Behavior Research Methods, Instruments, & Computers
1992, 24 (2), 205-212

Using tutoring systems to study learning:
An application of HyperCard

ADRIENNE Y. LEE
University of Colorado, Boulder, Colorado

HyperCard was used to develop a simplified tutoring system whose principles were based on
a learning theory, and a genetics tutoring system was evaluated experimentally. Learning was
studied by examining immediate versus delayed feedback after an error was made. Such tutor-
ing systems aid in psychological studies of learning, because experimental variables can be easily
manipulated. HyperCard provides a good vehicle for tutoring system development, since it re-

quires no extensive programming skills.

The application of learning theories in the creation of
teaching machines can be traced as far back as Skinner’s
work in the 1950s (see Skinner, 1958). This work, along
with other researchers’ early use of computers for teach-
ing, gave rise to the term computer-aided instruction
(CAl). Given the technology of the time, most CAI sys-
tems could not present difficult problems to students or
maintain a record of responses over many problems. Even
today, most of the educational software that is commer-
cially available has been low in quality and has not been
based on any kind of learning theory (Anderson, Boyle,
& Reiser, 1985a).

With the availability of inexpensive personal computers
for use in the schools, research on the use of computers
in teaching has earned more interest in psychology and
computer science (Burns, Parlett, & Redfield, 1991; Pol-
son & Richardson, 1988; Psotka, Massey, & Mutter,
1988; Wenger, 1987). Computers have become power-
ful enough for difficult problems to be presented. Fur-
thermore, computer technology has allowed for simula-
tions of the knowledge needed to solve problems in a
domain and the addition of system responses to an indi-
vidual student’s particular needs (Anderson et al., 1985a).
These additions have created the terminology of ‘‘intelli-
gent”’ computer-aided instruction (ICAI) or intelligent
tutoring systems (ITS). These systems incorporate the
knowledge of human tutors and experts in the domain be-
ing taught. In this paper, I will refer to ICAI and ITS sys-
tems as tutoring systems.

I gratefully acknowledge the assistance of Peter Foltz and Nancy Pen-
nington for their invaluable aid in the preparation of this paper and ad-
vice on the psychological aspects of the project. I also wish to thank
Michele Lee and Jane Bock for assistance on the biological aspects of
the tutoring system. In addition, I wish to thank Peter Polson, Clayton
Lewis, Jan Gehrig, Philip Thompson, Paula Messamer, Keith Hannon,
Jean McKendree, and Matthew Lewis for their help, and the anony-
mous reviewers for comments on a draft of this article. Requests for
reprints should be sent to Adrienne Lee, Department of Psychology,
University of Colorado, Boulder, CO 80309.

205

Although tutoring systems have often been focused
toward the effective use of computers in the teaching of
domain topics, researchers can also use tutoring systems
to study learning. Early learning theories were based on
simple tasks, such as list learning, but recent studies reflect
the opinion that learning theories should be examined by
means of more difficult tasks, such as learning how to
use oscilloscopes or learning a full course in some class-
room material (Anderson, Boyle, & Yost, 1985b; Brown,
Collins, & Duguid, 1988; Lee, Polson, & Bailey, 1989).
Since today’s tutoring systems are able to trace series of
students’ actions and to adapt the level of difficulty of in-
struction, they provide the perfect tool for studying learn-
ing theories with more difficult tasks. Thus, tutoring sys-
tems do not have to be focused solely on presenting
problems. They can be used to test learning theories, and
in addition, models of learning can inform the creation
of a tutoring system (Anderson, 1982; Anderson, Boyle,
Corbett, & Lewis, 1986). Anderson (1987) makes the
point that tutoring systems can provide the vehicle for ex-
amining learning while the student is actually learning
some academic topic. The tutoring system can also pro-
vide an experimenter with the ability to test experimental
manipulations in a realistic context.

Clearly, tutoring systems can be created on the basis
of learning theories, although going from the basically
descriptive nature of cognitive theories to a more prescrip-
tive theory can be difficult (Singley, in press). For some
researchers, the development of a tutoring system may
be difficult for very fundamental reasons. For example,
the researcher may not have had extensive computer train-
ing and may not be able to program the system. In such
cases, the researcher may choose to avoid tutoring sys-
tem development in favor of an easier mode of presenta-
tion, such as booklets of materials or simple computer
programs already developed by others. In this paper, I
describe an alternative with which one can utilize the
prescriptive ideas presented by Anderson and colleagues,
without having to know complex computer graphic or pro-
gramming techniques.

Copyright 1992 Psychonomic Society, Inc.

206 LEE
ANDERSON’S PRINCIPLES FOR
TUTORING SYSTEMS

The work by Anderson and colleagues presents the most
comprehensive application of a learning theory to the de-
velopment of tutoring systems. Their set of principles for
the development of such systems is shown in Table 1 (An-
derson, Boyle, Farrell, & Reiser, 1984a).

By following these principles, Anderson and his col-
leagues have developed several different types of systems:
a LISP tutor (Anderson, Farrell, & Sauers, 1984b; Far-
rell, Anderson, & Reiser, 1985; Reiser, Anderson, & Far-
rell, 1985), a geometry tutor (Anderson et al., 1985b),
and an algebra tutor (Lewis, Milson, & Anderson, 1987).
In these instances, students were examined as they solved
problems in the various domains (Anderson et al., 1984a);
the information gained was then used to create hierarchi-
cal representations of goals and production system models.
The implementation is generally accomplished with the
use of LISP machines and graphical representations for
the tasks. For these systems, Anderson et al. (1984a) es-
timated that approximately 10 man-years would be re-
quired for one to create a complete course for geometry
or LISP. Subsequent work has shown that these systems
can be quite effective in instructing students in the do-
main of interest (Lewis et al., 1987, McKendree, 1986;
Singley, 1987, in press).

Although many of the principles have not been tested
directly to see what modifications, if any, need to be made
to them, several of Anderson’s students have attempted
to test pieces of the theory (Singley, 1987, in press). Such
studies enable one not only to extend and test the princi-
ples, but also to evaluate the theory itself.

Even though many of these principles appear at first
glance to represent the prescriptions of common sense,
other developers have challenged specific parts of the prin-
ciples. For example, several researchers have attached
the idea of immediate feedback after an error (see, on AL-
GEBRALAND, Foss, 1987a, 1987b; on SOPHIE, Brown,
Burton, & de Kleer, 1982; Burton & Brown, 1979). In
spite of this and other challenges, these principles repre-
sent a starting point for the development of a tutoring sys-
tem, if a researcher is concerned about basing the system
on some learning theory.

Table 1
Anderson’s Principles for Tutoring Systems

. Identify the goal structure of the problem space.

. Provide instruction in the problem-solving context.

. Provide immediate feedback on errors.

Minimize working memory load.

. Represent the student as a production set.

. Adjust the grain size of instruction according to learning principles.

. Enable the student to approach the target skill by successive
approximation.

. Promote [the] use of general problem-solving rules over analogy.

N A W —

oo

USING HYPERCARD TO DEVELOP
A TUTORING SYSTEM

Developing a tutoring system can be daunting for psy-
chologists who are not experienced programmers. First,
the developer must consider the programming of the tutor-
ing system. Second, the programmer must consider creat-
ing a user interface that is easy to learn and use. The
Macintosh, with its HyperCard application, provides sim-
ple answers to both issues.

HyperCard provides the tools for such experimenters
to be able to develop tutoring systems. It is easy to use
and its programming language, HyperTalk, is easy to learn.
In addition, the Macintosh interface is easy to master, and
therefore, a student can begin to use tutoring systems
created in HyperCard with minimal instruction.

Applying HyperCard

HyperCard is a hypermedia toolkit available for the Ap-
ple Macintosh (Goodman, 1987, 1990). Developers ap-
ply their ideas to stacks of cards in which each card can
represent the presentation of some ideas. Thus, Hyper-
Card developers can easily create simple, static presen-
tations of textbook material by entering the material
directly.

Multiple choice questions can be created by placing the
text of a question on a card and then using buttons for
the choices. When a user selects a button, the program
can evaluate whether the response is correct. If the an-
swer is incorrect, the program can jump to an appropri-
ate feedback card. In this way, HyperCard can be used
to develop a CAI system.

More interesting, however, is the creation of intelligent
CAl systems. For example, can the tutoring system prin-
ciples presented in Table 1 be applied with HyperCard?

Production System Models and
Tutoring Systems

Of primary importance to Anderson’s learning theory
is the development of a production system model of the
domain. A production system is a way to model and to
understand human knowledge (Neches, Langley, & Klahr,
1987). It describes the cognitive architecture of the hu-
man information-processing system, and it can be im-
plemented in a variety of special programming languages
(such as OPS5). Production systems explicitly describe
the goal structure of the problem-solving domain. In ad-
dition, they can be used to simulate the behavior of the
student when the student is given various options. Such
a production system can be considered as the student
model, because it is based on the student’s actions.

In order to create a production system, a task analysis
must be performed. This analysis can provide insights into
human problem-solving behavior, because the student will
respond to the elements in the task that he or she is asked
to perform (Card, Moran, & Newell, 1983). The task

analysis can then provide information about likely goals
of the student in solving the problem, the operators that
can be used to affect the problem state, the methods or
procedures for accomplishing the goals, and the selection
rule that will aid the student when more than one method
can be used to reach a given goal. This model can be trans-
lated into a production system and used to simulate be-
havior. Although the production system can be created
to perform error-free behavior (or the ideal student be-
havior), it can also be expanded to include incorrect or
buggy behavior. The important issue is whether or not
a trace of the current student’s behavior can be made in
order to be compared with the ideal student’s behavior.

The first step is to produce a list of goals, ranging from
the most general goal to the most specific of subgoals
(Kieras, 1987). Then one should go back through the list-
ing of goals and attach methods for accomplishing those
goals. The methods usually contain the subgoals of the
higher level goals. The easiest way to formulate these
methods is to simply list what would need to be done to
accomplish the current goal. After one has listed the meth-
ods, one should check for accuracy. Selection rules, or
places where more than one method could apply, should
also be noted as one is describing the methods.

Figure 1 shows an example of how to write a model
that can be later translated either directly into HyperTalk
or into a production system that can be run to test differ-
ent problems as input. In Figure 1A, the overall goal is
set out. Then the subgoal is written (Figure 1B). A selec-
tion rule is provided to illustrate how a selection rule might
look.

To meet most of Anderson’s prescriptions, a produc-
tion system, based on the domain of interest, should be
created; it should be either integrated with or indepen-
dent of the tutoring system. In fact, since HyperTalk per-
mits [F-THEN statements, an experimenter can make a
direct translation between a working production system
and HyperTalk. The knowledge gained by the experi-
menter in producing the production systems can be used

a) IF the goal is to solve the problem THEN

STUDYING LEARNING 207
to generate instruction and feedback. In addition, by ex-
amining the production system, the experimenter can de-
termine the appropriate division of the knowledge to be
learned. Using these small incremental steps, students can
learn by successive approximation.

Implementing Other Andersonian Principles

The main assumption is that students will learn some
material and then be able to solve some problems by using
the tutoring system. Instruction is necessarily provided
during problem solving, since feedback is given when a
mistake is made. Since HyperCard can capture a student’s
actions, feedback can be provided immediately after an er-
ror. Another principle, minimizing working memory load,
is a prescription to display as much of the previous stu-
dent actions as possible. Although the Macintosh Plus and
Macintosh SE do not provide much screen space, there is
enough room to present a problem, the student’s responses
to parts of the problem, and the student’s scratch work.

Adding Extras to the HyperCard
Tutoring System

Although the tutoring system development principles
do not explicitly state the necessity of a help system, all
of Anderson’s tutoring systems provide one. A help sys-
tem can be easily provided, either by placing a help sys-
tem in each stack or by having a separate stack for the
help system. In addition to a help system, HyperCard and
the Macintosh interface allow for graphics to be created
and incorporated into the program easily. For example,
one can scan images into the system, touch them up with
a paint program, and then paste them into HyperCard (in
the same manner as text can be cut and pasted with a word
processor).

Summary

HyperCard provides ease of development based on:
(1) graphically oriented programming, (2) a program-
ming language, HyperTalk, that is simple to learn, and

Step 1. Set the goal of identifying the type of inheritance.
Step 2. Set the goal of identifying the genotypes of the parents.
Step 3. Set the goal of identifying the genotypes of the offspring.

b) IF the goal is to identify the type of inheritance AND

the type is not determined THEN
Step 1.
inheritance.

Accomplish the goal of running through the rules for determining

Step 2. Set the goal of verifying that the correct type is chosen.

¢) Selection rule set for the goal of running through the rules and determining

inheritance.

IF there is no pattern in the pedigree, THEN

set the type to autosomal.
.-ete....)
Report goal accomplished.

Figure 1. An example of rules from a model of genetics problem solving.

208 LEE

(3) HyperTalk’s IF-THEN statements, which allow the
direct translation of production systems models of be-
havior.

APPLYING IDEAS TO DEVELOP
A GENETICS TUTORING SYSTEM

A simplified tutoring system for genetics was developed
with HyperCard, and an evaluative study was performed
on that system. The system is an example of how the ideas
presented in the previous section can be applied to a spe-
cific topic. The evaluative study examined Anderson’s
prescription that feedback must occur immediately after
an error is made (Lee, 1989). It provides an example of
how learning issues can be investigated with the use of
tutoring systems.

The genetics system will be described in the following
sections. However, since the paper was designed to dem-
onstrate the ease of application of tutoring system ideas
in HyperCard, it will only be discussed briefly.

Description of Genetics System

A single specific area of genetic problems, that of ped-
igree problems, was chosen (see Figure 2). Pedigrees are
diagrams showing relations among individuals (either
by blood or marriage) and the inheritance of a trait or
traits by those individuals. A trait could be hair color or
a disease. Figure 2 shows unaffected males and females
(squares/circles not filled in) and affected males and fe-
males (squares/circles filled in). For example, a man with
colitis will be represented by a filled-in square. A pedi-
gree problem will show a pedigree without the type of
inheritance indicated next to each individual. Question
marks indicate where the subject was asked to identify
the genotype of the individual. (The genotype is a two-
letter notation, in which each gene is represented by a
single letter. A pair of genes work together to represent
a trait, such as pea pod color. For example, a yellow pea
pod, where yellow is recessive, would be represented as
“yy)

The tutoring system consists of panels, which present
basic material from introductory genetics books. These
materials include basic information, information on how
to solve pedigree problems, and examples. An example
showing the inclusion of graphics is given in Figure 3.

After certain sections, a series of problems were pre-
sented. An example card from the problem set is shown
in Figure 4. Individual production system models were
created for each problem. In addition, an ideal student
model and bug catalog were also created. All problems
for all problem sets were tested in a pilot study to deter-
mine whether the sequences for the production system
models were correct. The production system models were
used to program the buttons and provide information for
the feedback screens. Some additional programming was
needed to provide the proper interaction between what
a production system would produce and what was desired

orm @b

¢

Figure 2. An example question from the tutoring system: Ques-
tion 4 of Problem Set 4. Squares represent males, circles represent
females, affected individuals are colored, and unaffected individu-
als are not colored.

from HyperCard. For example, the production system
may indicate that an error a student makes should be cor-
rected by giving the student specific feedback. The addi-
tional programming would send the student to the feed-
back screen.

When subjects were asked to solve problems, they chose
their answers from the sets given to them. In the original
tutoring system, subjects received a box with a limited
number of choices. In a later version of the tutoring sys-
tem, subjects selected their answer from all possible
choices. (Compare Figures 4 and 5.)

An aid to solving the genetics problems is called a Pun-
nett Square (Figure 6). This functions as a scratch area
where subjects can calculate what the possible genotypes
of offspring can be. Notice that the Punnett Square acts
as a multiplication square. Since the problems the sub-
jects were solving did not involve more than one type of
disease/trait, a small scratch area or Punnett Square was
provided (see Figures 4 and 5).

A help system was also provided. The help button ap-
pears at the bottom of each problem screen (see Figures
4 and 5); by selecting it, subjects can access the help in-
formation screen, which in turn allows them to select what
type of help they need. Thus, for example, subjects can
find out the definitions for major genetics terms. Further-
more, depending on what part of the problem the student
is working on at the time of request, the help system is
also able to provide the next step that the subject needs
to take. However, the help system never provides the an-
swer to any part of a problem.

Since a tutoring system can act as both a tutor and an
experimental presentation vehicle, the tutoring system was
programmed to record subject number, date, and time
spent on each panel. Responses (including whether or not
the subject answered the question correctly) were re-

STUDYING LEARNING 209

Sex-linked inheritence in
Drasophile. THIS IS 8 cross
ar white-eyed remasle hy
red-eyed mele. Femesles
ore ot the jerl,; meoles ore
at the right.

Figure 3. An example card showing the use of graphics to illustrate a principle.

corded. All answers to questions, including responses to
problem aids (Punnett Squares) were recorded.

Evaluation and Experimental Results

This genetics system was used to evaluate Anderson’s
third prescription that immediate feedback should be pro-
vided after an error is made. Two systems were there-
fore developed: one that provided immediate feedback and
one that provided delayed feedback. For the immediate
condition, feedback was given when the subject made an
error; for the delayed condition, feedback was given at
the end of the problem. Since the focus of this paper is
to demonstrate the usefulness of HyperCard in the de-
velopment of tutoring systems, the description of the
evaluative study will be brief. A more complete descrip-
tion may be found in Lee (1989).

The experiment took place over 2 days. On the 1st day,
subjects used the tutoring system, and on the 2nd day,
subjects took a written test on the material learned and
completed a questionnaire. While the subjects used the
tutoring system, the computer recorded all their actions
and times to complete tasks. The written test consisted
of a multiple choice quiz, pedigree problems, a question-
naire on the tutoring system, and a questionnaire on the
subjects’ backgrounds. Some problems were taken di-
rectly from the tutoring system; other problems were more
difficult, with the most difficult found in tests taken from
tests given to a genetics class at our university. The test
was scored for correctness.

The immediate condition subjects learned more quickly
than did the delayed condition subjects [F(1,19) = 31.95,
p < .01]. However, on a posttest, although both the im-

2b) Determine the
genotype of the perents.

Then determine the
genotypes of the F1
generation.

After determining the
F1 generation, determine
their spouses.

From the F1 generation,
determine the F2
generation.

Select & question mark,"?",
with the mouse. Type in the
proper response. The genotype
that you indiceted will appear
next to the question mark.

Type of inheritance: Autosomal recessive.

Scratch ares: Not checked
Use to calculate Punnett
Squere. Type into boxes.

X

Figure 4. Problem-solving panel from original tutoring system.

210 LEE

Determine the
genotype of all
individuals marked
with "?". Select the
question mark, "7
next to the circle or
square and then
follow instructions.

Use the mouse to
select the correct
genotype from the
window below.

Type of inheritance: Autosomal recessive. F

Use to celculate Punnett

Scratch area: Not checked
Square. Type into boxes.

X

m

Figure 5. Problem-solving panel from tutoring system developed to replicate original

experiment.

mediate and the delayed condition subjects performed
equally well on problems that were similar to problems
seen in learning, the delayed condition subjects performed
better on a far transfer task [F(1,19) = 9.13, p < .01].
This experiment is currently being replicated with addi-
tional conditions to test hypotheses about the reasons for
the performance of the delayed condition subjects.

The subjects were also given a questionnaire about the
tutoring system. Generally, the students found the tutor-
ing system useful for solving problems on the posttest.
The students would have liked to have had a break in the
tutorial, in addition to color, more sound, more graphics,
and more examples. These suggestions are easy to im-
plement, and in the continuation studies currently being
performed, the only option not adopted was the addition
of color and sound. However, color can be added by using
HyperCard on a Macintosh II.

DISCUSSION

This experiment was designed to illustrate how one
could develop a tutoring system based on a learning the-
ory and then test the learning theory through testing the
tutoring system. The results from this experiment can shed

Y y
Y|VYY Yg
yi Yy Juy

Figure 6. Example of a Punnett Square.

light on the prescriptions for tutoring system development
and on the learning theory itself.

The learning theory hypothesizes that people create
productions automatically from their representations of
examples when they are asked to solve problems. An er-
ror would indicate that an incorrect production had been
created and that correction would be needed in order to
remove that incorrect production. Thus, the theory would
indicate that immediate feedback was preferable, but the
theory itself does not indicate exactly how much time is
needed before a production becomes permanent.

Immediate feedback does not allow for self-correction,
which is preferable to correction by intervention of an in-
structor or a computer (Anderson et. al., 1984a). In fact,
delayed condition subjects changed many incorrect re-
sponses in this experiment. These results are consistent
with those of Lewis and Anderson (1985), whose sub-
jects in delayed conditions were better able to identify in-
correct paths. Self-correction is not inconsistent with the
idea of immediate feedback. Instead, the term immediate
should probably be clarified. If the problem is small, like
these problems or single LISP expressions (Anderson
et al., 1984a), then immediate could mean ‘‘at the end
of the problem.’’” Thus, this discussion illustrates how an
evaluative study can feed information back to both the the-
ory and the prescriptions for tutoring systems derived
from that theory.

Considering Another Learning Theory
to Address This Issue

Although the results from this experiment can be ex-
plained by correcting the prescriptions derived from An-
derson’s theory, we can compare the prescriptions derived
from another learning theory in order to obtain insight
into the results from this experiment. For example, let

us consider VanLehn’s (1988) impasse-driven theory of
learning. In a test situation, a student might reach a prob-
lem spot, and in the absence of help, the student would
generate a solution to get past that spot, a repair, which
might or might not be correct. After an error has occurred,
the incorrect production rule has already been formed
when the impasse is reached and the action taken. One
idea that follows from impasses and repairs is that the
teacher wants to catch an impasse before a student will
make the incorrect repair. This would translate into two
possible prescriptions: (1) to provide a means for students
to find out a detailed (rather than general) next step for
a problem before an error can be made, or (2) to provide
feedback when an error is made that includes all steps
from the beginning of the problem to the point where the
impasse has occurred.

This example illustrates that the issue of immediate
versus delayed feedback may not be important when one
is deriving prescriptions for tutoring systems in another
learning theory, such as VanLehn’s (1988) impasse-driven
learning theory. It also indicates the simplicity of going
from a learning theory to prescriptions for a tutoring sys-
tem, given that learning theory specifies its conditions ex-
plicitly. In addition, the examination of a single learning
theory can lead to an interest in comparing it with other
learning theories.

Comparison With Other Tutoring Systems

In addition to comparing the learning theory examined
with other learning theories, the tutoring system can be
compared with other tutoring systems. This tutoring sys-
tem does provide a way to include all of the basics found
in other systems, such as a student module, an expert mod-
ule, and an instructional module. It also modeled students’
behavior as a production set. In addition, HyperCard al-
lows an experimenter to develop an interface that is easy
to use, can visually display the goal structure of the prob-
lem, and can ease the student’s work load by providing
a display of the problem on the screen. As far as work
load is concerned, HyperCard, in comparison with other
systems, allows for ease in programming (Anderson &
Skwarecki, 1986). Finally, a HELP system was devel-
oped by creating both a separate HELP stack for each
problem set and direct access on each problem screen.

There are several differences between the simplified
tutoring system described in this paper and other tutor-
ing systems. Anderson’s tutoring systems are developed
to tutor for complete courses; the present tutoring sys-
tem is focused on one section of a genetics course. In ad-
dition, Anderson has created full production system
models for complete courses on particular topics (LISP,
algebra, geometry). For complete use of his prescriptions,
it would be necessary to build a similar production sys-
tem for the topic to be tutored; however, to test a learn-
ing principle, it may be sufficient to build production sys-
tem models only for the problems to be used. Such an
approach has been used to study novice learning of oscil-
loscopes (Lee et al., 1989). This simplifies the task con-

STUDYING LEARNING 211
siderably and allows one to start the creation of the tutor-
ing system with HyperCard more quickly. Finally, a
running production system in the background is not eas-
ily feasible and was not used for the genetics tutoring sys-
tems. However, students’ actions can be followed and re-
corded. These actions can be compared to an ideal stu-
dent model and a bug catalog.

In comparison with other tutoring systems in general,
this genetics tutoring system provides neither dynamic cre-
ation of problems nor natural language dialogue between
the system and the student, and the system cannot learn
(Fischetti & Gisolfi, 1990; Kimball, 1982; O’Shea, 1982).

When these considerations are taken into account, it can
be seen that HyperCard will not create a system that is
as complete as one of Anderson’s tutoring systems or the
other systems in the literature. On the other hand, one
can easily create a tutoring system that does test the learn-
ing principles involved.

CONCLUSIONS

Learning can be studied in many ways. One of the most
interesting ways is to use a tutoring system. Subjects can
learn material that is taught in schools and universities
rather than nonsense materials, which they may not en-
counter in real life. Since tutoring systems record the pro-
cess of learning as subjects are solving problems, exper-
imenters can learn about learning.

In this paper, I have described principles for tutoring
system development based on Anderson’s learning the-
ory, and I have shown how those principles can be ap-
plied in the development of a simplified tutoring system
with HyperCard. Two such systems were developed, in
which one of Anderson’s tutoring system principles, im-
mediate versus delayed feedback after error, was tested
directly. The empirical evaluation provided information
about how learning can be affected by feedback timing;
it also provided direct information about the advantages
of using HyperCard for the Macintosh.

Using a Macintosh allows a student to learn easily how
to use the computer without instruction and to concen-
trate on the learning of the material presented. Using
HyperCard provides an ease of entering a variety of ma-
terial (text, graphics, sound), ease of collecting user data,
ease of programming for the novice programmer, and ease
of modifying existing HyperCard tutoring systems. In ad-
dition, since Anderson’s learning theory and tutoring sys-
tem concepts are based on production systems, one can
directly program them in HyperTalk, which accepts an
IF-THEN format. In this way, one can utilize psycho-
logically based principles in a simplified tutoring system.

The key point of this work is that experimenters should
not avoid tutoring system research because they lack pro-
gramming skills. Instead, a simplified tutoring system
based on the principles of a learning theory can be devel-
oped. HyperCard provides a way for many researchers
to explore learning through the use of tutoring systems
in their research. In conclusion, tutoring system research

212 LEE

can be rewarding, because it provides an experimenter
with a method to explore ways of teaching and instruc-
tion and, in the process, provides information about the
learning process itself.

REFERENCES

ANDERSON, J. R. (1982). Acquisition of cognitive skill. Psychological
Review, 89, 369-406. :

ANDERSON, J. R. (1987). Methodologies for studying human knowl-
edge. Behavioral & Brain Sciences, 10,467-505.

ANDERSON, J. R., BoyLE, C. F., CoRrBETT, A., & LEwis, M. (1986).
Cognitive modelling and intelligent tutoring (Tech. Rep. No. ONR-
86-91). Pittsburgh, PA: Carnegie-Mellon University, Department of
Psychology.

ANDERSON, J. R., BoyLg, C. F., FARRELL, R., & REISER, B. (1984a).
Cognitive principles in the design of computer tutors. In Sixth An-
nual Conference of the Cognitive Science Program (pp. 2-16). Boul-
der, CO: University of Colorado, Institute of Cognitive Science.

ANDERSON, 1. R., BoyLE, C. F., & ReiseR, B. (1985a). Intelligent tutor-
ing systems. Science, 228, 456-462.

ANDERSON, J. R., BoyLE, C. F., & Yost, G. (1985b). The geometry
tutor. In Proceedings of the International Joint Conference on Artifi-
cial Intelligence (pp. 1-7). Los Altos, CA: Morgan Kaufmann.

ANDERSON, J. R., FARRELL, R., & SAUERs, R. (1984b). Learning to
program in LISP. Cognitive Science, 8, 87-129.

ANDERSON, J. R., & SKWARECKI, E. (1986). The automated tutoring
of introductory computer programming. Communications of the ACM,
29, 842-849.

BrownN, J. S., Burton, R. R., & DE KLEER, J. (1982). Pedagogical,
natural language and knowledge engineering techniques in SOPHIE
I, I, and OI. In D. Sleeman & J.S. Brown (Eds.), Intelligent tutor-
ing systems (pp. 227-282). New York: Academic Press.

Brown, J. S., CoLLINS, A., & Ducuip, P. (1988). Situated cognition
and the culture of learning (Tech. Rep. No. 6886). Cambridge, MA:
Bolt, Beranek, & Newman.

Burns, H., PARLETT, J. W., & REDFELD, C. L. (1991). Intelligent tutor-
ing systems. Hillsdale, NJ: Erlbaum.

BurtoNn, R. R., & BRowN, J. S. (1979). Toward a natural language
capability for computer-assisted instruction. In H. O’Neil (Ed.), Pro-
cedures for instructional systems development (pp. 79-98). New York:
Academic Press.

CARD, S. K., MoraNn, T. P., & NEWELL, A. (1983). The psychology
of human-computer interaction. Hilisdale, NJ: Erlbaum.

FARreLL, R. G., ANDERSON, J. R., & REISER, B. J. (1985). An inter-
active computer-based tutorial for LISP. In Proceedings of the Inter-
national Joint Conference on Artificial Intelligence (pp. 106-109). Los
Altos, CA: Morgan Kaufmann.

FiscHeTTl, E., & GisoLF, A. (1990). From computer-aided instruc-
tion to intelligent tutoring systems. Educational Technology, 30, 7-12.

Foss, C. L. (1987a). Learning from errors in ALGEBRALAND (Tech.
Rep. No. IRL-87-0003). Palo Alto, CA: Institute for Research on
Learning.

Foss, C. L. (1987b). Memory for self-derived solutions to problems

(Tech. Rep. No. IRL-87-0002). Palo Alto, CA: Institute for Research
on Leamning.

GoobpMAN, D. (1987). The complete HyperCard handbook. New York:
Bantam Computer Books.

GoopMaN, D. (1990). The complete HyperCard 2.0 handbook. New
York: Bantam Computer Books.

Kieras, D. E. (1987). A guide to GOMS task analysis. Unpublished
manuscript. University of Michigan, Department of Psychology.
KimMBaLL, R. (1982). A self-improving tutor for symbolic integration.
In D. Sleeman & J. S. Brown (Eds.), Intelligent tutoring systems

(pp. 283-308). New York: Academic Press.

LEE, A. Y. (1989). A preliminary look at timing of feedback in tutoring
systems (ICS Tech. Rep. No. 89-10). Boulder, CO: University of
Colorado, Institute of Cognitive Science.

LEg, A. Y., PoLsoNn, P. G., & BaiLey, W. B. (1989). Learning and
transfer of measurement tasks. In K. Bice & C. Lewis (Eds.), CHI'89
Conference proceedings: Human factors in computing systems
(pp. 115-120). New York: Association for Computing Machinery.

Lewis, M. W., & ANDERsON, J. R. (1985). Discrimination of operator
schemata in problem solving: Learning from examples. Cognitive Psy-
chology, 17, 26-65.

Lewis, M. W., MILsSON, R., & ANDERSON, J. R. (1987). The TEACH-
ER'S APPRENTICE: Designing an intelligent authoring system for
high school mathematics. In G. Kearsley (Ed.), Artificial intelligence
and instruction: Applications and methods (pp. 269-301). Reading,
MA: Addison-Wesley.

MCcKENDREE, J. (1986). Impact of feedback content during complex skill
acquisition. Unpublished doctoral dissertation, Carnegie-Mellon Uni-
versity, Pittsburgh.

NEcHES, R., LANGLEY, P., & KLAHR, D. (1987). Learning, develop-
ment, and production systems. In D. Klahr, P. Langley, & R. Neches
(Eds.), Production system models of learning and development (pp. 1-
45). Cambridge, MA: MIT Press.

O'SHEA, T. (1982). A self-improving quadratic tutor: A self-improving
tutor for symbolic integration. In D. Sleeman & J. S. Brown (Eds.),
Intelligent tutoring systems (pp. 309-336). New York: Academic Press.

PorsoN, M. C., & RICHARDSON, J. J. (1988). Foundations of intelli-
gent tutoring systems. Hillsdale, NJ: Erlbaum.

PsoTKA, J., MasseY, L. D., &« MUTTER, S. A. (1988). Intelligent tutoring
systems: Lessons learned. Hillsdale, NJ: Erlbaum.

REISER, B. J., ANDERsSON, J. R., & FARRELL, R. G. (1985). Dynamic
student modelling in an intelligent tutor for LISP programming. In
Proceedings of the International Joint Conference on Artificial Intel-
ligence (pp. 8-14). Los Altos, CA: Morgan Kaufmann.

SINGLEY, K. (1987). Developing models of skill acquisition in the con-
text of intelligent tutoring systems. Unpublished doctoral dissertation,
Carnegie-Mellon University, Pittsburgh.

SINGLEY, K. (in press). Improving operator selection through goal posting
in a calculus word problem tutor. Journal of Artificial Intelligence
& Education.

SKINNER, B. F. (1958). Teaching machines. Science, 128, 889-977.

VaNLEHN, K. (1988). Toward a theory of impasse-driven learning. In
H. Mandl & A. Lesgold (Eds.), Learning issues for intelligent tutoring
systems (pp. 19-41). New York: Springer-Verlag.

WENGER, E. (1987). Artificial intelligence and tutoring systems. Los
Altos, CA: Morgan Kaufmann,

