAP (CYCGAP) 
(x10-3) 

5.43*** 
(0.16) 

2.29*** 
(0.05) 

5.78*** 
(0.22) 

1.93*** 
(0.05) 

Time (TIME) (x10-3) 2.12*** 
(0.09) 

0.97*** 
(0.04) 

8.86*** 
(0.61) 

3.07*** 
(0.21) 

Category Dummy: hand tools and 
hardware   

-0.31*** 
(0.08) 

-0.15*** 
(0.03) 

-0.33*** 
(0.01) 

-0.13*** 
(0.003) 

Category Dummy: office supplies and 
devices  

0.04*** 
(0.005) 

0.02*** 
(0.002) 

0.04*** 
(0.01) 

0.01*** 
(0.003) 

Category Dummy: brushes, paints, 
sealers and adhesives  

-0.31*** 
(0.01) 

-0.15*** 
(0.003) 

-0.34*** 
(0.01) 

-0.13*** 
(0.004) 

N 328,945 328,945 152,988 152,988 
Log Likelihood -97,378 -56,837 -59,608 -24,616 
Pseudo R2 0.26 0.34 0.24 0.41 
     

Robust standard errors are listed in parenthesis; ***, ** and * denote significance at 0.001, 0.01 and 0.05, 

respectively  
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Table 9: Predicted Average Price Dispersion from Tobit Model (in Percentage) 

 Product-Week Product-Month 

 PD CV PD CV 

Electronic Market 0.56 0.25 1.29 0.47 

Traditional Market 6.36 2.72 10.37 3.66 

t statistics (H0: diff=0) 306*** 353*** 249*** 278*** 

***, ** and * denote significance at 0.001, 0.01 and 0.05, respectively 
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Table 10: Results of Tobit Estimations (Model 2 at Product-Month Level) 
 Column (1) Column (2) Column (3) Column (4) Column (5) 
 Hypothesis 1 Hypothesis 2 Hypothesis 3 Hypothesis 4 Full Model 
 PD CV PD CV PD CV PD CV PD CV 

Intercept -0.30*** 
(0.02) 

-0.10*** 
(0.004) 

-0.29*** 
(0.02) 

-0.10*** 
(0.004) 

-0.30*** 
(0.02) 

-0.10*** 
(0.004) 

-0.30*** 
(0.02) 

-0.10*** 
(0.004) 

-0.29*** 
(0.02) 

-0.10*** 
(0.004) 

Electronic Market (EM)  -0.64*** 
(0.02) 

-0.23*** 
(0.004) 

-0.68*** 
(0.02) 

-0.25*** 
(0.004) 

-0.61*** 
(0.02) 

-0.22*** 
(0.004) 

-0.61*** 
(0.02) 

-0.22*** 
(0.004) 

-0.69*** 
(0.02) 

-0.25*** 
(0.004) 

Product Cost (COST) (x10-6) 65.80*** 
(18.6) 

23.10*** 
(5.58) 

69.40*** 
(19.3) 

24.40*** 
(5.83) 

68.30*** 
(19.1) 

24.00*** 
(5.77) 

68.40*** 
(19.1) 

24.00*** 
(5.77) 

67.50*** 
(19.0) 

23.70*** 
(5.72) 

Order Cycle Time (CYCLE) 
(x10-3) 

-3.02*** 
(0.19) 

-0.73*** 
(0.06) 

-3.63*** 
(0.21) 

-0.95*** 
(0.06) 

-2.86*** 
(0.19) 

-0.68*** 
(0.06) 

-2.86*** 
(0.19) 

-0.68*** 
(0.06) 

-3.65*** 
(0.21) 

-0.95*** 
(0.06) 

Own Price Elasticity (E) 
(x10-3) 

0.18 
(0.84) 

0.08 
(0.31) 

-0.94 
(0.85) 

-0.32 
(0.31) 

0.29 
(0.9) 

0.12 
(0.34) 

0.42 
(0.84) 

0.17 
(0.31) 

-0.85 
(0.94) 

0.28 
(0.34) 

Transaction Quantity (QTY) 
(x10-3) 

0.43*** 
(0.08) 

0.20*** 
(0.03) 

0.43*** 
(0.08) 

0.20*** 
(0.03) 

0.43*** 
(0.07) 

0.20*** 
(0.03) 

0.44*** 
(0.08) 

0.20*** 
(0.03) 

0.44*** 
(0.08) 

0.20*** 
(0.03) 

Transaction Quantity Gap 
(QTYGAP) (x10-3) 

10.00*** 
(0.47) 

2.47*** 
(0.12) 

9.98*** 
(0.46) 

2.46*** 
(0.12) 

9.96*** 
(0.46) 

2.45*** 
(0.12) 

9.97*** 
(0.46) 

2.45*** 
(0.12) 

10.02*** 
(0.47) 

2.47*** 
(0.12) 

Order Cycle Time GAP 
(CYCGAP) (x10-3) 

5.82*** 
(0.2) 

1.95*** 
(0.05) 

5.66*** 
(0.22) 

1.89*** 
(0.05) 

5.78*** 
(0.2) 

1.93*** 
(0.05) 

5.78*** 
(0.22) 

1.93*** 
(0.05) 

5.70*** 
(0.22) 

1.90*** 
(0.05) 

Interaction Term of EM and 
COST (x10-3) 

1.20*** 
(0.09) 

0.42*** 
(0.03) 

      0.83*** 
(0.08) 

0.29*** 
(0.03) 

Interaction Term of EM and 
CYCLE (x10-3) 

  7.14*** 
(0.42) 

2.49*** 
(0.14) 

    6.44*** 
(0.42) 

2.25*** 
(0.15) 

Interaction Term of EM and 
E (x10-3) 

    0.47 
(2.2) 

0.15 
(0.79) 

  -0.62 
(2.14) 

-0.23 
(0.79) 

Interaction Term of EM and 
QTY (x10-3) 

      -0.52* 
(0.24) 

-0.17* 
(0.08) 

-0.36+ 
(0.21) 

-0.11 
(0.07) 

Time (TIME) (x10-3) 8.81*** 
(0.61) 

3.05*** 
(0.21) 

8.93*** 
(0.62) 

3.10*** 
(0.21) 

8.86*** 
(0.61) 

3.07*** 
(0.2) 

8.84*** 
(0.61) 

3.07*** 
(0.21) 

8.89*** 
(0.62) 

3.08*** 
(0.21) 

Category Dummy: hand 
tools and hardware   

-0.33*** 
(0.01) 

-0.13*** 
(0.003) 

-0.33*** 
(0.01) 

-0.13*** 
(0.003) 

-0.33*** 
(0.01) 

-0.13*** 
(0.003) 

-0.33*** 
(0.01) 

-0.13*** 
(0.003) 

-0.33*** 
(0.01) 

-0.13*** 
(0.003) 

Category Dummy: office 
supplies and devices  

0.04*** 
(0.01) 

0.01*** 
(0.003) 

0.03*** 
(0.01) 

0.01** 
(0.003) 

0.04*** 
(0.01) 

0.01*** 
(0.003) 

0.04*** 
(0.01) 

0.01*** 
(0.003) 

0.03*** 
(0.01) 

0.01*** 
(0.003) 

Category Dummy: brushes, -0.34*** -0.13*** -0.34*** -0.13 -0.34*** -0.13*** -0.34*** -0.13 -0.34*** -0.13*** 



 40 

paints, sealers and adhesives  (0.01) (0.004) (0.01) (0.004) (0.01) (0.004) (0.01) (0.004) (0.01) (0.004) 
N 152,988 152,988 152,988 152,988 152,988 152,988 152,988 152,988 152,988 152,988 
Log Likelihood -59,476 -24,499 -59,322 -24,352 -59,608 -24,617 -59,604 -24,614 -59,262 -24,299 
Pseudo R2 0.24 0.41 0.25 0.42 0.24 0.41 0.24 0.41 0.25 0.42 

Robust standard errors are listed in parenthesis;  
***, ** and * denote significance at 0.001, 0.01 and 0.05, respectively 

 

Table 11: Main Hypotheses and Summary of Results 
 

Hypothesis Relevant Coefficients Prediction Supported? Location 
Product 
Cost 

• Product Cost 
• Product Cost*Electronic Market 

• Positive 
• Positive 

Supported 
 

Table 8 & 10, Row 3 
Table 10, Row 9 

Order Cycle 
Time 

• Order Cycle Time 
• Order Cycle Time* Electronic Market 

• Negative 
• Positive 

Partially 
Supported 

Table 8 & 10, Row 4 
Table 10, Row 10 

Own Price 
Elasticity 

• Price Elasticity 
• Own price elasticity*Electronic Market 

• Negative  
• Negative 

Partially 
Supported 

Table 8 & 10, Row 5 
Table 10, Row 11 

Transaction 
Quantity 

• Transaction Quantity  
• Transaction Quantity*Electronic Market 

• Positive 
• Negative 

Supported Table 8 & 10, Row 6 
Table 10, Row 12 

 



 41 

Table 12: Elasticity Estimates for Electronic Markets 
 

 Column (1) Column (2) 
 OLS 2SLS 

Intercept 2.18*** 

(0.01) 
5.31*** 
(0.025) 

Transaction Price (PRICE) -0.32*** 
(0.001) 

-1.47*** 
(0.01) 

Order Cycle Time (CYCLE)  0.003*** 
(0.0001) 

0.012*** 
(0.0001) 

Date (x10-3) -0.05*** 
(0.01) 

0.3*** 
(0.01) 

Category Dummy: Hand 
tools and hardware 

-0.43*** 
(0.01) 

-1.80*** 
(0.01) 

Category Dummy: Office 
supplies and devices 

-0.31*** 
(0.01) 

-1.59*** 
(0.01) 

Category Dummy: Brushes, 
Paints, Sealers and 
Adhesives 

0.16*** 
(0.01) 

-0.89*** 
(0.01) 

N 813,606 813,606 

Adjusted R2 0.12 0.06 

Robust standard errors are listed in parenthesis;  
***, ** and * denote significance at 0.001, 0.01 and 0.05, respectively.  
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Figure 1: Screenshot of GSA’s Electronic Market 
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Figure 2: Conceptual Model 

 

 Figure 3: The Structure of FSS’ Markets 
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Figure 4: Variation in Product and Market Characteristics over Time  

(a) Product Cost                                                 (b) Order Cycle Time 
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Supplementary Online Appendix 
 

 

Table SA1: Predicted Average Price Dispersion from OLS Model with Product-Level Fixed Effects  
 

 Product-Week Product-Month 

 PD CV PD CV 

Electronic Market 0.44 0.22 1.29 0.52 

Traditional Market 6.62 2.70 9.81 3.31 

t statistics (H0: diff=0) 267*** 257*** 135*** 127*** 

*** denotes significance at 0.001. Price dispersion numbers are in percentage. 
 

Table SA2: Predicted Average Price Dispersion for All Common Products Sold in Both Channels 
 

 Product-Week Product-Month 

 PD CV PD CV 

Electronic Market 0.53 0.23 1.19 0.42 

Traditional Market 6.82 2.90 13.24 4.39 

t statistics (H0: diff=0) 329*** 387*** 301*** 340*** 

*** denotes significance at 0.001. Price dispersion numbers are in percentage. 
  

Table SA3: Predicted Average Price Dispersion  
for All Common Buyers Who Bought From Both Channels 

 
 Product-Week Product-Month 

 PD CV PD CV 

Electronic Market 0.31 0.17 0.72 0.35 

Traditional Market 0.90 0.49 1.83 0.86 

t statistics (H0: diff=0) 32*** 34*** 35*** 36*** 

*** denotes significance at 0.001. Price dispersion numbers are in percentage. 
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Table SA4: Predicted Average Price Dispersion with Transactions Excluding Products with Repeat 
Purchases for Buyers 

 
 Product-Week Product-Month 

 PD CV PD CV 

Electronic Market 0.61 0.33 1.40 0.58 

Traditional Market 1.77 0.95 4.45 1.84 

t statistics (H0: diff=0) 108*** 114*** 123*** 133*** 

*** denotes significance at 0.001. Price dispersion numbers are in percentage. 

 
Table SA5: Predicted Average Price Dispersion for Transactions with High Transaction Quantity  

 
 Product-Week Product-Month 

 PD CV PD CV 

Electronic Market 0.32 0.17 0.75 0.33 

Traditional Market 6.93 3.48 10.90 4.64 

t statistics (H0: diff=0) 499*** 561*** 434*** 487*** 

*** denotes significance at 0.001. Price dispersion numbers are in percentage. 
  

Table SA6: Predicted Average Price Dispersion for Transactions with Low Transaction Quantity  
 

 Product-Week Product-Month 

 PD CV PD CV 

Electronic Market 0.60 0.28 2.75 0.95 

Traditional Market 0.90 0.43 4.19 1.49 

t statistics (H0: diff=0) 18.62*** 22.77*** 9.64*** 11.25*** 

*** denotes significance at 0.001. Price dispersion numbers are in percentage. 
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Table SA7: Predicted Average Price Dispersion (Quarterly Analysis) 
 

 Quarter 1 Quarter 2 Quarter 3 Quarter 4 

 PD CV PD CV PD CV PD CV 

Electronic Market 0.97 0.39 1.65 0.65 1.33 0.46 1.06 0.37 

Traditional Market 7.98 2.96 10.37 3.83 12.43 4.22 10.72 3.60 

t statistics (H0: diff=0) 109*** 122*** 124*** 137*** 134*** 148*** 128*** 146*** 

*** denotes significance at 0.001. Price dispersion numbers are in percentage.  

Table SA8: Predicted Average Price Dispersion (Semi-Annual Analysis) 
 

 First Half of the Year Second Half of the Year 

 PD CV PD CV 

Electronic Market 1.20 0.42 1.34 0.53 

Traditional Market 11.67 3.94 9.20 3.41 

t statistics (H0: diff=0) 185*** 207*** 167*** 185*** 

*** denotes significance at 0.001. Price dispersion numbers are in percentage.  
 

  

Table SA9: Predicted Average Price Dispersion for Direct Sales by Vendors (Non-GSA Transactions) 
 

 Product-Week Product-Month 

 PD CV PD CV 

Electronic Market 0.84 0.40 1.49 0.68 

Traditional Market 1.10 0.55 1.90 0.88 

t statistics (H0: diff=0) 5.60*** 5.76*** 6.55*** 6.64*** 

*** denotes significance at 0.001. Price dispersion numbers are in percentage. 
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Table SA10: Predicted Average Price Dispersion for Top 100 Common Products (using Number of 
Buyers to Rank Products) 

 Product-Week Product-Month 

 PD CV PD CV 

Electronic Market 0.45 0.14 0.92 0.27 

Traditional Market 12.13 3.29 24.19 4.98 

t statistics (H0: diff=0) 186*** 211*** 225*** 205*** 

*** denotes significance at 0.001. Price dispersion numbers are in percentage. 

Table SA11: Predicted Average Price Dispersion for Top 500 Common Products (using Number of 
Buyers to Rank Products) 

 Product-Week Product-Month 

 PD CV PD CV 

Electronic Market 0.49 0.18 0.96 0.29 

Traditional Market 8.63 2.88 17.08 4.37 

t statistics (H0: diff=0) 252*** 284*** 224*** 241*** 

*** denotes significance at 0.001. Price dispersion numbers are in percentage. 

Table SA12: Predicted Average Price Dispersion for Top 1000 Common Products (using Number of 
Buyers to Rank Products) 

 Product-Week Product-Month 

 PD CV PD CV 

Electronic Market 0.50 0.20 1.13 0.33 

Traditional Market 7.87 2.92 17.06 4.54 

t statistics (H0: diff=0) 296*** 338*** 258*** 274*** 

*** denotes significance at 0.001. Price dispersion numbers are in percentage. 

 
Table SA13: Predicted Average Price Dispersion for Products with more than the average number of 

observations (cut-off value) during a Month (All Products) 
 

 Product-Week Product-Month 

 PD CV PD CV 

Electronic Market 0.73 0.21 1.66 0.47 

Traditional Market 11.75 3.22 18.44 4.79 

t statistics (H0: diff=0) 230*** 234*** 244*** 245*** 

*** denotes significance at 0.001. Price dispersion numbers are in percentage. 
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Table SA14: Predicted Average Price Dispersion for Products with more than the average number of 
observations (cut-off value) during a Month (Common Products) 

 
 Product-Week Product-Month 

 PD CV PD CV 

Electronic Market 0.52 0.16 1.48 0.42 

Traditional Market 18.11 4.88 26.89 6.81 

t statistics (H0: diff=0) 375*** 388*** 503*** 478*** 

*** denotes significance at 0.001. Price dispersion numbers are in percentage. 

 
Table SA15: Predicted Average Price Dispersion for Products with more than the average number of 
observations during a Month (cut-off value) and having been transactions for at least 6 months out 

of a year (Common Products) 
 

 Product-Week Product-Month 

 PD CV PD CV 

Electronic Market 0.53 0.17 1.52 0.42 

Traditional Market 18.11 4.85 27.22 6.70 

t statistics (H0: diff=0) 370** 382** 488*** 453*** 

*** denotes significance at 0.001. Price dispersion numbers are in percentage. 
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Table SA16: Estimation Results (Semi-Annual) 
 First Half Year Second Half Year 

 

PD CV PD CV 

Intercept 
-0.32*** 

(0.03) 
-0.10*** 

(0.01) 
-0.25*** 

(0.01) 
-0.10*** 
(0.005) 

Electronic Market (EM)  
-0.72*** 

(0.03) 
-0.25*** 

(0.01) 
-0.52*** 

(0.01) 
-0.20*** 
(0.004) 

Product Cost (COST) (x10-6) 65.40* 
(32.80) 

22.90** 
(8.22) 

68.40** 
(23.10) 

24.20** 
(7.23) 

Order Cycle Time (CYCLE) (x10-3) 
-5.48*** 

(0.47) 
-1.37*** 

(0.13) 
-1.93*** 

(0.16) 
-0.45*** 

(0.06) 

Own Price Elasticity (E) (x10-3) 
 

-0.17 
(1.49) 

0.25 
(0.52) 

0.52 
(0.93) 

-0.08 
(0.38) 

Transaction Quantity (QTY) (x10-6) 
479.30*** 
(130.40) 

210.60*** 
(56.60) 

387.70*** 
(85.90) 

184.00*** 
(40.10) 

Transaction Quantity Gap (QTYGAP) 
(x10-3) 

11.49** 
(0.70) 

2.74*** 
(0.16) 

8.27*** 
(0.51) 

2.09*** 
(0.15) 

Order Cycle Time GAP (CYCGAP) 
(x10-3) 

8.23*** 
(0.52) 

2.54*** 
(0.10) 

4.68*** 
(0.17) 

1.69*** 
(0.05) 

Time (TIME) (x10-3) 
3.61*** 
(1.75) 

0.79** 
(0.62) 

19.36*** 
(1.37) 

7.81*** 
(0.54) 

Category Dummy: Hand tools and 
hardware 

-0.37*** 
(0.02) 

-0.14*** 
(0.01) 

-0.28*** 
(0.01) 

-0.12*** 
(0.005) 

Category Dummy: Office supplies and 
devices 

0.04*** 
(0.01) 

0.01** 
(0.004) 

0.03*** 
(0.01) 

0.01* 
(0.004) 

Category Dummy: Brushes, Paints, 
Sealers and Adhesives 

-0.37*** 
(0.02) 

-0.14*** 
(0.01) 

-0.30*** 
(0.01) 

-0.13*** 
(0.01) 

N 73,696 73,696 79,292 79,292 
Log Likelihood -29,468 -11,728 -29,527 -12,646 

Robust standard errors are listed in parenthesis; ***, ** and * denote significance at 0.001, 0.01 and 0.05, 
respectively. Analysis is at the product-month level. 
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Table SA17: Estimation Results for Direct Sales by Vendors (Non-GSA Transactions) 
 

 Product-Month 

 

PD CV 

Intercept -5.21*** 
(0.04) 

-0.22*** 
(0.01) 

Electronic Market (EM)  -0.0003 
(0.01) 

-0.003 
(0.006) 

Product Cost (COST) (x10-6) 19.30*** 
(4.91) 

6.95*** 
(1.72) 

Order Cycle Time (CYCLE) (x10-3) -1.32*** 
(0.19) 

-0.56*** 
(0.07) 

Own Price Elasticity (E) (x10-3) 
 

-14.14*** 
(1.70) 

-5.80*** 
(0.55) 

Transaction Quantity (QTY) (x10-6) 361.10*** 
(67.00) 

180.5*** 
(30.9) 

Transaction Quantity Gap (QTYGAP) (x10-3) 58.55*** 
(4.54) 

25.45*** 
(1.58) 

Order Cycle Time GAP (CYCGAP) (x10-3) 8.38*** 
(0.61) 

3.65*** 
(0.14) 

Time (TIME) (x10-3) -22.74*** 
(1.74) 

-10.25*** 
(0.63) 

Category Dummy: hand tools and hardware   -0.60*** 
(0.03) 

-0.28*** 
(0.01) 

Category Dummy: office supplies and devices  -0.27*** 
(0.02) 

-0.13*** 
(0.08) 

Category Dummy: brushes, paints, sealers and adhesives  -0.39*** 
(0.03) 

-0.18*** 
(0.01) 

N 89,800 89,800 
Log Likelihood -13,936 -9,663 

Robust standard errors are listed in parenthesis; ***, ** and * denote significance at 0.001, 0.01 and 0.05, 
respectively.  
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