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Abstract

The generalization from two-class classification to multi-
class classification is not straightforward for discriminants
which are not based on density estimation. Simple combin-
ing methods use voting, but this has the drawback of incon-
sequent labelings and ties. More advanced methods map
the discriminant outputs to approximate posterior proba-
bility estimates and combine these, while other methods use
error-correcting output codes. In this paper we want to
show the possibilities of simple generalizations of the two-
class classification, using voting and combinations of ap-
proximate posterior probabilities.

1 Introduction

Classifiers are often developed to distinguish between
just two classes of objects. A discriminant function fAB is
optimized such that for values larger than a certain thresh-
old value, the object is classified as class ωA, and other-
wise to class ωB . This procedure is a direct generalization
of the Bayes classifier, where for each of the classes the
probability density function is estimated, and the object is
assigned to the class with the highest posterior probability
[3]. The discriminant function can directly be derived from
the posterior probabilities by taking the difference between
the posterior probabilities of the two classes.

A nice feature of using the posterior probabilities (and
thus also of this Bayes classifier) is, that it can directly be
extended to problems with more than two classes. It just
requires the estimation of the extra class probability den-
sity (and the class prior probability). New objects are again
assigned to the class with the largest posterior probability.

When the discriminant functions are not based on es-
timated densities but basically fit a discriminant between
two classes (like the Fisher linear discriminant [7], the per-
ceptron or the support vector classifier [11]), the multiclass
generalization is not always straightforward [1]. It is in gen-

eral not possible to compare the outputs of the discriminant
functions directly to find the ‘most confident’ one. Several
strategies are proposed to solve this problem.

The first possibility is to apply a voting mechanism,
where each classifier votes for (or against) a certain class.
The classifiers only have to output a binary answer. The ob-
ject is assigned to the class with the highest number of votes.
A second approach is to assume that the classifiers output
an estimated class probability (or something related [10]),
and assign the test object to the classifiers with the max-
imal (’most confident’) classification output. This clearly
requires classifiers which output a continuous confidence
answer. Finally, it is possible to introduce error-correcting
output codes, which changes the definition of the class a
single classifier has to learn [4].

In this paper we show the voting approaches in compar-
ison with the classifier output approaches for the extension
to two-class classifiers to multiclass classifiers. For this, a
very simple procedure to estimate posterior probabilities is
proposed, to avoid ties and inconsequent labelings. We will
use the same datasets as presented by [9].

2 Theory

Assume we have a labeled dataset X tr containing N ob-
jects from K classes. The ultimate goal is to classify new
objects from the same distribution in one of the K classes,
ωk, possibly with the option to reject the object in case of
ties or contradictions. In the coming section, the classes will
be labeled ωA, ωB , ωC , ....

Further we assume that we can train a discriminant func-
tion fAB(x;w) on a two-class classification problem in-
volving classes ωA and ωB . The discriminant is optimized
such that:

fAB(x;w) =

{
≥ 0 if x ∈ ωA

< 0 if x ∈ ωB

(1)

Note that objects x which do not originate from class ωA

or ωB , are ignored. This definition of the discriminant does
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Figure 1. Two approaches in multiple classes: left shows one against the rest, right shows each pair
of classes. The areas indicated with question marks show areas where there is inconsistent output.

not define the exact values for fAB larger or smaller than 0.
For the support vector classifier, the outputs are binarized
fAB = ±1. For other classifiers, like the Fisher discrim-
inant, the output is the distance to the decision boundary
(−∞ < fAB < ∞).

2.1 Voting: one-against-rest or one-against-one

When it is assumed that the classifiers output a binary
decision, there are two basic approaches. In the first ap-
proach a classifier between one class and the K − 1 other
classes is trained (in total K classifiers). This is called the
1-r (one-against-rest) approach. Each discriminant k out-
puts the decision ωk or ω−k (’not class k’). In the second
approach a classifier is trained between each pair of classes
(in total K(K − 1)/2 classifiers). This classifier (labeled
with double indices (k1, k2)) outputs the decision ωk1 or
ωk2. This is called the 1-1 (one-against-one) approach.

The objects are then classified by applying a combining
rule on the set of decisions. One strategy is to use voting,
where the object is labeled to the class with the highest num-
ber of votes (in the 1-r approach this means that a class can
have 1 or 0 votes). In both cases we are faced with the pos-
sibility of ties or contradictory votings [5]. In figure 1 an
example of a 2D dataset containing three classes is shown.
For both scenarios linear classifiers are trained. When the
voting combining is used, there are areas with inconsistent
labelings, indicated by the question marks. In the first ap-
proach all classifiers might conclude it is not their class (so
it is rejected by all classifiers, ?-II), or several classifiers la-
bel it as their class (?-I). In the second approach there will
be cases where all classifiers disagree (?-III) or there are ties
in the voting (not possible here for K = 3).

When rejected objects are not allowed in the application,
these rejected objects should still be classified. The most

simple method is to assign these objects to the class with
largest prior probability Pk∗ . The error rate on this (re-
jected) data will therefore be εr = 1 − Pk∗ (= (K − 1)/K
for equal prior probabilities). When a fraction f of the ob-
jects is rejected, and the rest is classified with an error ε, the
total error εtot becomes εtot = (1 − f)ε + f(1 − Pk∗).

2.2 Confidence value estimation

To avoid these ties and inconsequent labelings, a real-
valued confidence value for each classification has to be
used. Of course, when we assumed we have (two-class)
classifiers which just output a binary classification, there is
no confidence level for the classification defined. In these
cases we will use the distance from the object x to the de-
cision boundary fAB(x). In order to map such a distance
on posterior probabilities, we use a 1D logistic classifier [2]
which maximizes the likelihood of the classified training
objects. This is achieved by optimizing α in the function
[6]:

p̃AB(ωA|x;w) =
1

1 + exp(−αfAB(x;w))
(2)

This optimization will produce for each classification a con-
fidence level, but it will not change the output label for the
two-class problem.

2.3 Combining the confidence value estimations

The probability estimates of the classifiers will be com-
bined using the maximum rule (the objects are assigned
to the class with the maximal output). Combining all
K(K − 1)/2 classifiers in the 1-1 situation (using voting or
using the estimated posterior probability) will often result
in poor classification performances. Assume that the object
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x originates from class ωA. There will be (K−1)(K−2)/2
classifiers which have never seen objects from this class ωA.
Combining these ignorant classifiers will therefore result
in almost random classification. This becomes even more
prominent for larger numbers of classes. For a classification
problem involving more than K = 4 classes, the majority
of the classifiers are ignorant of class ωA (and for a 10-class
problem even 80%).

Note that when the classifiers are combined using the es-
timated probabilities, it is still possible to reject the least
confident outputs. In that case a threshold on the posterior
probability can be set, but the user has to define the frac-
tion of the objects which can be rejected. This will not be
investigated in this paper.

3 Experiments

In this section we will use the datasets presented in
[8]. In table 1 the characteristics of these datasets are
given, showing the variety of training set sizes, number
of classes and dimensionality. Ten-fold cross-validation is
used. Three classifiers are considered: the normal density

Table 1. Dataset characteristics
dataset #train #test #class dim.
vowel 528 462 11 10
waveform 300 500 3 21
vehicle 423 423 4 18
crabs 80 120 4 5
digits 1000 1000 10 256

based linear classifier (LDA), the Fisher linear discriminant
and the linear support vector classifier (SVC). For the first
classifier the output is defined as the probability density es-
timates for each of the classes. In that case the fitting from
section 2.2 is not required. For the second two classifiers
the confidence estimates and combining rules are used.

In the experiments we will investigate the classification
errors and rejection rates obtained by 4 different methods
for generalizing two-class classifiers (see section 2.1 for ex-
planation of ’1-r’ and ’1-1’).

vote 1-r: K classifiers are trained and the binarized output
to vote for the output class is used. In case of ties or
inconsequent votes, the object is rejected or randomly
assigned to one of K classes.

prob 1-r: K classifiers are trained and the output of the
classifiers is mapped to a posterior probability esti-
mate. The object is assigned to the class with the
largest output.

vote 1-1: here K(K − 1)/2 classifiers are trained. Again
the binarized output is used to vote for the output class.
In case of ties or inconsequent votes, the object is re-
jected or randomly assigned.

prob 1-1: K(K − 1)/2 classifiers are trained, but the out-
put of the classifiers is mapped to a posterior probabil-
ity estimate. The object is assigned to the class with
the largest output.

In table 2 the classification errors and rejection rates (if
applicable) are shown for all datasets and all multiclass gen-
eralizations. For the rules involving voting, a third result is
given: the total classification error εtot when the rejected
objects are randomly assigned as in section 2.1.

We can conclude, that vote 1-r rejects large fractions of
the data, while vote 1-1 has a low rejection rate (often even
0%). This is clearly visible for the LDA in datasets which
contain many classes (vowel and digits). On the other hand,
when the objects are rejected, the performance on the re-
maining data is often much better (compare the error of
vote 1-r and εtot of vote 1-r or error of prob 1-r). When
the rejected objects are randomly assigned, very poor re-
sults appear (the εtot column is much higher than the error
column).

When classifiers output are mapped to probabilities and
combined, much better results appear for the 1-r case (see
also section 2.3). The classification performance is not bet-
ter than the vote 1-r with reject, but consistently better than
vote 1-r with random assignment of rejected objects.

The vote 1-1 including rejection is worse than vote 1-r,
but better when the rejected objects are randomly assigned.
This is mainly due to the low rejection rate. When vote 1-1
shows high rejection rate (for instance in the digit dataset),
performances are comparable. Furthermore, prob 1-1 per-
forms well if the outputs are well estimated (as for the LDA)
but otherwise it performs very poorly (both in Fisher and
SVC).

4 Conclusions

Multiclass classification problems can be solved by com-
bining the hard output labels (voting) or probability esti-
mates of standard two-class classifiers. Voting can result in
many rejects, especially when K classifiers are trained to
distinguish between one class and the rest (1-r case), but the
performance on the accepted objects is very good (the ’dif-
ficult’ objects are rejected). For the one-against-one (1-1)
case, much less objects are rejected. When these rejectes
are not acceptable, and the classifiers do not provide a prob-
ability estimate, we propose to fit a simple logistic func-
tion on the outputs and combine them with the maximum
combining rule in the 1-r case. This does not improve over
the voting method with rejects, but no objects are rejected
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Table 2. Classification errors (in %) for all datasets and all multiclass generalization rules. For the
voting rules also the rejection rate and classification error after random assignment of the rejected
objects is shown. Values between brackets are the standard deviation over 10 runs.

LDA
vote 1-r prob 1-r vote 1-1 prob 1-1

error ε reject f εtot error error ε reject f εtot error
vowel 27.0 (4.0) 75.0 (2.0) 75.0 (1.1) 49.7 (1.2) 25.4 (1.5) 5.5 (1.0) 29.0 (1.8) 30.3 (2.7)

waveform 6.8 (0.8) 32.5 (1.4) 26.3 (1.0) 16.3 (1.1) 15.0 (1.2) 0.0 (0.0) 15.0 (1.2) 20.0 (1.1)
vehicle 15.6 (1.4) 26.0 (2.0) 31.1 (0.7) 23.9 (1.4) 18.7 (1.2) 2.0 (0.6) 19.8 (1.2) 18.9 (1.4)
crabs 2.2 (1.4) 7.6 (2.2) 7.7 (2.0) 5.4 (2.6) 2.9 (1.1) 0.0 (0.0) 2.9 (1.1) 2.7 (1.4)
digits 10.4 (1.1) 21.3 (1.4) 27.4 (1.1) 18.6 (0.7) 74.5 (0.8) 34.5 (7.3) 79.8 (1.3) 44.7 (4.4)

Fisher
vote 1-r prob 1-r vote 1-1 prob 1-1

vowel 5.3 (6.3) 96.1 (0.8) 87.6 (0.6) 51.1 (2.0) 25.4 (1.5) 5.5 (1.0) 29.0 (1.8) 82.8 (4.6)
waveform 7.3 (0.8) 31.5 (1.4) 26.0 (0.9) 16.4 (1.4) 15.0 (1.2) 0.0 (0.0) 15.0 (1.2) 22.1 (2.0)

vehicle 15.2 (1.7) 27.3 (1.9) 31.5 (0.6) 23.1 (1.5) 18.7 (1.2) 2.0 (0.6) 19.8 (1.2) 42.6 (5.4)
crabs 1.9 (1.4) 8.1 (2.0) 7.8 (2.1) 5.1 (2.0) 2.9 (1.1) 0.0 (0.0) 2.9 (1.1) 50.0 (13.0)
digits 9.0 (0.8) 23.8 (0.8) 28.3 (0.8) 17.9 (1.0) 16.6 (1.1) 17.2 (1.1) 29.2 (1.4) 88.9 (1.6)

SVC linear
vote 1-r prob 1-r vote 1-1 prob 1-1

vowel 16.9 (3.6) 73.0 (2.0) 71.0 (1.0) 69.6 (2.4) 19.8 (2.1) 7.8 (1.1) 25.4 (1.9) 81.3 (2.3)
waveform 7.5 (0.8) 28.5 (0.6) 24.4 (0.5) 16.0 (1.2) 15.2 (0.6) 0.0 (0.0) 15.3 (0.6) 49.2 (2.5)

vehicle 15.7 (1.9) 24.6 (2.6) 30.3 (1.5) 23.9 (2.5) 19.3 (1.4) 3.7 (1.8) 21.4 (1.4) 40.4 (10.6)
crabs 2.4 (1.3) 9.9 (2.5) 9.6 (2.3) 7.1 (1.5) 4.1 (1.0) 0.6 (0.6) 4.5 (0.9) 67.0 (15.6)
digits 5.4 (0.7) 18.7 (1.0) 21.2 (1.0) 12.2 (1.0) 5.9 (0.8) 1.9 (0.4) 7.5 (0.5) 67.1 (4.1)

and the performance is significantly better than the voting
in which the rejects are randomly assigned. Surprisingly,
the voting with the random assignment often gives the best
performance in the 1-1 case.
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