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Abstract

The growing importance of massive datasets used for deep learning makes robust-
ness to label noise a critical property for classifiers to have. Sources of label noise
include automatic labeling, non-expert labeling, and label corruption by data poi-
soning adversaries. Numerous previous works assume that no source of labels can
be trusted. We relax this assumption and assume that a small subset of the training
data is trusted. This enables substantial label corruption robustness performance
gains. In addition, particularly severe label noise can be combated by using a set of
trusted data with clean labels. We utilize trusted data by proposing a loss correction
technique that utilizes trusted examples in a data-efficient manner to mitigate the
effects of label noise on deep neural network classifiers. Across vision and natural
language processing tasks, we experiment with various label noises at several
strengths, and show that our method significantly outperforms existing methods.

1 Introduction

Robustness to label noise is set to become an increasingly important property of supervised learning
models. With the advent of deep learning, the need for more labeled data makes it inevitable that
not all examples will have high-quality labels. This is especially true of data sources that admit
automatic label extraction, such as web crawling for images, and tasks for which high-quality labels
are expensive to produce, such as semantic segmentation or parsing. Additionally, label corruption
may arise in data poisoning [10, 24]. Both natural and malicious label corruptions tend to sharply
degrade the performance of classification systems [30].

Most prior work on label corruption robustness assumes that all training data are potentially corrupted.
However, it is usually the case that a number of trusted examples are available. Trusted data are
gathered to create validation and test sets. When it is possible to curate trusted data, a small set of
trusted data could be created for training. We depart from the assumption that all training data are
potentially corrupted by assuming that a subset of the training is trusted. In turn we demonstrate
that having some amount of trusted training data enables significant robustness gains.

To leverage the additional information from trusted labels, we propose a new loss correction and
empirically verify it on a number of vision and natural language datasets with label corruption.
Specifically, we demonstrate recovery from extremely high levels of label noise, including the dire
case when the untrusted data has a majority of its labels corrupted. Such severe corruption can occur
in adversarial situations like data poisoning, or when the number of classes is large. In comparison to
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loss corrections that do not employ trusted data [18], our method is significantly more accurate in
problem settings with moderate to severe label noise. Relative to a recent method which also uses
trusted data [11], our method is far more data-efficient and generally more accurate. These results
demonstrate that systems can weather label corruption with access only to a small number of gold
standard labels. Experiment code is available at https://github.com/mmazeika/glc.

2 Related Work

The performance of machine learning systems reliant on labeled data has been shown to degrade
noticeably in the presence of label noise [17, 19]. In the case of adversarial label noise, this
degradation can be even worse [20]. Accordingly, modeling, correcting, and learning with noisy
labels has been well studied [16, 1, 3].

The methods of [15, 9, 18, 25] allow for label noise robustness by modifying the model’s architecture
or by implementing a loss correction. Unlike Mnih and Hinton [15] who focus on binary classification
of aerial images and Larsen et al. [9] who assume symmetric label noise, [18, 25] consider label noise
in the multi-class problem setting with asymmetric noise.

Sukhbaatar et al. [25] introduce a stochastic matrix measuring label corruption, note its inability
to be calculated without access to the true labels, and propose a method of forward loss correction.
Forward loss correction adds a linear layer to the end of the model and the loss is adjusted accordingly
to incorporate learning about the label noise. Patrini et al. [18] also make use of the forward loss
correction mechanism, and propose an estimate of the label corruption estimation matrix which relies
on strong assumptions, and does not make use of clean labels.

Contra [25, 18], we make the assumption that during training the model has access to a small set
of clean labels. See Charikar, Steinhardt, and Valiant [2] for a general analysis of this assumption.
This assumption has been leveraged by others for the purpose of label noise robustness, most notably
[26, 11, 27, 21]. Veit et al. [26] use human-verified labels to train a label cleaning network by
estimating the residuals between the noisy and clean labels in a multi-label classification setting. In
the multi-class setting that we focus on in this work, Li et al. [11] propose distilling the predictions of
a model trained on clean labels into a second network trained on these predictions and the noisy labels.
Our work differs from these two in that we do not train neural networks on the clean labels alone.
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Figure 1: A label corruption matrix (top
left) and three matrix estimates for a
corrupted CIFAR-10 dataset. Entry Cij

is the probability that a label of class i
is corrupted to class j, or symbolically
Cij = p(ỹ = j|y = i).

We are given an untrusted dataset D̃ of u examples (x, ỹ),
and we assume that these examples are potentially cor-
rupted examples from the true data distribution p(x, y)
with K classes. Corruption is specified by a label noise
distribution p(ỹ | y, x). We are also given a trusted dataset
D of t examples drawn from p(x, y), where t/u ≪ 1.
We refer to t/u as the trusted fraction. Concretely, a web
scraper labeling images from metadata may produce an un-
trusted set, while expert-annotated examples would form
a trusted dataset and be a gold standard.

We explore two avenues of utilizing D to improve this
approach. The first directly uses the trusted data while
training the final classifier. As this could be applied to ex-
isting methods, we run ablations to demonstrate its effect.
The second avenue uses the additional information con-
ferred by the clean labels to better model the label noise
for use in a corrected classifier.

Our method makes use of D to estimate the K×K matrix
of corruption probabilities Cij = p(ỹ = j | y = i). Once
this estimate is obtained, we use it to train a modified
classifier from which we recover an estimate of the desired
conditional distribution p(y | x). We call this method the
Gold Loss Correction (GLC), so named because we make use of trusted or gold standard labels.

2

https://github.com/mmazeika/glc


Estimating The Corruption Matrix. First, we train a classifier p̂(ỹ | x) on D̃. Let ỹ and y be in
the set of possible labels. To estimate the probability p(ỹ | y), we use the identity p(ỹ | y, x)p(x |
y) = p(ỹ | y)p(x | ỹ, y). Integrating over all x gives us∫

p(ỹ | y, x)p(x | y) dx = p(ỹ | y)

∫
p(x | ỹ, y) dx = p(ỹ | y).

We can approximate the integral on the left with the expectation of p(ỹ | y, x) over the empirical
distribution of x given y. Assuming conditional independence of ỹ and y given x, we have p(ỹ |

y, x) = p(ỹ | x), which is directly approximated by p̂(ỹ | x), the classifier trained on D̃. More

explicitly, let Ai be the subset of x in D with label i. Denote our estimate of C by Ĉ. We have

Ĉij =
1

|Ai|

∑

x∈Ai

p̂(ỹ = j | x) =
1

|Ai|

∑

x∈Ai

p̂(ỹ = j | y = i, x) ≈ p(ỹ = j | y = i).

This is how we estimate our corruption matrix for the GLC. The approximation relies on p̂(ỹ | x)
being a good estimate of p(ỹ | x), on the number of trusted examples of each class, and on the
extent to which the conditional independence assumption is satisfied. The conditional independence
assumption is reasonable, as it is usually the case that noisy labeling processes do not have access to
the true label. Moreover, when the data are separable (i.e. y is deterministic given x), the assumption
follows. A proof of this is provided in the Supplementary Material. We investigate these factors in
experiments.

Algorithm GOLD LOSS CORRECTION (GLC)

1: Input: Trusted data D, untrusted data D̃, loss ℓ

2: Train network f(x) = p̂(ỹ|x; θ) ∈ R
K on D̃

3: Fill Ĉ ∈ R
K×K with zeros

4: for k = 1, . . . ,K do
5: num_examples = 0
6: for (xi, yi) ∈ D such that yi = k do
7: num_examples += 1
8: Ĉk• += f(xi) {add f(xi) to kth row}
9: end for

10: Ĉk• /= num_examples

11: end for
12: Initialize new model g(x) = p̂(y|x; θ)

13: Train with ℓ(g(x), y) on D, ℓ(ĈTg(x), ỹ) on D̃
14: Output: Model p̂(y|x; θ)

Training a Corrected Classifier.

Now with Ĉ, we follow the method of [25,
18] to train a corrected classifier, which
we now briefly describe. Given the K × 1
softmax output s of an untrained classifier,

we define the new output as s̃ := ĈTs. We
then train p̂(s̃ | x) on the noisy labels with
cross-entropy loss. We can further improve
on this method by using trusted data to train
the corrected classifier. Thus, we apply no
correction on examples from the trusted
set encountered during training. This has
the effect of allowing the GLC to handle a
degree of instance-dependency in the label
noise [14], though our experiments suggest
that most of the GLC’s performance gains

derive from our Ĉ estimate. A concrete
algorithm of our method is provided here.

4 Experiments

Generating Corrupted Labels. Suppose our dataset has t + u examples. We sample a set of t

trusted datapoints D, and the remaining u untrusted examples form D̃, which we probabilistically
corrupt according to a true corruption matrix C. Note that we do not have knowledge of which of our
u untrusted examples are corrupted. We only know that they are potentially corrupted.

To generate the untrusted labels from the true labels in D̃, we first obtain a corruption matrix C. Then,
for an example with true label i, we sample the corrupted label from the categorical distribution
parameterized by the ith row of C. Note that this does not satisfy the conditional independence
assumption required for our estimate of C. However, we find that the GLC still works well in practice,
perhaps because this assumption is also satisfied when the data are separable, in the sense that each x
has a single true y, which is approximately true in many of our experiments.

Comparing Loss Correction Methods. The GLC differs from previous loss corrections for label
noise in that it reasonably assumes access to a high-quality annotation source. Therefore, to compare
to other loss correction methods, we ask how each method performs when starting from the same
dataset with the same label noise. In other words, the only additional information our method uses is
knowledge of which examples are trusted, and which are potentially corrupted.
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Figure 2: Error curves for numerous label correction methods using a full range of label corruption
strengths on several different vision and natural language processing datasets.

4.1 Datasets and Architectures

MNIST. The MNIST dataset contains 28× 28 grayscale images of the digits 0-9. The training set
has 60,000 images and the test set has 10,000 images. For preprocessing, we rescale the pixels to the
interval [0, 1].We train a 2-layer fully connected network with 256 hidden dimensions. We train with
Adam for 10 epochs using batches of size 32 and a learning rate of 0.001. For regularization, we use
ℓ2 weight decay on all layers with λ = 1× 10−6.

CIFAR. The two CIFAR datasets contain 32× 32× 3 color images. CIFAR-10 has ten classes, and
CIFAR-100 has 100 classes. CIFAR-100 has 20 “superclasses” which partition its 100 classes into 20
semantically similar sets. We use these superclasses for hierarchical noise. Both datasets have 50,000
training images and 10,000 testing images. For both datasets, we train a Wide Residual Network [29]
of depth 40 and a widening factor of 2. We train for 75 epochs using SGD with Nesterov momentum
and a cosine learning rate schedule [12].

IMDB. The IMDB Large Movie Reviews dataset [13] contains 50,000 highly polarized movie
reviews from the Internet Movie Database, split evenly into train and test sets. We pad and clip reviews
to a length of 200 tokens, and learn 50-dimensional word vectors from scratch for a vocab size of
5,000.We train an LSTM with 64 hidden dimensions on this data. We train using the Adam optimizer
[8] for 3 epochs with batch size 64 and the suggested learning rate of 0.001. For regularization, we
use dropout [23] on the linear output layer with a dropping probability of 0.2.

Twitter. The Twitter Part of Speech dataset [4] contains 1,827 tweets annotated with 25 POS tags.
This is split into a training set of 1,000 tweets, a development set of 327 tweets, and a test set of 500
tweets. We use the development set to augment the training set. We use pretrained 50-dimensional
word vectors, and for each token, we concatenate word vectors in a fixed window centered on the
token. These form our training and test set. We use a window size of 3, and train a 2-layer fully
connected network with hidden size 256, and use the GELU nonlinearity [7]. We train with Adam for
15 epochs with batch size 64 and learning rate of 0.001. For regularization, we use ℓ2 weight decay
with λ = 5× 10−5 on all but the linear output layer.

SST. The Stanford Sentiment Treebank dataset consists of single sentence movie reviews [22]. We
use the 2-class version (i.e. SST2), which has 6,911 reviews in the training set, 872 in the development
set, and 1,821 in the test set. We use the development set to augment the training set. We pad and clip
reviews to a length of 30 tokens and learn 100-dimensional word vectors from scratch for a vocab
size of 10,000. Our classifier is a word-averaging model with an affine output layer. We use the
Adam optimizer for 5 epochs with batch size 50 and learning rate 0.001. For regularization, we use
ℓ2 weight decay with λ = 1× 10−4 on the output layer.
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Corruption
Type

Percent
Trusted

Trusted
Only

No Corr. Forward Forward
Gold

Distill. Confusion
Matrix

GLC
(Ours)

M
N

IS
T

Uniform 5 37.6 12.9 14.5 13.5 42.1 21.8 10.3
Uniform 10 12.9 12.3 13.9 12.3 9.2 15.1 6.3
Uniform 25 6.6 9.3 11.8 9.2 5.8 11.0 4.7
Flip 5 37.6 50.1 51.7 41.4 46.5 11.7 3.4
Flip 10 12.9 51.1 48.8 36.4 32.4 5.6 2.9
Flip 25 6.6 47.7 50.2 37.1 28.2 3.8 2.6

Mean 19.0 30.6 31.8 25.0 27.4 11.5 5.0

C
IF

A
R

-1
0

Uniform 5 39.6 31.9 9.1 27.8 29.7 22.4 9.0
Uniform 10 31.3 31.9 8.6 20.6 18.3 22.7 6.9
Uniform 25 17.4 32.7 7.7 27.1 11.6 16.7 6.4
Flip 5 39.6 53.3 38.6 47.8 29.7 8.1 6.6
Flip 10 31.3 53.2 36.5 51.0 18.1 8.2 6.2
Flip 25 17.4 52.7 37.6 49.5 11.8 7.1 6.1

Mean 29.4 42.6 23.0 37.3 19.9 14.2 6.9

C
IF

A
R

-1
0

0

Uniform 5 82.4 48.8 47.7 49.6 87.5 53.6 42.4
Uniform 10 67.3 48.4 47.2 48.9 61.2 49.7 33.9
Uniform 25 52.2 45.4 43.6 46.0 39.8 39.6 27.3
Flip 5 82.4 62.1 61.6 62.6 87.1 28.6 27.1
Flip 10 67.3 61.9 61.0 62.2 61.8 26.9 25.8
Flip 25 52.2 59.6 57.5 61.4 40.0 25.1 24.7
Hierarchical 5 82.4 50.9 51.0 52.4 87.1 45.8 34.8
Hierarchical 10 67.3 51.9 50.5 52.1 61.7 38.8 30.2
Hierarchical 25 52.2 54.3 47.0 51.1 39.7 29.7 25.4

Mean 67.3 53.7 51.9 54.0 62.9 37.5 30.2

Table 1: Vision dataset results. Percent trusted is the trusted fraction multiplied by 100. Unless
otherwise indicated, all values are percentages representing the area under the error curve computed
at 11 test points. The best mean result is bolded.

4.2 Label Noise Corrections

Forward Loss Correction. The forward correction method from Patrini et al. [18] also obtains Ĉ
by training a classifier on the noisy labels, and using the resulting softmax probabilities. However,
this method does not make use of a trusted fraction of the training data. Instead, it uses the argmax
at the 97th percentile of softmax probabilities for a given class as a heuristic for detecting an example
that is truly a member of said class. As in the original paper, we replace this with the argmax over
all softmax probabilities for a given class on CIFAR-100 experiments. The estimate of C is then used
to train a corrected classifier in the same way as the GLC.

Forward Gold. To examine the effect of training on trusted labels as done by the GLC, we augment
the Forward method by replacing its estimate of C with the identity on trusted examples. We call this
method Forward Gold. It can also be seen as the GLC with the Forward method’s estimate of C.

Distillation. The distillation method of Li et al. [11] involves training a neural network on a large
trusted dataset and using this network to provide soft targets for the untrusted data. In this way, labels
are “distilled” from a neural network. If the classifier’s decisions for untrusted inputs are less reliable
than the original noisy labels, then the network’s utility is limited. Thus, to obtain a reliable neural
network, a large trusted dataset is necessary. A new classifier is trained using labels that are a convex
combination of the soft targets and the original untrusted labels.

Confusion Matrices. An intuitive alternative to the GLC is to estimate C by a confusion matrix.
To do this, we train a classifier on the untrusted examples, obtain its confusion matrix on the trusted
examples, row-normalize the matrix, and then train a corrected classifier as in the GLC.

4.3 Uniform, Flip, and Hierarchical Corruption

Corruption-Generating Matrices. We consider three types of corruption matrices: corrupting
uniformly to all classes, i.e. Cij = 1/K, flipping a label to a different class, and corrupting uniformly
to classes which are semantically similar. To create a uniform corruption at different strengths, we
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Corruption
Type

Percent
Trusted

Trusted
Only

No Corr. Forward Forward
Gold

Distill. Confusion
Matrix

GLC
(Ours)

S
S

T

Uniform 5 45.4 27.5 26.5 26.6 43.4 26.1 24.2
Uniform 10 35.2 27.2 26.2 25.9 33.3 25.0 23.5
Uniform 25 26.1 26.5 25.3 24.6 25.0 22.4 21.7
Flip 5 45.4 50.2 50.3 50.3 48.8 26.0 24.9
Flip 10 35.2 49.9 50.1 49.9 42.1 24.6 23.5
Flip 25 26.1 48.7 49.0 47.3 31.8 22.4 21.7

Mean 35.6 38.3 37.9 37.4 37.4 24.4 23.3

IM
D

B

Uniform 5 36.9 26.7 27.9 27.6 35.5 25.4 25.0
Uniform 10 26.2 25.8 27.2 26.1 24.9 23.3 22.3
Uniform 25 22.2 21.4 23.0 20.1 21.0 18.9 18.7
Flip 5 36.9 49.2 49.2 49.2 41.8 25.8 25.2
Flip 10 26.2 47.8 48.3 47.5 28.0 22.1 22.0
Flip 25 22.2 39.4 39.6 36.6 23.5 19.2 18.5

Mean 28.5 35.0 35.9 34.5 29.1 22.5 22.0

T
w

it
te

r

Uniform 5 35.9 37.1 51.7 44.1 32.0 41.5 31.0
Uniform 10 23.6 33.5 49.5 40.2 22.2 33.6 22.3
Uniform 25 16.3 25.5 40.6 26.4 16.6 20.0 15.5
Flip 5 35.9 56.2 61.6 54.8 36.4 23.4 15.8
Flip 10 23.6 53.8 59.0 48.9 26.1 15.9 12.9
Flip 25 16.3 43.0 52.5 36.7 20.5 13.3 12.8

Mean 25.3 41.5 52.5 41.9 25.7 24.6 18.4

Table 2: NLP dataset results. Percent trusted is the trusted fraction multiplied by 100. Unless
otherwise indicated, all values are percentages representing the area under the error curve computed
at 11 test points. The best mean result is bolded.

take a convex combination of an identity matrix and the matrix 11
T/K. We refer to the coefficient

of 11T/K as the corruption strength for a “uniform” corruption. A “flip” corruption at strength m
involves, for each row, giving an off-diagonal column probability mass m and the entries along the
diagonal probability mass 1−m. Finally, a more realistic corruption is hierarchical corruption. For
this corruption, we apply uniform corruption only to semantically similar classes; for example, “bed”
may be corrupted to “couch” but not “beaver” in CIFAR-100. For CIFAR-100, examples are deemed
semantically similar if they share the same “superclass” label specified by the dataset creators.

Experiments and Analysis of Results. We train the models described in Section 4.1 under uniform,
label-flipping, and hierarchical label corruptions at various fractions of trusted data. To assess the
performance of the GLC, we compare it to other loss correction methods and two baselines: one where
we train a network only on trusted data without any label corrections, and one where the network trains
on all data without any label corrections. We record errors on the test sets at the corruption strengths
{0, 0.1, . . . , 1.0}. Since we compute the model’s accuracy at numerous corruption strengths, CIFAR
experiments involve training over 500 Wide Residual Networks. In Tables 1 and 2, we report the area
under the error curves across corruption strengths {0, 0.1, . . . , 1.0} for all baselines and corrections.
A sample of error curves are displayed in Figure 2. These curves are the linear interpolation of the
errors at the eleven corruption strengths.

Across all experiments, the GLC obtains better area under the error curve than the baselines and the
Forward and Distillation methods. The rankings of the other methods and baselines are mixed. On
MNIST, training on the trusted data alone outperforms all methods save for the GLC and Confusion
Matrix, but performs significantly worse on CIFAR-100, even with large trusted fractions.

The Confusion Matrix correction performs second to the GLC, which indicates that normalized
confusion matrices are not as accurate as our method of estimating C. We verified this by inspecting
the estimates directly, and found that normalized confusion matrices give a highly biased estimate
due to taking an argmax over class scores rather than using random sampling. Figure 1 shows an
example of this bias in the case of label flipping corruption at a strength of 7/10.

Interestingly, Forward Gold performs worse than Forward on several datasets. We did not observe the
same behavior when turning off the corresponding component of the GLC, and believe it may be due
to variance introduced during training by the difference in signal provided by the Forward method’s
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C estimate and the clean labels. The GLC provides a superior C estimate, and thus may be better
able to leverage training on the clean labels. Additional results on SVHN are in the Supplementary
Material.

We also compare the GLC to the recent work of Ren et al. [21], which proposes a loss correction that
uses a trusted set and meta-learning. We find that the GLC consistently outperforms this method. To
conserve space, results are in the Supplementary Material.

Percent
Trusted

Trusted
Only

No
Corr.

Forward Forward
Gold

Distill. Confusion
Matrix

GLC
(Ours)

CIFAR-10
1 62.9 28.3 28.1 30.9 60.4 31.9 26.9
5 39.6 27.1 26.6 25.5 28.1 27 21.9
10 31.3 25.9 25.1 22.9 17.8 24.2 19.2

Mean 44.6 27.1 26.6 26.4 35.44 27.7 22.7

CIFAR-100
5 82.4 71.1 73.9 73.6 88.3 74.1 68.7
10 67.3 66 68.2 66.1 62.5 63.8 56.6
25 52.2 56.9 56.9 51.4 39.7 50.8 40.8

Mean 67.3 64.7 66.3 63.7 63.5 62.9 55.4

Table 3: Results when obtaining noisy labels by sampling from the softmax distribution of a weak
classifier. Percent trusted is the trusted fraction multiplied by 100. Unless otherwise indicated, all
values are the percent error. The best average result for each dataset is shown in bold.

4.4 Weak Classifier Labels

Our next benchmark for the GLC is to use noisy labels obtained from a weak classifier. This models
the scenario of label noise arising from a classification system weaker than one’s own, but with access
to information about the true labels that one wishes to transfer to one’s own system. For example,
scraping image labels from surrounding text on web pages provides a valuable signal, but these
labels would train a sub-par classifier without correcting the label noise. This setting exactly satisfies

the conditional independence assumption on label noise used for our Ĉ estimate, because the weak
classifier does not take the true label as input when outputting noisy labels.

Weak Classifier Label Generation. To obtain the labels, we train 40-layer Wide Residual Net-
works on CIFAR-10 and CIFAR-100 with clean labels for ten epochs each. Then, we sample from
their softmax distributions with a temperature of 5, and fix the resulting labels. This results in
noisy labels which we use in place of the labels obtained through the uniform, flip, and hierarchical
corruption methods. The labelings produced by the weak classifiers have accuracies of 40% on
CIFAR-10 and 7% on CIFAR-100. Despite the presence of highly corrupted labels, we are able
to significantly recover performance with the use of a trusted set. Note that unlike the previous
corruption methods, weak classifier labels have only one corruption strength. Thus, performance is
measured in percent error rather than area under the error curve. Results are displayed in Table 3.

Analysis of Results. On average, the GLC outperforms all other methods in the weak classifier label
experiments. The Distillation method performs better than the GLC by a small margin at the highest
trusted fraction, but performs worse at lower trusted fractions, indicating that the GLC enjoys superior
data efficiency. This is highlighted by the GLC attaining a 26.94% error rate on CIFAR-10 with a
trusted fraction of only 1%, down from the original error rate of 60%. It should be noted, however, that
training with no correction attains 28.32% error on this experiment, suggesting that the weak classifier
labels have low bias. The improvement conferred by the GLC is greater with larger trusted fractions.

5 Discussion

Data Efficiency. We have seen that the GLC works for small trusted fractions. We further corrobo-
rate its data efficiency by turning to the Clothing1M dataset [27]. Clothing1M is a massive dataset
with both human-annotated and noisy labels, which we use to compare the data efficiency of the GLC
to that of Distillation when very few trusted labels are present. It consists in 1 million noisily labeled
clothing images obtained by crawling online marketplaces. 50,000 images have human-annotated
examples, from which we take subsamples as our trusted set.

For both the GLC and Distillation, we first fine-tune a ResNet-34 on untrusted training examples for
four epochs, and use this to estimate our corruption matrix. Thereafter, we fine-tune the network for
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four more epochs on the combined trusted and untrusted sets using the respective method. During fine
tuning, we freeze the first seven layers, and train using gradient descent with Nesterov momentum
and a cosine learning rate schedule. For preprocessing, we randomly crop and use mirroring. We also
upsample the trusted dataset, finding this to give better performance for both methods.
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Figure 3: Data efficiency of our
method compared to Distillation on
Clothing1M.

As shown in Figure 3, the GLC outperforms Distillation by a
large margin, especially with fewer trusted examples. This is be-
cause Distillation requires fine-tuning a classifier on the trusted
data alone, which generalizes poorly with very few examples.
By contrast, estimating the C matrix can be done with very
few examples. Correspondingly, we find that our advantage
decreases as the number of trusted examples increases.

With more trusted labels, performance on Clothing1M saturates,
as evident in Figure 3. We consider the extreme and train on the
entire trusted set for Clothing1M. We fine-tune a pre-trained 50-
layer ResNeXt [28] on untrusted training examples to estimate
our corruption matrix. Then, we fine-tune the ResNeXt on all
training examples. During fine-tuning, we use gradient descent
with Nesterov momentum. During the first two epochs, we tune
only the output layer with a learning rate of 10−2. Thereafter, we tune the whole network at a learning
rate of 10−3 for two epochs, and for another two epochs at 10−4. Then we apply our loss correction.
Now, we fine-tune the entire network at a learning rate of 10−3 for two epochs, continue training
at 10−4, and early-stop based upon the validation set. In a previous work, Xiao et al. [27] obtain
78.24% in this setting. However, our method obtains a state-of-the-art accuracy of 80.67%, while
with this procedure the Forward method only obtains 79.03% accuracy.

Improving Ĉ Estimation. For some datasets, the classifier p̂(ỹ | x) may be a poor estimate of

p(ỹ | x), presenting a bottleneck in the estimation of Ĉ for the GLC. To see the extent to which
this could impact performance, and whether simple methods for improving p̂(ỹ | x) could help, we
ran several variants of the GLC experiment on CIFAR-100 under the label flipping corruption at a
trusted fraction of 5/100 which we now describe. For all variants, we averaged the area under the
error curve over five random initializations.

1. In the first variant, we replaced the GLC estimate of Ĉ with C, the true corruption matrix.
2. As demonstrated by Hendrycks and Gimpel [6] and Guo et al. [5], modern deep neural network
classifiers tend to have overconfident softmax distributions. We found this to be the case with our
p̂(ỹ | x) estimate, despite the higher entropy of the noisy labels, so we used the temperature scaling
confidence calibration method proposed in the paper to calibrate p̂(ỹ | x).

3. Suppose we know the base rates of corrupted labels b̃, where b̃i = p(ỹ = i), and the base rate

of true labels b of the trusted set. If we posit that Ĉ0 corrupted the labels, then we should have

bTĈ0 = b̃T. Thus, we may obtain a superior estimate of the corruption matrix by computing a new

estimate Ĉ = argmin
Ĉ
‖bTĈ0 − b̃T‖2

2
+ λ‖Ĉ − Ĉ0‖

2

2
subject to Ĉ1 = 1.

We found that using the true corruption matrix as our Ĉ provides a benefit of 0.96 percentage points
in area under the error curve, but neither the confidence calibration nor the base rate incorporation
was able to change the performance from the original GLC. This indicates that the GLC is robust
to the use of uncalibrated networks for estimating C, and that improving its performance may be
difficult without directly improving the performance of the neural network used to estimate p̂(y | x).

6 Conclusion

In this work, we have shown the impact of having a small set of trusted examples on label noise
robustness in neural network classifiers. We proposed the Gold Loss Correction (GLC), a method
for coping with label noise. This method leverages the assumption that the model has access to a
small set of correct labels in order to yield accurate estimates of the noise distribution. Throughout
our experiments, the GLC surpasses previous label noise robustness methods across various natural
language processing and vision domains which we showed by considering several corruptions and
numerous strengths, including severe strengths. These results demonstrate that the GLC is a powerful,
data-efficient method for improving robustness to label noise.
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