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Abstract We argue that the verification of parallel programs can be consider
ably simplified by using program transformations. We illustrate this approach 
by proving correctness of two parallel programs under the assumption of fair
ness: asynchronous fixed point computation and parallel zero search. 

1 Introduction 

The aim of this paper is to show how program transformations can simplify the 
task of proving parallel programs with shared variables correct. To this end, we 
present four transformations all of which preserve partial and total correctness 
and fairness, and which consequently can be used in proofs of these correctness 
properties. 

The first transformation links parallel programs to nondeterministic sequen
tial one"s. This is as in the work of Ashcroft and Manna (1971], Flan and Suzuki 
(1981] and, more recently, Back [1989] and Chandy and Misra (1988]. However, 
to avoid the introduction of auxiliary variables that would destroy the program 
structure, we present this transformation only for a restricted class of parallel 
programs. 

To enhance the usefulness of this transformation, we combine it with two 
transformations on parallel programs which introduce more points of interfer
ence. These transformations are inspired by Lipton [1975]. Whereas Lipton 
considered only ordinary termination proofs, we deal here also with fairness. 
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Fair termination is proved on the level of nondeterministic programs by 

reducing it to ordinary termination with the help of a fourth transformation 

due to Apt and Olderog [1983] which makes use of random assignments. 

Considered in isolation these transformations look very simple but when 

combined they can substantially reduce the task of verification. This reduction 

is achieved by delaying the assertional correctness proof as much as possible, 

viz. after a stepwise transformation of the original parallel program into a well

structured nondeterministic program. The proposed transformations can also 

be used to construct parallel programs from nondeterministic ones. 

We illustrate our approach by proving total correctness of two parallel pro

grams under the assumption of fairness: asynchronous fixed point computation 

and parallel zero search. 
There a.re two alternatives to these correctness proofs. The first one is to 

use the transformational approach to fairness in parallel programs presented 

in Olderog and Apt [1988]. It calls for proving ordinary total correctness of a 

transformed parallel program simulating the fair computations of the original 

program. Another possibility is to first translate the original program directly 

into a nondeterministic program as in Flon and Suzuki (1981] and then use one 

of the available methods for proving correctness of a nondeterministic pr0gram 

under the assumption of fairness (see Francez [1986) for their overview). 
In both cases the verification becomes extremely tedious and complicated 

because the transformations of Olderog and Apt [1988) and Flon and Suzuki 

[1981] introduce auxiliary variables that destroy the structure of the original 

program. 
Besides the two parallel programs we also prove correctness of the program 

transformations themselves (except of the one taken from Apt and Olderog 

[1983]). These proofs appear in the appendix to our paper and are based on a 

simple operational program semantics due to Hennessy and Plotkin [1979]. 

2 Preliminaries 

Throughout this paper we mean by a parallel program a program of the form 

So; [S1 II··· II Sn] 

where each Si is a while-program. We call So an initialization statement 

and each Si for i > 0 a component program. Within the component pro

grams we additionally allow atomic regions. Syntactically, these are loop free 

while-programs enclosed in angle brackets (and). Sometimes we write [l!f=t Si] 

instead of [S1 II ···II Sn]· Note that S1, ... , Sn may share variables. 

Intuitively, an execution of (Sill·. -llSn] is obtained by interleaving the atomic, 

i.e. non-interruptible steps in the executions of the components S1, ... , S11 • By 

definition, Boolean expressions, assignments, the skip statement and atomic 

regions are a.11 evaluated or executed as atomic steps. As atomic regions are 
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required to be loop free, their execution is guaranteed to terminate. An inter
leaved execution of (Sill· .. II Sn] terminates if and only if the individual execution 
of each component terminates. 

For convenience, we identify 

(A} :.A 

if A is an assignment or skip. 

A state is either a proper state, i.e. a mapping from variables to values, or a 
special symbol J.. denoting divergence. 

We consider here three semantics of parallel programs, all referring to an 
interleaving model of execution. Given a parallel program S we distinguish: 

• partial correctness semantics M[S], 

• total correctness semantics Mtot[S], 

• fair parallelism semantics MJair[S]. 

In the partial correctness semantics, given an initial proper state, only the 
final proper states are recorded. In the total correctness semantics addition
ally a possibility of divergence is recorded as J... Finally, the fair parallelism 
semantics is like the total correctness semantics but only the fair computations 
are ta.ken into account. A computation of a parallel program is called fair if 
each component that has not yet terminated is eventually activated again. In 
particular, every finite computation is fair. 

For details concerning the semantics we refer to the appendix. Ea.eh of these 
three semantics induces a corresponding notion of program correctness. We thus 
distinguish between 

• partial correctness f: , 

• total correctness Ftot , 

• fair total correctness I= fair . 

Ea.eh of these correctness notions refers to a correctness formula, i.e. a. 
construct of the form {p} S { q} where p and q are assertions and S a. program. 
We assume from the reader some knowledge of the basic concepts on program 
verification. 

3 Transformations 

vVe now present four program transformations. The first of them transforms a 
nondeterministic program in the sense of Dijkstra. [1975] into a parallel program. 
We study here only one level nondeterministic programs, i.e. programs of the 

form 
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where the subprograms Si are loop free while-programs. 
For these programs we ref er to the same three semantics and program cor

rectness notions as those introduced above. The notion of a fair computation is 
obtained here by considering enabled branches of a do-loop instead of nonter
minated components of a parallel program. 

Theorem 1 (Parallelization) Consider a. one level nondeterministic program 

the parallel program 

T =So; [llf=1 while B do {S;) od] 

and two assertions p and q. Suppose that for every i E { 1, ... , n} 

Ftot {q /\ ...,B} Si {q /\ --.B}. 

Then 

F {p} s {q} iff I= {p} T {q} 

and analogously for !=tot and Ffair . 

Proof. See the appendix. 0 

The Parallelization Theorem transforms do-loops with identical guards into 
parallel programs of a very restricted format. In particular, components that 
are while-loops consisting only of a single atomic region are rare in practice. 
To enhance the usefulness of the Parallelization Theorem we shall combine its 
application with two additional transformations of parallel programs which in
troduce more points of interference. These transformations are inspired by 
Lipton [1975]. 

We say that two programs a.re disjoint if none of the variables which can be 
changed by one of them appears in the other. We say that a Boolean expression 
B is disjoint from a program S if none of the variables which can be changed 
by S appears in B. 

The next transformation reduces the size of atomic regions. 

Theoreni 2 (Atomicity) Consider a parallel program S = So; [S1 II-. -llSn]· 
Let T result from S by replacing in one of its components, say Si with i > 0, 
either 
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• an atomic region (R1; R2) where one of the R1's (l E {l, 2}) is disjoint 

from all components Sj with j f. i by 

or 

• an atomic region {if B then R1 else R2 fi} where B is disjoint from all 

components S1 with j f. i by 

Then the programs S and T have the same semantics, i.e., 

M[S] = M[T], 

and analogously for Mtot and /vf.Jair· 

Proof. See the appendix. 0 

Corollary 3 (Atomicity) Under the assumptions of the Atomicity Theorem, 

for all assertions p and q 

F {p} s {q} iff F {p} T {q} 

and analogously for Ftot and FJair . 0 

The Atomicity Theorem describes a simple but very useful transformation 

on parallel programs. The given program S has a coarser grain of atomicity 

than T - it has less points for possible interference among its components and 

thus admits fewer computations. Therefore S is easier to prove correct than 

T, either directly by using a proof systems for proving correctness of parallel 

programs or, if possible, by using the Parallelization Theorem. On the other 

hand, the resulting program T has a finer grain of atomicity and is thus more 

realistic than S. 

The third transformation moves initializations inside the parallel composi

tion. 

Theorem 4 (Initialization) Consider a parallel program of the form 

Suppose that for some index i E {l, ... , n} the initialization part Ro is disjoint 

from all component programs S1 with j f. i. Then the program 
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has the same semantics as S, i.e. 

M[S] = M[TJI, 

and analogously for Mtot and MJa.ir· 

Proof. See the appendix. 0 

Corollary 5 (Initialization) Under the assumptions of the Initialization The

orem, for all assertions p and q 

I= {p} S {q} iff I= {p} T {q} 

and analogously for I= tot and I= fair . 0 

Again, the given program S admits fewer computations and is easier to 
prove correct whereas the transformed program T has more points for possible 

interference. 
To reason a.bout fair total correctness of nondeterministic programs, we use 

a program transformation, originally proposed in Apt and Olderog [1983], which 
reduces this notion of correctness to ordinary total correctness. This transforma
tion embeds into a given nondeterministic program an abstract scheduler that 
implements the fairness policy. This scheduler initializes, reads and updates 
private variables by using random assignments of the form 

Z ·-? .-. 

which assign an arbitrary non-negative integer to an integer variable z. 

Theorem .6 (Fairness) Consider a one level nondeterministic program 

Let T be obtained from S a.s follows: 

T: !NIT; So; 

do Di.:1 Bi/\ SCHi-+ UPDATEi; Si od 

where for variables z1, .•. , Zn not occurring in S 
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!NIT := Z1 :=?; ... ; Zn :=? 1 

SCHi = Zi = min{zk I le E {l, ... , n} a.nd B.1:}, 

UPDATEi = Zi :=?; 
for all j E {l, ... ,n}-{i} do 

if Bj then Zj := z; - 1 fi 
od. 

Mfair[S] = J'vitot[T] mod {z1, ... , Zn}, 

where the mod-no-ta.tion mea.ns tha.t the final states agree modulo { z1 , ... , zn}, 

i.e. on a.11 variables except z1, ... , Zn· 

Proof. See Apt a.nd Olderog (1983]. D 

Corollary 7 (Fairness) Under the assumptions of the Fairness Theorem, for 
all assertions p and q which do not contain the variables z1 , ... , Zn 

F/air {p} S {q} iff Ftot {p} T {q} 

D 

4 Asynchronous fixed point computation 

As a first application of the Para.lleliza.tion Theorem let us consider the problem 

of a.synchronous fixed point computation studied in Apt and Olderog [1983]. 
We considered there a monotonic opera.tor F : Ln - Ln on the n-fold prod

uct of a complete lattice L with the finite chain property (n9 infinite strictly 

growing sequence exists). We proved that under the assumption of fairness the 

nondeterministic program 

S =do Di:1 x ::f:. F(x)- Xi := Fi(x) od 

computes the least fixed point of F: 

F/air {x = .L} S {x = µF}. 

Fi stands for the i-th component function Fi : Ln - L of F defined by 

Fi(X1, .. . , Xn) =Yi if F(x1, · · ., Xn) = (Y11 · .. , Yn), 

x abbreviates (xi. ... , xn) and .L denotes the least element in Ln. 



62 

Now we wish to parallelize S. To this end, we check the condition of the 

Para.llelization Theorem, i.e. whether 

!=tot {i = µF /\ x = F(i)} Xi := Fi(x) {x = µF /\ x = F(x)} (1) 

for a.11 i E {l, ... , n}. By the definition of Fi, the precondition x = F(x) implies 

tlia.t for all i E {l, ... , n} 

xi = Fi(x). 

Hence for all i E {l, ... , n} the value of Xi remains unchanged under the assign

ment Xi := Fi(x). Thus (1) holds and the Pa.rallelization Theorem yields that 

under the assumption of fairness the parallel program 

T = [11?=1 while x # F( x) do Xi := Fi(x) od] 

also computes the least fixed point of F: 

Ffair {x = j_} T {x = µF}. 

5 Parallel zero search 

The next example illustrates how all four transformations can be combined to 

verify a parallel program. We prove that under the assumption of fairness the 

parallel program 

with 

and 

S =found:= false; [S1llS2] 

S1 := x := O; 
while -.found do 

x := x + l; 
if f(x) = 0 then found:= true fi 

od 

S2 := y := l; 
while -.found do 

y := y-1; 

if f(y) = 0 then found:= true fi 
od 

finds a zero of the function f provided such a zero exists: 

FJair {3u: f(u) = O} S {f(x) = 0 V f(y) = O}. 

We proceed in 5 steps. 

(2) 
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Step 1. Simplifying the program 

We first use the Atomicity Corollary and Initialization Corollary and reduce the 
original problem (2) to the following claim 

where 

with 

and 

F/air {3u: f(u) = O} T {f(x).= 0 V f(y) = O} 

T =.found:= false; x := O; y := 1; 

[Ti!IT2] 

T1 =. while •found do 

( x := x + l; 
if f(x) = 0 then found:= true fi} 

od 

T2 =. while •found do 
( y := y-1; 

if f(y) = 0 then found:= true fi}. 
od 

(3) 

Both corollaries are applicable here by virtue of the fact that x does not ap
pear in S2 and y does not appear in S1 . Recall that by assumption assignments 
and the skip statement are considered to be atomic regions. 

Step 2. Decomposing fair total correctness 

To prove (3) we use the fact that fair total correctness can be decomposed into 
fair termination and partial correctness. More precisely we use the following 
observation. 

Lemma 8 For all nondeterministic or parallel programs R and all assertions p 

and q 

l=tair {p} R {q} iff F/air {p} R {true} and I= {p} R {q}. 

Proof By the definition of fair total correctness and partial correctness. O 

Thus to prove (3) it suffices to prove 

Flair {3u: f(u) = O} T {true} (4) 

and 

I= {3u: f(u) = O} T {f(x) = 0 V f(y) = 0}. (5) 
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Step 3. Reduction to nondeterminism 

To prove ( 4) we use the Parallelization Theorem. Consider the following non

deterministic program 

T' =found:= false; x := O; y := 1; 
do -ifound-+ x := x + 1; 

if f(x) = 0 then found:= true fi 

D -./ ound-+ y := y - 1; 

if f(y) = 0 then found:= true fi 

od. 

Clearly 

and 

Ftot {true/\ found} 

x := x+ 1; 

if J(x) = 0 then found:= true fi 
{true /\ found} 

Ftot {true/\ found} 
y := y-1; 

if J(y) = 0 then found:= true fi 
{true /\ found}. 

Thus by the Parallelization Theorem, to prove ( 4) it suffices to prove 

Ffair {3u: f(u) = O} T' {true}. 

Step 4. Proving fair termination 

(6) 

To prove (6) we use a proof rule for fair total correctness of one level non
deterministic. programs, introduced in Apt and Olderog (1983]. This rule is 
obtained from the Fairness Corollary 7 by absorbing, as it were, the scheduler 
parts INIT, SCH i and UPDATEi referring to the scheduling variables z1, ••. , Zn 

of the transformed program into the pre- and postconditions. 
For the case of the identical loop guards this proof rule reads as follows: 

FAIR LOOP RULE 

(i) {p/\ B} Si {p},i E {l, ... ,n}, 
(ii) {p /\ B /\ z?: 0 /\ 3zi?: 0: t[z; + 1/z;]#i =a} 

Si 
{t<a},iE{l, ... ,n}, 

(iii) p /\ z ?: 0-+ t E W 

{p} do Df=1 B--t-Si od {p 1\-.B} 
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where 

• t is an expression which takes values in a partial order (P, <) that is well
founded on the subset W ~ P, 

• z1, ... , Zn are integer variables that may occur freely in t, but not in p, Bi 
or Si, for i E { 1, ... , n}, 

• t[zj + 1/ Zj]#i denotes the expression that results from t by substituting 
for every occurrence of Zj in t the expression z; + 1; here j ranges over the 
set {l, ... , n} -{i}, 

• 'i ~ 0 abbreviates z1 ;?:: 0 A ... A z11 ;?:: 0, 

• a is a simple variable ranging over P and not occurring in p, t, Bi or Si, 
for i E {1, ... , n }; its purpose is to freeze the value of t[zj + 1/ z;]i;Ci before 
the execution of Si. 

Note that with the precondition of premise (ii) simplified to 

pABAt=a 

and premise (iii) simplified to 

p-+t E W, 

we obtain the usual rule for total correctness of nondeterministic do-loC?ps. The 

above usage of the variables z1, ... , Zn in the premises allows us to establish fair 
total correctness. 

We call p the invariant of the loop and t the bound function of the loop. In 

the proof outlines we denote them by inv: p and bd: t, respectively. 
We use the above rule to first prove a weaker fair termination result than 

(6), viz. where f has a zero u > 0: 

f= /air {!( u) = 0 Au > O} T' {true}. 

A proof outline for (7) has the following structure: 

{f(u) = 0 /\ u > O} 
found:= false; 

x :=0; 
y:= 1; 

{f(u) = 0 /\ u > 0 A -ifound /\ :c = 0 /\ y = 1} 
{inv: p}{bd: t} 
do -.found-+ {p /\ -if ound} 

x := :c + 1; 
if f(:c) = 0 then found:= true fi 

(7) 
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{p} 

0 -.J ound - {p /\ -.J ound} 

y := y-1 

od 
{p I\ found} 

{true}. 

if f(y) = 0 then found := true fi 
{p} 

It remains to find a loop invariant p and a bound function t that will complete 

this outline. 
Since the variable u is left unchanged by the program S, certainly 

f(u) = 0 /\ u > 0 

is an invariant. But for the completion of the proof outline we need a stronger 
invariant relating u with the program variables x and found. We take as an 

overall invariant 

p ::: f(u) = 0 I\ u > 0 I\ x ~ u /\ if-.Jound then x < u fi.. 

Notice that the implications 

f(v.) = 0 I\ u > 0 /\-.found/\ x = 0 I\ y = 1 -+ p 

and 

p /\ found -+ true 

are obviously true and thus confirm the proof outline as given outside the do

loop. 
To check the proof outline inside the loop, we take as partial order the set 

P = Z x Z, 

ordered lexicographically by <ie:r: and well-founded on the subset 

vV =No x No, 

where Z denotes the set of integers and No the set of natural numbers. 
As a bound function we take 

t:<u-x,z1>. 

In t the scheduling variable z1 counts the number of executions of the second 
loop component before the next switch to the first one, and u - x, the distance 
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between the current test value x and the zero u, counts the remaining number 

of executions of the first loop component. 

We show now that our choices of p and t complete the overall proof outline 

as given inside the do-loop. To this end, we have to prove the premises of the 

Fair Loop Rule. 

We do this for the second premise. For the first loop component we have 

the proof outline: 

{ -.found A f(u) = 0 Au> 0 Ax< u 

A z1 2: 0 A z2 2: 0 A 3z1 2: 0 : < u - x, z1 >= a} 

{3z1 2: 0: < u - x, z1 >=a} 

{ < u - x - 1, z1 > <1e:z: a} 
x := x + l; 
{ < u - x, z1 > <1e:z: a} 
found:= f(x) = 0 

{<u-x,z1> <re:z:et} 

{~ <1e:z: a}. 

Thus the bound function t drops below a because the program variable x is 

incremented into the direction of the zero u. 

For the second loop component we have the proof outline: 

{ -.found A f(u) = 0 Au> 0 Ax< u 

A z1 2: 0 /\ z2 2: 0 /\ < u - x, z1+1 >=a} 

{ < u - x, z1 + 1 >= a} 

{<u-x,z1> <1e:z:et} 

y := y- l; 

found := f(y) = 0 

{<u-x,z1> <re:z:a} 

{t<re:z:et}. 

Notice that only with the help of the scheduling variable z1 we can prove that the 

bound function t drops here below a; the assignments to the program variables 

y and found do not affect t at all. 

The remaining two premises can be easily established. This completes the 

proof of (7). 

Symmetrically we can deal with the case when f has a zero u :$ 0: 

Ffair {f(u) = 0 /\ u ~ O} T' {true}. 

Combining this with (7) by standard rules of Hoare's logic yields (6). 

Step 5. Proving partial correctness 

It remains to prove (5). To this end, we use the approach of Owicki and Gries 

(1976] and Lamport [1977]. First we need to construct interference free proof 

outlines for partial correctness of the component programs T1 and T2 of T. 
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For T1 we use the invariant 

P1 = x > 0 (8) 
/\ (/;tmd-+ (x > 0 /\ f(x) = 0) V (y 5 0 /\ f(y) = 0)) (9) 
/\ (-,found/\ :i: > o-f(x) :f. 0) (10) 

to construct the proof outline 

{inv: P1} 
while ..,/ ov.nd do 

{x ~ 0 /\ (found-+ y $ 0 /\ f(y) = 0) (11) 

- /\ (x > 0-i-f(x) :f. O)} 
{ :c := x + 1; 

if f(x) = 0 then f ov.nd := true fi} 
od 
{Pt /\ found}. 

Similarly, for T2 we use the invariant 

P2 = y 5 1 (12) 
/\ (found-+ (x > 0 /\ f(:r:) = 0) V (y 5 0 /\ f(y) = 0)) (13) 
/\ (-,found/\ y $ o- f(y) :f. 0) (14) 

to construct the proof outline 

{inv: .P2} 
while-,/ ound do 

od 

{y 51 /\ (Jound-+x > 0 /\ f(x) = 0) 
/\ (y 5 0-+ f(y) :f. O)} 

{ y := y-1; 

if f(y) = 0 then found := true fi} 

{P2 /\found}. 

The intuition behind the invariants p1 and P2 is as follows. Conjuncts (8) 
and (12) state the range of values that the variables x a.nd y ma.y assume during 
the execution of the loops T1 and T2. 

Thanks to the initialization of x with 0 and y with 1 in T, the condition 
:c > 0 expresses the fa.et that the loop T1 has been traversed as least once, 
and similarly the condition y 5 0 expresses the fact that the loop T2 has been 
traversed at least once. Thus the conjuncts (9) and (13) in the invariants P1 and 
P2 state that if the variable found is true, then the loop T1 has been traversed 
at least once and a zero :c off has been found, or that the loop T2 has been 
traversed at least once and a zero y off has been found. 
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The conjunct (10) in P1 states that if the variable found is false and the 
loop T1 has been traversed at least once, then x is not a zero of f. Analogously 
for the conjunct (14) in P2· 

Let us discuss now the proof outlines. In the first proof outline the most 
complicated assertion is (11). Note that 

Pl A ...,, ound-+ (11) 

as required by the definition of a proof outline. 

Given (11) as a precondition, the loop body in T1 establishes p1 as a post
condition, as required. Notice that the conjunct 

found-+ y :5 0 /\ f(y) = 0 

in the precondition (11) is necessary to establish the conjunct (9) in the invariant 

Pl· 
Next we deal with the interference freedom of the above proof outlines. In 

total 6 correctness formulas have to be proved', 3 for each component, pairwise 
symmetric. 

The most difficult case is the interference freedom of the assertion (11) in 
the proof outline for T1 with the loop body in T2. It is proved by the following 
proof outline: 

{ x ~ 0 /\(found -t y ;5 0 A /(y) = 0) /\ (x > 0-+ f(x) # 0) 
/\ y :51A(found-+x>0 A /(x) = 0) A (y :5 0-t/(y) # O)} 

{x ~ 0 /\ y :5 1 /\...,found/\ (x > 0-+ f(x) ;f O)} 

( y := y- l; 

if f(y) = 0 then found:= true fi} 
{x ~ 0 /\(found-+ y :5 0 /\ f(y) = 0) A (x > 0-+ f(x) ;f O)}. 

Note that the first assertion in the above proof outline indeed implies -,found: 

(found-+ (x > 0 /\ f(x) = 0)) /\ (x > 0-+ f(x) # 0) 

implies 

found-+ (f(x) # 0 /\ f(x) = 0) 

implies 

...,found. 

This information is recorded in the second assertion of the proof outline and 

used to establish the last assertion. 
The remaining cases in the interference freedom proof are straightforward 

and left to the reader. 
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We now apply the rule of parallel composition and get 

From this correctness formula it is straightforward to prove the desired par
tial correctness result (5). 

This concludes the proof of (2). 

Discussion 

(i) In the above proof we first simplified (2) to (3) and then decomposed (3) 
into ( 4) and (5). Clearly we could have decomposed in an analogous way (2). 
But this would lead to a much more complicated proof of partial correctness 
because S contains more interference points than T. In particular, to deal with 
the initialization x := 0 and y := 1 within the parallel composition in S reqµires 
the use of auxiliary variables. 

This shows that the Atomicity and Initialization Theorems simplify the task 
of proving parallel programs correct. 

(ii) To prove ( 4) we used the Parallelization Theorem. It is useful to note that 
we cannot use it to prove (3) directly. Indeed, to apply it we would have to 
prove 

Ftot {(f(x) = 0 V /(y) = 0) /\ found} 
x := x+ 1; 

if f(x) = 0 then found:= true fi 
{(f(x) = 0 V f(y) = 0) /\found} 

and a similar claim for the second component. However, the above claim does 
not hold as the assignment x := x + 1 can invalidate the assertion f(x) = 0. 

This shows that the Parallelization Theorem is of limited applicability and 
has to be used in conjunction with other methods. 

(iii) To prove fair termination of T' in (6) or (7) we could have applied the 
Fairness Corollary 7 to T' and proved ordinary termination of the transformed 
version of T'. However, we preferred to use the Fair Loop Rule presented in 
Step 3 because it allowed us to reason directly about the original program T'. 
In this way certain parts of the transformation are handled uniformly and a. 
generation of several intermediate assertions (for example dealing with random 
assignments) is a.voided. 
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Appendix 

In this appendix we prove Theorems 1 and 2. As a preparation we define 

rigorously the program semantics. We use here the operational approach due 

to Hennessy and Plotkin [1979]. Its basic concept is a configuration which is 

simply a pair < S, O" > consisting of a program S and a proper state a-. The 

semantics is then defined in terms of transitions. Intuitively, a transition 

< S, (j > - < R, r > 

means: executing S one step in a proper state O" can lead to state r with R 

being the remainder of S still to be executed. To express termination we allow 

the empty program E inside configurations: R = E in in the above transition 

means that S terminates in r. We stipulate that E; Sand S; E abbreviate to 

S. Also, we identify 

[Ell·· ·llE]:: E. 

This expresses the fact that a parallel program terminates iff all its components 

terminate. 

In the following CT, r stand for proper states, i.e. mappings from variables 

to values. We write cr(t) to denote the value of an expression t in er and O" I= B 

to express that the Boolean expression B evaluates to true in o-. Further on, 

cr[cr(t)/u] is a proper state that agrees with u except for the variable u where its 

value is O"(t). The transition relation -+- is defined by induction on the structure 

of programs. We use the following transition axioms and rules: 

(i) < skip, (j > -+ < E, o- >, 

(ii) < u := t, (j > -+ < E, o-[o-(t)/u] >, 

(iii) 

(iv) <if B then S1 else S2 fi, o- > -+- < S1, O" >where o- I= B, 

(v) <if B then S1 else S2 fi, o- > -+- < S2, O" > where o- I= -iB, 

(vi) <do Df=t Bi-+ Si od, (j > -+ <Si; do Di'=t Bi-+ Si od, O" > 
where u I= Bi and i E {l, ... , n}, 

(vii) <do Df=t Bi_,. Si od, <7 > -+ < E, u > where O"" I= /\f:1 -.Bi. 

(viii) 

< S, O" > - * < E, r > 
< (S} > - < E, r > 
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(ix) 

where i E {l,. .. , n}. 

By definition the transitions for while B do S od are a.s for do B--+ Sod. 

Rule (viii) formalizes the intuitive meaning of atomic regions by reducing each 

terminating computation of the "body" S of an atomic region (S) to a one 

step computation of the atomic region. Rule (ix) states that a parallel program 

[Sill· .. l!Sn] performs a transition if one of its component performs a. transition. 

Thus concurrency is modelled here by interleaving. 

A transition < S, u > --+ < R, T > is possible if and only if it can be 

deduced in the above transition system. 

Definition 9 Let S be a parallel or nondeterministic program and O' a proper 

state. 

(i) A transition sequence of S starting in O' is a finite or infinite sequence of 

configurations< Si, (ji > (i ~ 0) such that 

< S, u >=< So, O'o > - < S1, 0'1 > --+ ••. - < Si, O' i > --+ ••• 

(ii) A computation of S starting in u is a transition sequence of S starting in 

er which cannot be extended. 

(iii) A computation of S is terminating in T (or terminates in r) if it is finite 

and its last configuration is of the form< E, r >. 

(iv) A computation of S is diverging (or diverges) if it is infinite. Scan diverge 

from <f if there exists an infinite computation of S starting in er. 

0 

Let - * stand for the transitive, refie.xi ve closure of - . We now define three 

semantics of parallel or nondeterministic programs by putting for a. proper state 
(f 

M[S](cr) = {r I< S, <T > --+* < E, T > }, 

Meoe[S](u) = M[S](u) U {j_ IS can diverge from u}, 

Mtair[S](O') = M[S](<T) U {1- 1 Scan diverge from O' by a fair computation.} 
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The corresponding notions of partial, total and fair total correctness of pro
grams can be defined as inclusion properties of sets of states. For partial cor
rectness we put 

F= {p} S {q} iff M[S]([p]) ~ [q] 

where [p] is the set of all proper states satisfying the assertion p and analogously 
for q. The definitions for Ftot and F/air refer to Mtot and Mjair instead. 

Proof of Theorem 1. We proceed in 6 steps. 

Step 1 We consider the case when S and T have no initialization part So 
and introduce a subset of computations of T. To this end, observe that in an 

arbitrary finite or infinite transition sequence 

e:<T,<T>=<T1,<T1> - ... --1- <T;,<T; > - ... 

ofT, each transition< Tj, <T; > - < 7J+1 , <T;+i >in e is of one of the following 

three types. 
It can be a Bi-transition passing succcessfully the loop condition B in the 

i-th component so that 

1j _ [ ... !!while B do {Si) odll ... ] and O'j I= B, 

T;+i _ [ .. -ll{Si}; while B do (Si} odll ... ] and CT;+1 = <Tj; 

it can be an Si-transition executing the loop body Si as an atomic action so 

that 

T; - [ .. ·ll(Si}; while B do (Si) odll ... ], 

TJ+1 - [ .. ·llwhile B do {Si} odll ... ]; 

or it can be an Ei-transition terminating the loop of the i-th component so that 

Tj _ [ ... !!while B do (Si} odll ... ] and u; I= -.B, 

TJ+i - [ ... llEll ... ] and 0';+1 = u;. 

We say that e is delay free if each Bi-transition is immediately followed by 
the corresponding Si-transition. 

Note that in a delay free computation of T for each Si-transition< T;, '1'; > 
- < TJ+i,0';+1 > 

1j:.:: [while B do {S1} odll ... 
ll(Si}i while B do (Si} odll ... 
!!while B do (Sn} odll ... ] 
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T;+1 = [while B do {S1} odll .. . 
llwhile B do (Si} od!I .. . 

llwhile B do (Sn} odll· .. ] 
::T. 

Also, after an Ei-transition only Ej-transitions for i =ft j can take place. 

Step 2 To compare the computations of Sand T, we use the following notion 
of equivalence. Two computations are called i/o equivalent if they start in the 
same state and either both diverge or both terminate in the same state. 

Step 3 We prove the following two claims: 

• every (fair) computation of Sis i/o equivalent to a delay free (fair) com
putation of T, 

• every delay free (fair) computation of T is i/ o equivalent to a (fair) com
putation of S. 

First consider a (fair) computation e of S. We construct an i/o equivalent delay 
free (fair) computation of T from e by replacing 

• every loop entry transition 

< S, (J' > - < Si; S, (J' > 

with the Bi-transition 

< T, u > - < [while B do {S1) odll ... 
ll{Si); while B do Si odll ... 
llwhile B do Sn odll ... , u >, 

• every transition subsequence 

<Si; S,<r > - ... - < S,r >, 

forming the stepwise execution of the loop body Si, with the S;-transition 

< [while B do {S1} odll ... 
ll(Si)i while B do S; odll ... 

llwhile B do Sn odll ... , <r > - < T, r >, 
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• every loop exit transition 

< S,(J' > - < E,(1' > 

with a sequence of n final Ei-transitions, i E {1, ... , n}, dealing with the 
state (J'. 

Now consider a delay free (fair) computation T} of T. By applying the above 
replacement operations in reverse direction, we construct an i/o equivalent (fair) 
computation of S from TJ. 

Step 4 To compa:re computations of T, we introduce the following variant of 
i/o equivalence. Two computations are called q-equivalent if they both start in 
the same state and either both diverge or both terminate in a state satisfying 
assertion q. 

Step 5 By a p-computation we mean a computation starting in a state satisfying 
the assertion p. Suppose that every terminating delay free p-computation of 
T terminates in a state satisfying the assertion q. We prove that under this 
assumption every (fair) p-computa.tion of T is q-equivalent to a delay free p

computation of T. 

Consider a (fair) computation 

e:<T,u>=<T1,(1'1 > - ... - <1),u; > - ... 

of T with q f= p. 

Case 1Vj~1: (J'i f= B. 

Then e is infinite. Let 

be the sequence of all Si-transitions in e. Then there exists an infinite delay free 
(fair) p-computation T} of T which starts in q and has the same sequence of S&
transitions. We can construct T} by performing the corresponding B,-transitions 
immediately before the S,-transitions of this sequence. This is possible because 
in the present case the Bi-transitions are everywhere enabled. 

Case 2 3j ~ 1: qi F= -.B. 
Let j 0 be the smallest such j. Consider the prefi..-c 

€o:<T,u>=<Ti,u1> - ... - <T;0 ,u;0 > 

of e. By the choice of j 0 , the last transition in eo is an Si-transition. 
We first show that qio f= q. To this end, we argue in a similar way as above. 

Let 
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be the sequence of all Si-transitions in eo. Then there exists a. finite delay 
free transition sequence 170 of T starting in u, running through the same Si
transitions as eo, and ending in the configuration < T,qio >. Note that we 
indeed obtain here the program T thanks to the observation about Si-transitions 
in delay free transition sequences stated in Step 1. Since <1'j0 I= --.B, the only 
transitions which are possible after< T, q;0 >are Ei-transitions, i E {l, ... , n}. 
By adding all these transitions, we obtain a delay free p-computation TJ of T 

terminating in <TJo· By the assumption of this step, (Tio I= q. 

Thus q;0 I= q /\-.B. This information is sufficient to see how the original 
computation { of T continues after the prefix eo. In eo there may be some 
Bi-transitions without a corresponding Si-transition. Since by assumption 

I= {q /I. -iB} S1 {q A -.B}, 

these remaining S,-transitions all yield states satisfying q /\ -.B. Thus these 
Si-transitions and n final E,-transitions are the only possible transitions in the 
remainder of{. Thus also { terminates in a state satisfying q. Consequently, e 
and the delay free computation 1/ are q-eq uivalent. 

Step 6 By combining the results from Step 3 and 5, it is easy to prove the claim 
of the theorem for the case when S and T have no initialization part S0 • The 
first claim of Step 3 implies the "if''-part. The second claim of Step 3 together 
with the result of Step 5 imply the "only-if"-pa.rt. Indeed, suppose 

I= {p} s {q}, 

i.e. every terminating p-computation of S terminates in a state satisfying q. 

Then by the second claim of Step 3, every terminating delay free p-computation 
of T terminates in a state satisfying q. Thus by the result of Step 5, every 
terminating p-computation of T terminates in a. state satisfying q, i.e. 

I= {p} T {q}. 

Similar arguments deal with !=tot and l=Jair . The case when S and T have 
an initialization part So is left to the reader. o 

Proof of Theorem 2. We treat the case when S has no initialization part So 
and T results form S by splitting (R1; R2) into (R1); (R2). Our presentation 
follows the 6 steps outlined in the previous proof. 

Step 1 By an Rk-transition, k E {l, 2}, we mean a transition occurring in a 
computation of T which is of the form 
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We call a fragment e of a computation of T good if in e each R1-transition is 

immediately followed by the corresponding R2-transition, and we call e almost 

good if in e each R1-transition is eventually followed by the corresponding R2-

transition. 

Observe that every fair and hence every finite computation of T is almost 
good. 

Step 2 To compare the computations of Sand T, we use the i/o equivalence 

introduced in Step 2 of the proof of Theorem 1. 

Step 3 We prove the following two claims: 

• every (fair) computation of Sis i/o equivalent to a good (fair) comput:ition 

of T, 

• every good (fair) computation ofT is i/o equivalent to a (fair) computation 

of S. 

First consicl"'r a (fair) computation e of S. Every program occurring in a config

uration of e is a parallel composition of n components. Let for such a program 

U the program split(U) result from U by replacing in the i-th component of U 

every occurrence of (R1 ; R2) by (R1); (R2). For example, split(S) = T. 

We construct an i/o equivalent good (fair) computation of T from e by 

replacing 

• every transition of the form 

< [U1ll· .. JJ(R1; R2); U;ll ... JIUn],u > 
-+ < [Uill· · .JIUdl· · -llUn), r > 

with two consecutive transitions 

< split([U1ll-. -ll{R1; R2); Ui[J .. ·llUn]), o- > 
-+ < split([Utll· . . 1l(R2}; U&. -llUn]), cr1 > 
-+ < split([U1ll·. -llUiJ!. · ·l!Un]), r > 

where the intermediate state 0-1 is defined by 
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• every other transition 

< u, (j > - < v, 1" > 

with 

< split(U), t.1 > ---i- < split(V), 1" > . 

Now consider a good (fair) computation 1J of T. By applying the above 

replacement operations in reverse direction we construct an i/o equivalent (fair) 

computation of S from 17. 

Step 4 For the comparison of computations of T we use i/ o equivalence, but 

to reason about it we also introduce a more discriminating variant of it called 

"permutation equivalence". t 

First consider an arbitrary computation e of T. Every program occurring in 

a configuration of e is the parallel composition of n components. To distinguish 

between different kinds of transitions in e, we attach labels to the transition 

arrow - . We write 

< U, rr > ~ < V, 1" > 

ifk E {l, 2} and< U, r; > _. < V, r >is an R&-transition of the i-th component 

of U, 

i 
< U, r; > ---i- < V, r > 

if< U, r; > - < V, 1" > is any other transition caused by the activation of the 

i-th component of U, and 

j 
< u, (j > - < v, 1" > 

ifj =I= i and < U, (f > ---i- < V, 1" > is a transition caused by the activation of 

the j-th component of U. 

Hence with each transition arrows in a computation of T there is a unique 

label associated. This enables us to define: 

Two computations 17 and e of T are permutation equivalent if 

• 1J and e start in the same state, 

• for all states r;, 11 terminates in (1' i:ff e terminates in <T, 

• the possibly infinite sequence of labels attached to the transition arrows 

in 1J and e a.re permutations of each other. 
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Clearly, permutation equivalence of computations of T implies their ifo 

equivalence. 

Step 5 We prove the following claim: every (fair) computation of T is if o 

equivalent to a good (fair) computation of T. 

To this end, we establish two simpler claims. 

Claim 1 Every (fair) computation of T is i/o equivalent to an almost good 

(fair) computation of T. 

Proof of Claim 1. Consider a computation € of T which is not almost good. 

Then by the observation stated in Step l, €is not fair and hence diverging. More 

precisely, there exists a suffix 6 of€ which starts in a configuration < U, O' > 
with an R1-transition and then continues with infinitely many transitions not 

involving the i-th component any more, say 

i: U Ri rr ii U h 
..,1:< ,u>-+ <vo,uo>-+ < 110"1> -+ ... 

where jk i= i for k ;:::: 1. By the definition of semantics of while-programs we 

conc~ude the following: if R1 is disjoint from Si with j i= i, then there is also 

an infinite transition sequence of the form 

i: u ii v; i'l 
<,2 :< , O" > -+ < 11 T1 > -+ • · ., 

and if R2 is disjoint from Si with j i= i, then there is also an infinite transition 

sequence of the form 

i: u Ri TT R'l Vr ii v; h 
<,3 :< ,O"> - < vo,O"o >-+ < o,ro >-+ < l,r1 > -+ .•• 

We say that 6 is obtained from 6 by deletion of the initial R1-transition and 

6 is obtained from 6 by insertion of an R2-transition. Replacing the suffi...'< €1 

of€ by 6 or 6 yields an almost good computation of T which is i/ o equivalent 

to e. 0 

Claim 2 Every almost good (fair) computation of T is permutation equivalent 

to a good (fair) computation of T. 

Proof of Claim 2. By the definition of semantics of while-programs the 

following: if Rk with k E {1, 2} is disjoint from Si with j i= i, then the relations 

Ri. d j • 
-+ an -+ commute, i.e. 

where o denotes relational composition. Repeated application of this commu

tativity allows us to permute the transitions of every almost good fragment €1 

of a computation of T of the form 
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r: U Ri j1 j,,. .R2 
c,,l :< , U > -+ 0 -+ 0 ••• 0 -+ O -+ < V, T > 

with jlc :f. i fork E {l, ... ,m} into a. good order, i.e. into 

U ii im. R1 R, V, 6 :< I (7 > -+ 0 ••• 0 -+ 0 -+ 0 -+ < I T > 

or 

U R1 .R, ii j,.. V, 
€3 :< '(7 > - 0 --+ 0 -+ 0 ..• 0 -+ < IT > 

depending on whether R1 or R2 is disjoint from S; with j :/: i. 

Consider now a.n almost good computation { of T. We construct from e 
a permutation equivalent good computation€* of T by successively replacing 
every almost good fragment of e of the form {1 by a. good fragment of the form 

6 or {3. 
Note that a. computation TJ of T is fair iff there exists a. configuration < U, O' > 

such that every sequential component of Uhas either terminated or is activated 
infinitely often in the suffix of TJ starting in < U, u >. Since this property is 

preserved by the above construction of a permutation equivalent computation 
f" from e, we conclude: if e is fa.ir, also e· is fair. 0 

Claims 1 a.nd 2 together imply the claim of Step 5. 

Step 6 By combining the results of Step 3 and 5, we get the claim of the theorem 
for the case when S has no initialization part So and T results from S by splitting 
{R1; R2} into {R1}i {R2}. The cases when S has an initialization part So and 
where T results from S by splitting the atomic region (if B then R1 else R2 fi} 
are left to the reader. D 

The proof of the Initialization Theorem follows the same lines as the proof 
of the Atomicity Theorem and is therefore omitted. 
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