
 

Remote Sens. 2015, 7, 15467-15493; doi:10.3390/rs71115467 
 

remote sensing 
ISSN 2072-4292 

www.mdpi.com/journal/remotesensing 

Article 

Using UAV-Based Photogrammetry and Hyperspectral Imaging 

for Mapping Bark Beetle Damage at Tree-Level 

Roope Näsi 1, Eija Honkavaara 1,*, Päivi Lyytikäinen-Saarenmaa 2, Minna Blomqvist 2,  

Paula Litkey 1, Teemu Hakala 1, Niko Viljanen 1, Tuula Kantola 2, Topi Tanhuanpää 2  

and Markus Holopainen 2 

1 Department of Remote Sensing and Photogrammetry, Finnish Geospatial Research Institute, 
Geodeetinrinne 2, 02430 Masala, Finland; E-Mails: roope.nasi@nls.fi (R.N.);  
paula.litkey@nls.fi (P.L.); teemu.hakala@nls.fi (T.H.); niko.viljanen@nls.fi (N.V.) 

2 Department of Forest Sciences, University of Helsinki, P.O. Box 27, FI-00014 Helsinki, Finland;  
E-Mails: paivi.lyytikainen-saarenmaa@helsinki.fi (P.L.-S.); minna.blomqvist@helsinki.fi (M.B.); 
tuula.kantola@helsinki.fi (T.K.); topi.tanhuanpaa@helsinki.fi (T.T.); 

markus.holopainen@helsinki.fi (M.H.) 

* Author to whom correspondence should be addressed; E-Mail: eija.honkavaara@nls.fi;  
Tel.: +358-40-192-0835. 

Academic Editors: Cheng Wang, Randolph H. Wynne and Prasad S. Thenkabail 

Received: 24 September 2015 / Accepted: 12 November 2015 / Published: 18 November 2015 

 

Abstract: Low-cost, miniaturized hyperspectral imaging technology is becoming available 
for small unmanned aerial vehicle (UAV) platforms. This technology can be efficient in 
carrying out small-area inspections of anomalous reflectance characteristics of trees at a very 

high level of detail. Increased frequency and intensity of insect induced forest disturbance 
has established a new demand for effective methods suitable in mapping and monitoring 
tasks. In this investigation, a novel miniaturized hyperspectral frame imaging sensor 

operating in the wavelength range of 500–900 nm was used to identify mature Norway 
spruce (Picea abies L. Karst.) trees suffering from infestation, representing a different 
outbreak phase, by the European spruce bark beetle (Ips typographus L.). We developed a 

new processing method for analyzing spectral characteristic for high spatial resolution 
photogrammetric and hyperspectral images in forested environments, as well as for 
identifying individual anomalous trees. The dense point clouds, measured using image 

matching, enabled detection of single trees with an accuracy of 74.7%. We classified the 
trees into classes of healthy, infested and dead, and the results were promising. The best 
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results for the overall accuracy were 76% (Cohen’s kappa 0.60), when using three color 
classes (healthy, infested, dead). For two color classes (healthy, dead), the best overall 

accuracy was 90% (kappa 0.80). The survey methodology based on high-resolution 
hyperspectral imaging will be of a high practical value for forest health management, 
indicating a status of bark beetle outbreak in time. 

Keywords: bark beetle; classification; dense matching; digital surface model; hyperspectral; 
insect outbreak; photogrammetry; radiometry; UAV 

 

1. Introduction 

Forest ecosystems are annually faced with incremental disturbances by native and non-indigenous 
insect pests in the boreal zone [1]. According to the projections of climatic change impacts, distribution 

of forest pest insects, as well as insect-induced damage will gradually shift towards northern latitudes. 
This climate-driven phenomenon has already been evident with pine sawflies [2,3], moths [4,5] and bark 
beetles [6,7]. Rapidly increasing forest disturbances give rise to a threat for forest health and substantial 

economic losses [8]. Therefore, accurate and cost-efficient detection of stand and tree conditions for 
timely forest management are needed. 

Spatially and temporally significant outbreaks of bark beetles, particularly associated with the 

Norway spruce (Picea abies L. Karst.), have been evident in the course of time, in mid and eastern parts 
of Europe, as well as in southern Norway and Sweden [9–11]. Since the year 2010, with a high 
accumulated temperature, the European spruce bark beetle (Ips typographus L. (I. typographus)) 

(Curculionidae, Scolytinae) has also triggered high tree mortality in south and mid parts of Finland, due 
to two annual generations of the pest [12]. Mortality of standing trees at a stand level may reach up to 
60% on the second or third post-storm year, if a number of wind-felled trees provide plenty of breeding 

material for beetles [13]. Few years after initial outbreak, tree mortality can be implicit, and may ascend 

to 100% of trees [14]. A warm and dry climatic pattern with several gales has constituted optimal 
conditions for I. typographus to reproduce in wind-felled trees [15]. The population growth rate is high 

in freshly dead wood and weakened trees, reconstructing a focal point of an outbreak. An invasion front 
of beetles can attack and kill vigorous trees under a high population density [16]. An invasion by  
I. typographus causes visible crown symptoms, i.e., discoloration and defoliation, before succumbing 

from the infestation. The crown color transforms due to larval feeding in xylem and phloem tissues, 
prohibiting water flux from roots to the crown. The initial attack is not visible to the human eye (green 
attack) [17]. With thousands of attacking beetles per one Norway spruce tree, needles first turn yellow 

(yellow attack), then to reddish brown (red attack), and finally grey (tree mortality) [18]. According to 
our experience, this gradual weakening goes on for a few weeks and is highly dependent on bark beetle 
density and tree resistance. Early detection of the symptoms gives ground for a development of combat 

measures, based on damage mapping and risk assessment. 
Damage monitoring and risk assessment of bark beetles have traditionally been based on laborious 

and time-consuming field sampling and observations in forest stands, focusing on symptoms on the trunk 

and foliage [14,19]. However, anomalies in crown health are more visible from a bird’s eye view. 
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Remote sensing, such as aerial images, multi-temporal satellite images and synthetic aperture radar 
(SAR) datasets, Landsat Thematic Mapper (TM), Moderate Resolution Imaging Spectroradiometer 

(MODIS), TerraSAR-X and light detection and ranging (LiDAR), have been applied in forest health 
surveys and detection of disturbances by pest insects [17,20–24]. Mid- and low-resolution remote 
sensing data have proven to be practical for insect outbreak surveys over wide landscapes. However, 

typically, insect pest outbreaks in Fennoscandia represent a patchy and uneven pattern, and the forested 

landscapes are fragmented by mosaics of small stands, suffering from a varying intensity of an 
infestation [25]. In addition, the rate of private forest ownership is high in Fennoscandia, which 

introduces a need for tailored, cost-efficient, small-scale operations in private-owned forests, as well as 
in urban city forests. 

The detection of health changes in Norway spruce forests, with hyperspectral remote sensing, has 

been studied using airborne instruments [26–28]. Campbell et al. [26] studied the health of Norway 
spruce forests in the Czech Republic with an airborne pushbroom imaging radiometer, Advanced  
Solid-state Array Spectroradiometer (ASAS), with a spectral range of 410–1032 nm. In their study, the 

spectrum of 673–724 nm provided the highest potential in identifying forests with an initial status of 
damage. Hyperspectral aerial imagery with a Hyperspectral Mapper (HyMAP) instrument has been used 
in the detection of a bark beetle infestation in Germany [14,27]. In [14], classification of the different 

attack stages was typically based on wavebands within the spectral range of 450–890 nm, that are related 
to prominent chlorophyll absorption features. They observed that hyperspectral data with a ground 
resolution of 4 m provided more relevant information in estimation of the vitality of spruces compared 

to data with a ground resolution of 7 m. In their study, spruces with green foliage but reduced vitality 
were classified with an accuracy of 64%. According to [14], the result was considered insufficient in 
forestry practices. Fassnacht et al. [27] used the same data as [14] and detected infested trees with an 

error of commission of 65%. They found that accurate differentiation of the three vitality classes was 
not possible with the used methodology. However, the required accuracy of classification is dependent 
on demands of an end-user and on the nature of a disturbance case. 

Studies utilizing unmanned airborne vehicles (UAV) in forest health monitoring are scarce. One of 

the first published efforts to detect insect damage in a forest ecosystem applying UAV was a study in 
Germany [28]. They used multispectral imagery and object-based image analysis to detect an infestation 

in oak stands (Quercus sp.) by the oak splendor beetle (Agrilus biguttatus Fab.). In agriculture, tree 
health monitoring with hyper or multispectral UAV data and image analysis has been studied, for 
example, in olive orchards [29] and citrus trees [30]. A UAV-based, tree-wise monitoring system in 

detection of early symptoms of insect-induced disturbance in evergreens would be of high value in forest 
health management operations that aim to prevent further development of forest pest populations and 
tree mortality in damage spots. 

Photogrammetrically produced UAV Digital Surface Models (DSM) and Canopy Height Models 
(CHM) that allow for detecting individual tree crowns in forests have been computed in [31] and [32]. 
The density and accuracy of 3D point clouds produced by methods in [32] across forested landscapes 

were deemed sufficient for general forestry applications. In forest inventory using remote sensing, 
structural forest attributes are typically extracted from the CHM by means of regression models 
predicting forest variables such as mean height, dominant height, stem number, basal area, and stem 

volume, with descriptive statistic of the canopy height model on a particular area. The forest owners 
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need information for monitoring and planning timely thinning and harvesting. In environmental 
monitoring, forest biomass and carbon stock estimation benefit from accurate and valid (up to date) 

CHMs. Photo-CHM and LiDAR-CHM window-based metrics were found to be well correlated in [31], 
and individual tree heights were comparable with LiDAR metrics. Regression models at stand or plot 
level using point clouds from UAV imagery provided accurate and timely forest inventory information 

on a local scale. In [31], individual tree height could be estimated from UAV photo CHM with RMSE 

of 1.04 m and R2 of 0.91. In [32], CHMs from imagery and LiDAR DTM were strong predictors of  
field-measured tree heights with R2 of 0.63 to 0.84. In [33], plot level linear models for Lorey’s mean 
height and dominant height were computed; the respective cross validated RMSE values were 1.4 m  
and 0.7 m. 

The aim of this study was to investigate the potential of novel UAV-based 3D hyperspectral remote 

sensing technique in identifying symptoms by bark beetle attack of different intensity in mature Norway 
spruce forest. We used a remote sensing system consisting of a Fabry–Pérot Interferometer (FPI) based 
miniaturized hyperspectral camera and a consumer color camera with red, green and blue bands (RGB). 

A novel feature of the FPI technology is that by collecting frame-format hyperspectral images, it allows 
stereoscopic and hyperspectral analysis of the object, as well as generation of dense point clouds and 
DSMs. This was not possible with the conventional hyperspectral instruments based on whiskbroom or 

pushbroom scanning. Our objectives were to implement the entire processing line for capturing 3D 
information and spectral data of individual trees from the novel UAV-based imaging system, as well as 
to investigate the potential of this technology in identifying symptoms by bark beetle attack. 

2. Materials and Methods 

2.1. Test Area and Ground Truth 

The study area is located in southern Finland, in the city of Lahti (60°59′N, 25°39′E). These urban 

forests are mostly dominated by mature Norway spruce, growing on fertile soils (Oxalis-Maianthemum 
type and Myrtillus type) [34]. The total coverage of the urban forest in the city of Lahti is about 5000 ha.  

I. typographus has caused damage and tree mortality within the area since 2010. We established nine 

circular sampling plots (radius = 10 m) in two test areas of Mukkula and Kerinkallio, where the 
dominated Norway spruce trees covered approximately 90%–95% of the two upper canopy layers. One 
of the plots was already established in 2012, seven in 2013 and one in 2014. The center of each plot was 

located with a Trimble Geo XT GPS-device (Trimble Navigation Ltd., Sunnyvale, CA, USA). Individual 
trees were located by measuring the distance and azimuth to each tree from the plot center. 

Tree-wise measurements (Table 1) were conducted annually in August, because the symptoms are 

visible to the human eye late in the growing season. Diameter-at-breast-height (cm) was measured for 
each tree. Tree height of median trees of the plots and every seventh tree were measured. The field 
observations included classification of visual tree-wise symptoms, such as crown discoloration and 

defoliation, indicating invasion status of the I. typographus. In the fieldwork, the crown color was 
classified as green (healthy, class 1), yellowish (yellow attack, class 2), reddish (red attack, class 3) and 
grey (dead tree, class 4). Healthy trees and trees with a potential early infestation stage (green attack) 

were not separated with the present study. We did not measure non-UAV based reflectance spectra for 
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different crown color classes. We eliminated small reference trees that were likely to be in the shadows 
of the larger trees; these included trees with a DBH under 25 cm and trees with very low reflectance 

values (average reflectance in the processed images under 0.03). Finally, a total of 78 mature Norway 
spruces from the two upper canopy cover layers were available for the analysis (Tables 1 and 2). Due to 
lack of the reddish crowns, this class was excluded from the analysis. 

Table 1. Statistics of the sampled trees in the different crown color classes. Healthy (green), 
class 1; infested (yellowish), class 2; and dead (grey), class 4. D is diameter-at-breast-height 
(cm) and H is tree height (m); mean, min, max and sd are the average, minimum, maximum 

and standard deviation of measurements, respectively. 

2013 n Dmean Dmin Dmax Dsd Hmean Hmin Hmax Hsd 

Healthy 36 37.4 26.2 60.2 8.4 29.7 23.9 35.3 4.6 
Infested 15 43.4 29.7 62.0 10.4 30.8 25.9 34.8 4.3 

Dead 27 39.6 26.8 52.7 7.6 30.2 29.3 32.0 1.3 

Table 2. Numbers of trees in the different crown color classes in two test areas. 

Area Healthy Infested Dead Total 

Mukkula 26 4 9 39 
Kerinkallio 10 11 18 39 

2.2. Remote Sensing Acquisition 

For the empirical investigation, UAV-based data acquisition was carried out in the test areas of 
Kerinkallio and Mukkula on 23 August 2013. The dimensions of the areas were 260 m × 160 m and  

180 m × 200 m, respectively. Weather conditions were windless during the flights; illumination 
conditions were sunny during the Mukkula flight and variable during the Kerinkallio flight. We used an 
octocopter-UAV, which was based on MikroKopter autopilot and Droidworx AD-8 extended frame and 

had a payload of 1.5 kg (Figure 1). The UAV was equipped with a stabilied camera mount of AV130 

(PhotoHigher, Wellington, New Zealand), which compensates for tilts and vibrations around the roll and 
pitch directions. 

The predominant instrument used in hyperspectral imaging was the FPI hyperspectral camera [35–37]. 
This technology provides spectral data cubes with area format and enables stereoscopic and multi-ray 
views of objects when overlapping images are used. However, due to the sequential exposure of the 

individual bands (0.075 s between adjacent exposures, 1.8 s during the entire data cube with 24 exposures), 
each band in the data cube has a slightly different position and orientation, which has to be taken into 
account in the post-processing phase. The sensor was used in a two-times binned mode, providing an 

image size of 1024 × 648 pixels with a pixel size of 11 μm and a focal length of 10.9 mm. The field of 
view (FOV) is ±18° in the flight direction, ±27° in the cross-flight direction, and ±31° at the format 
corner. Furthermore, an irradiance sensor based on Intersil ISL29004 photodetector is integrated to the 

camera to measure the wideband irradiance during each exposure [35–38]. A GPS receiver is used to 
record an exact time of the first exposure of each data cube. In order to capture high spatial resolution 
data, the UAV was also equipped with an ordinary RGB compact digital camera, Samsung NX1000. 

The camera has a 23.5 × 15.7 mm CMOS sensor with 20.3 megapixels, and a 16 mm lens. 
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(a) (b) (c) 

Figure 1. UAV system for the field campaign (a). The cameras used in the study were the 
Fabry Pérot Interferometer (FPI) hyperspectral camera [37] (b) and red, green and blue 

(RGB) camera from Samsung (c). 

Table 3. Parameters of the unmanned airborne vehicle (UAV) flights on 23 August 2013 in 
the test areas. Flying altitude is from the ground level. f: forward overlap; s: side overlap; 

overlaps are for the nominal flying height of 90 m. 

Area Camera GSD (cm) Flying Alt. (m) Time (UTC + 3) 
Solar 

Elevation 

Sun 

Azimuth 

Exposure 

(ms) 

Overlap 

f; s (%) 

Mukkula FPI 9.0 55–90 10:29–10:35 a.m. 31.88 130.06 6 55; 55 

Mukkula RGB 2.4 55–90 11:20–11:27 a.m. 35.98 143.97  70; 65 

Kerinkallio FPI 9.0 70–90 1:48–1:55 p.m. 40.01 190.27 8 55; 55 

Kerinkallio RGB 2.4 70–90 1:10–1:17 p.m. 40.35 178.05  70; 65 

 
(a) (b) 

Figure 2. The flight lines with UAV, sampling plots and reference target locations in 

Kerinkallio (a), and Mukkula (b). 

RGB and FPI cameras were operated from the UAV in separate flights in both areas, so there were 
four flights in total (Table 3, Figure 2). We used a flying altitude of 90 m from the ground level at the 

takeoff position, providing a nominal ground sample distance (GSD) of 9 cm for the FPI camera and 2.4 cm 
for the RGB-camera. In practice, the terrain height variation and the tree heights resulted in a large 
variation in the UAV to object distance: the flying height was 55–90 m and 70–90 m from the ground 
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level in Mukkula and Kerinkallio, respectively, and 40–85 m and 55–85 m from the treetops, 
respectively. This provided GSDs of 4 cm to 8.5 cm at treetops for the FPI images, and 1.1 cm to 2.3 cm 

for the RGB images. Average speed of flights was approximately 5 m/s. 
The FPI spectral camera was operated in the wavelength range of 500–900 nm. The number of 

spectral bands was originally 41. With spectral smile correction and band matching, the number of bands 

was reduced to 22. Full Width at Half Maximum (FWHM) of bands varied between 16 and 32 nm, 

depending on bands (for further details of a spectral settings, see Table 4). Exposure time was set to 6 ms in 
Mukkula and 8 ms in Kerinkallio (Table 3); our experiences have shown that these values provide good 

image quality in forested scenes in sunny illumination conditions. 

Table 4. Settings of the FPI camera data capture: central wavelength (L0), full width of half 
maximum (FWHM), and temporal (dt) and spatial (ds) distance to the first exposure of the 

data cube. 

L0 (nm): 516.50, 522.30, 525.90, 526.80, 538.20, 539.20, 548.90, 550.60, 561.60, 568.30, 592.20, 607.50, 
613.40, 626.30, 699.00, 699.90, 706.20, 712.00, 712.40, 725.80, 755.60, 772.80, 793.80, 813.90 
FWHM (nm): 20.00, 16.00, 22.00, 18.00, 24.00, 20.00, 18.00, 24.00, 16.00, 32.00, 22.00, 28.00, 30.00, 30.00, 
18.00, 30.00, 28.00, 22.00, 28.00, 22.00, 28.00, 32.00, 30.00, 30.00 
dt to first exposure (s): 0.825, 1.5, 0.9, 1.2, 0.975, 1.275, 1.35, 1.05, 1.65, 0.075, 0.15, 0.225, 0.3, 0.375, 1.65, 
0.525, 0.6, 1.275, 0.675, 1.35, 0.825, 0.9, 0.975, 1.05 
ds (computational) to first exposure (m): 4.1, 7.5, 4.5, 6.0, 4.9, 6.4, 6.8, 5.3, 8.3, 0.4, 0.8, 1.1, 1.5, 1.9, 8.3, 
2.6, 3.0, 6.4, 3.4, 6.8, 4.1, 4.5, 4.9, 5.3 

 
(a) (b) 

Figure 3. The radiometric reference targets and Avantes spectrometer in the campaign area 
(a). The reflectances of reference panels based on Avantes measurements during the 
campaign (b). 

We installed reflectance reference targets of a size of 1 m x 1 m and approximate reflectance of 0.03, 
0.09 and 0.50 on the field nearby the study sites in order to transform the image data to reflectance. We 
carried out insitu reflectance measurements using the Avantes AvaSpec 3648 hand held spectrometer 

(Avantes BV, Apeldoorn, The Netherlands) (Figure 3). 
We used the national airborne scanning (ALS) data by the National Land Survey of Finland (NLS) 

for the geometric reference [39]. The minimum point density of the NLS’s ALS data is half a point per 
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square metre, and the elevation accuracy of the points in well-defined surfaces is 15 cm. The horizontal 
accuracy of the data is 60 cm. The point cloud has an automatic ground classification. The ALS data 

used in this study was collected in April 2009. The Matlab software (The MathWorks Inc., Natick, MA, 
USA) was used to create a DSM from the ALS point cloud using “first” and “only” pulses. The ALS 
DSM was interpolated to the same grid spacing as in photogrammetric DSMs: 10 cm in Kerinkallio and 

12 cm in Mukkula. The digital elevation models (DEM) provided by the NLS were used as ground 

elevation data. The DEM is derived from the ALS point cloud and has an average vertical accuracy of 
0.3 m and spatial resolution of 2 m. 

2.3. The Workflow for Analysis 

Hundreds of small-format UAV-images were collected to cover the areas of interest. Rigorous  
pre-processing was required for the data in order to derive quantitative information from the imagery 

(Figure 4) (see details in [35,37]). The workflow of the analysis was as follows: 

1. System corrections of the images using laboratory calibrations, spectral smile correction, and dark 
signal corrections 

2. Determination of image orientations  
3. Use of dense matching methods to create three dimensional (3D) geometric model of the object 
4. Calculation of a radiometric imaging model to transform the digital numbers (DNs) to reflectance 

5. Calculation of the reflectance output products: spectral image mosaics and bidirectional 
reflectance factor (BRF) data 

6. Identification of individual trees 

7. Spectral feature extraction for each tree 
8. The final classification 

In the following sections, we will describe the radiometric processing steps (1, 4, 5), geometric 

processing steps (2, 3) and further steps of tree identification (6), feature extraction (7) and classification (8) 
in more detail. 

 

Figure 4. Data processing chain from the data capture to the classification. 

2.4. Geometric Processing 

Geometric processing included two tasks; determination of the orientations of the images and 
determination of the 3D shape of the object by dense image matching. Our approach was to carry out an 



Remote Sens. 2015, 7 15475 

 

 

integrated geometric processing with the RGB images and several bands of the FPI images. Integrated 
orientation provided several advantages: (1) High overlaps were obtained between the images in the 

block (in individual blocks the overlaps were quite low), (2) the RGB images had better spatial resolution 
that improved the accuracy of matching based orientation, and, furthermore, (3) this approach enabled 
accurate extraction of image positions from the autopilot GPS-trajectory; the FPI images had accurate 

GPS time stamps, whereas timing information of the RGB camera was not accurate. The image 

orientations and DSMs were determined using Agisoft PhotoScan Professional commercial software 
(AgiSoft LLC, St. Petersburg, Russia). PhotoScan performs photo-based 3D reconstruction based on 

feature detection and dense matching, and its excellent performance has been validated in previous 
studies [40,41]. The bands of the FPI images that were not included in the orientation processing were 
matched to the oriented bands using band matching. 

In the integrated orientation processing, there were a total of 357 images for the Kerinkallio block 
and 291 images for the Mukkula block (RGB images and two FPI image bands from the data cubes 
before smile correction; the central wavelength (L0) and the time difference to the first exposure of the 

data cube (dt): L0 = 546.60 nm, dt =1.05 s; L0 = 619.50 nm, dt = 0.375 s). In the PhotoScan processing, 
the quality was set to “high”; the settings for the number of key points per image were 40,000 and for 
the final number of tie points per image 1000; an automated lens calibration was performed 

simultaneously. The initial processing provided image orientations and a sparse point cloud in the 
internal coordinate system of the software. For the data, an automatic outlier removal was performed on 
the basis of the re-projection error (10% of points with the largest errors were removed). Some points 

were also removed manually from the sparse point cloud (points on the sky and below the ground). In 
order to transform the image orientations to the ETRS-TM35FIN coordinate system, the GPS-coordinates 
and the barometric height data of the FPI images were used; they were interpolated from the flight 

trajectory of the autopilot, using the accurate timing information of the images. In the final adjustment, 
the standard deviation settings were 3 m for the exterior orientations and four pixels to the tie points. 
The outputs of the process were the image exterior orientations and the camera calibrations in the object 

coordinate system. 

Dense point clouds were generated using RGB and FPI images simultaneously. The point cloud 
generation was carried out using two-times down-sampled images in the Kerinkallio dataset, and  

four-times down-sampled images in the Mukkula dataset. In both datasets, a moderate filtering was used 
to eliminate outliers, which allowed relatively high height differences for the dataset. 

A band matching procedure was used for the bands that were not included in the orientation 

processing (Figure 5). Band matching was carried out using a feature-based matching algorithm, and an 
affine transformation was used to map the bands to the reference bands [37]. We used three bands  
(band 8: L0 = 550.60 nm; dt = 1.05 s, band 14: L0 = 626.3 nm; dt = 0.375 s, band 24: L0 = 813.90 nm; 

dt = 1.05 s) as reference bands, corresponding the bands that were oriented by the PhotoScan. Analysis 
of the data cubes showed that the band matching was successful, excluding the bands  
15 (L0 = 699.0 nm; dt = 1.65) and 18 (L0 = 712.0 nm; dt = 1.275) that were temporally the most distant 

from the used reference bands. These bands could be excluded from the analysis, because the data 
included other bands that were spectrally close to these bands (spectral distance was under 1 nm). 
Finally, there were a total of 22 bands to be used in the analysis. 
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(a) (b) (c) (d) 

Figure 5. Image data used in the study: (a) single band of the hyperspectral  image data;  

(b) three band composition of hyperspectral  images without band matching (23, 9 and 2); 
(c) band matched image; and (d) color image with red, green and blue (RGB) bands. 

2.5. Radiometric Processing and Mosaic Generation 

Laboratory calibration and spectral smile correction were carried out using methods developed by 
VTT (VTT Technical Research Centre of Finland Ltd) [35]. We used the empirical line method [42] to 
calculate the transformation from reflectance to DNs for each channel 

DN = aabs Refl + babs (1) 

where aabs and babs are the parameters of the transformation. Three reference reflectance panels in the 
test area were used to determine the parameters; panel with average reflectance 0.5 was saturated in 

bands with visible light, therefore, we used for these bands only two of the panels. 
Because of variable weather conditions and other radiometric phenomena, additional radiometric 

corrections were necessary in order to make image mosaics uniform. To solve this problem, a radiometric 

block adjustment method was used [37]. The basic principle of the method is to use the grey values (DN) 
of the radiometric tie points in the overlapping images as observations and to determine the model 
parameters describing the differences in DNs in different images (the radiometric model) indirectly via 

the least squares principle. The model for reflectance was 

Rjk(θi,θr,φ) = (DNjk / arel_j – babs) / aabs (2) 

where Rjk (θi,θr,φ) is the bi-directional reflectance factor (BRF) of the object point, k, in image j; θi and 

θr are the illumination and reflected light (observation) zenith angles, φi and φr are the azimuth angles, 
respectively, and φ = φr − φi is the relative azimuth angle; aabs and babs are the parameters for the 
empirical line model for transforming the reflectance to DN and arel_j is the relative correction parameter 

with respect to the reference image. The parameters used can be selected according to the demands of 
the dataset in consideration. 

In this study, the arel_j was based on the measurement by the irradiance sensor, and it was enhanced 

in the radiometric block adjustment. The correction factor based on irradiance measurement by the 
Intersil photodetector was 

arel_j =Ej/Eref (3) 

where Ej and Eref are the irradiance measurements during the acquisition of image j and reference image ref. 
The reflectance can be utilized either in the directional mode (BRF) or in the non-directional mode; 

in the latter case, quantity Rjk is used in Equation (2). More details of radiometric block adjustment are 

given in [37,38]. Finally, we calculated ortorectified reflectance mosaics with a GSD of 0.10 m in 
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Kerinkallio and with GSD of 0.12 m in Mukkula by utilizing the DSMs, orientation information and the 
radiometric model. 

2.6. Individual Tree Detection 

DSMs with a spatial resolution of 0.2 m, generated by dense matching, were utilized in the tree 

detection process. The DSMs were first transformed into canopy height models (CHM) by normalizing 

the heights with the ground elevation from the DEM provided by the NLS. Individual tree crowns were 
delineated from the CHMs with watershed segmentation [43,44]. The delineation process included 
smoothing the CHMs using 3 × 3 pixel mean filter. As the small-scale height variation of the original 

CHMs was high, the filtering was repeated eight times. The treetops were located by inverting the filtered 
CHMs and detecting the local minima (i.e., seed pixels). The crown segments were formed around the 
treetops by adding the neighboring pixels with same or higher height value to the segment region. 

2.7. Spectrum and Feature Extraction 

Because of the small GSD of 10 cm and 12 cm, there were many pixels related to each tree. This 
differs from the classical situation with hyperspectral imaging, with GSDs of larger than 50 cm, and only 

a few pixels for each tree. Our approach was to calculate a single spectral feature for each individual 
tree. We used a circular window with approximately 1 m diameter centered in the tree to calculate tree 
spectra. We visually confirmed that the coordinates of the trees matched the correct trees in the images. 

Small systematic shifts of 1 to 10 m for the entire group of treetops in each sample plot were necessary 
to align the field data with the images. Potential causes for the mismatches could be an inaccuracy of the 
GPS measurements for the centers of the sample plots during the field survey or geometric errors in the 

image mosaics. Our field check confirmed that the image coordinates of reference trees corresponded to 
the same trees on the ground. 

We used either the average reflectance value of the window or the average of the six brightest pixels 

in the window. The latter approach was of interest, since the arithmetic mean might not be the ideal 

feature because of the large number of shadow pixels in the window. A similar approach has also been 
used in [24] for identifying air-pollution-based damage in Norway spruces. 

Different sets of features were used in the analysis: 

1. The original 22-band spectra. 
2. Three different normalized channel ratios (indices) were computed using the reflectance (R) of 

two bands with wavelengths λ1 and λ2. 

Index = (Rλ1 − Rλ2)/(Rλ1 + Rλ2) (4) 

One of them was the normalized difference vegetation index (NDVI), which is based on the spectra 

of near-infrared (NIR) and red channels; the other two were based on NIR and red edge bands and on 
visible bands. The bands used in the channel ratios were selected based on the analysis of variance 
(ANOVA) [45] to obtain knowledge on the differences of spectrums between various crown color 

classes (Section 3.4). This provided a three dimensional feature space. 
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2.8. Classification 

Classification was done using the k-nearest neighbor classifier (k-NN), which is a supervised 

machine-learning technique [46]. Field observations of the tree health based on the color of tree crowns 
were used as a training set to classify all the trees in the research area. We used different values of k 
based on the amount of trees in the training data. The classifier was used for the entire spectra and for 

normalized ratios of bands. The leave-one-out cross validation technique was applied to assess 
performance of the k-NN classifier. Based on this method, we calculated the confusion matrix, Cohen’s 
kappa value (ϰ) [47], the producer’s, user’s and overall accuracies. 

3. Results 

3.1. Geometric Processing 

The geometric processing was successful for both datasets. The re-projection errors were 

approximately 0.4–0.5 pixels, and the root mean square error (RMSE) values of the GPS position 
residuals were at the level of 1–2 m (Table 5). In Mukkula, orientation was successful for all the images; 
in Kerinkallio, orientation failed on 8 images out of 365 images. These results indicated successful 

georeferencing. The number of generated points was 29 million in Kerinkallio and 3.5 million in 
Mukkula; the point densities were 424 and 71 points per m2, respectively. The difference in point density 
was due to the different resolution of images used in the point cloud generation (down-sampling was 2 

times for Kerinkallio and 4 times for Mukkula). 

Table 5. Statistics of the block adjustment calculation. Number of images, flying height 
(FH), number of tie points, re-projection error, RMSE at GPS-coordinates and the point 

density of the dense point cloud. 

Area N Images 
FH 

(m) 
Tie Points 

Reprojection Error 

(pix) 

GPS RMSE  

X; Y; Z (m) 

Point Density 

(Points per m2) 

Kerinkallio 357 90 75,008 0.505 0.989; 0.900; 0.875 423.91 

Mukkula 291 90 76,700 0.353 1.031; 1.946; 0.386 70.64 

The DSMs from the UAV-photogrammetry and the NLS ALS data from the same location were 
compared visually. Profiles in latitude and longitude directions with 2 m width were plotted in 27–38 m 
intervals. For each area, 10 equally spaced profiles were plotted in both north and east directions. The 

profiles showed a good planar accuracy between the point clouds: visible treetops were mainly well 
aligned. The vertical accuracy of the generated DSM was not as good as the planar accuracy. Evaluation 
of the vertical accuracy was difficult because of the differences in the point clouds measured by 

photogrammetry and ALS. The photogrammetric point cloud had more upper canopy points and less 
ground hits compared to the ALS point cloud. The dense UAV-surface had the same form as the  
ALS-surface, but the levels were slightly different (Figures 6 and 7). The differences in the densities and 

a large timespan between acquisitions of the point clouds also had an effect on the visual inspection of 
the point cloud alignment. In the central areas of the block, the absolute height accuracy was at the level 
of 1–2 m, with respect to the ALS DSM; in the block borders, the differences were larger due to the 
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weakening of the block structure (Figure 8). The internal, relative accuracy of the point cloud can be 
expected to be on the level of GSD based on the re-projection error statistics (Table 5) as well as based 

on the systematic nature of the difference of the ALS and photogrammetric DSMs (Figure 8). 

   
(a) (b) (c) 

Figure 6. (a) Interpolated airborne laser scanning (ALS) first pulse digital surface model 

(DSM); (b) dense unmanned airborne vehicle (UAV) DSM; and (c) difference between 
DSMs ALS-UAV for the area in Kerinkallio. 

   
(a) (b) (c) 

Figure 7. (a) Interpolated ALS first pulse DSM; (b) dense UAV DSM; and (c) difference 
between DSMs ALS-UAV. 

  
(a) (b) 

Figure 8. Example profiles from locations marked with red lines in Figures 6 and 7 for  
(a) Kerinkallio and (b) Mukkula. 

3.2. Radiometric Processing 
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Image mosaics before radiometric corrections showed that the Kerinkallio dataset included many dark 
images because of clouds and varying illumination conditions (Figure 9a, leftmost). We used the 

irradiance sensor integrated to the FPI-camera and the radiometric block adjustment to eliminate the 
effects of changes of illumination. First, we used directly the irradiance data to calculate arel_j  
(Figure 10a, original irradiance). This correction caused some parts of the mosaic to become too light 

(Figure 9a, 2nd), which was due to the fact that the timing of the shadow by a cloud was different in the 

UAV than on the ground. We visually edited the irradiance data to correspond to the illumination at the 
object (Figure 10a, edited irradiance, images 69–74). A good radiometric uniformity was obtained for 

the mosaic when using the edited irradiance values as a priori values and calculating adjusted arel_j 
(Figure 9a, 3rd; Figure 10a, adjusted parameters) by the radiometric block adjustment. For the final 
calculation, we also eliminated eight partially cloudy images (images 65–68 and 90–93). It is worth 

noting that all the test sites were captured in cloudy conditions in Kerinkallio. 

 
(a) 

 
(b) 

Figure 9. Impacts of different radiometric processing options in (a) Kerinkallio (channel 14) 
and (b) Mukkula (channel 18) datasets. From left: without any radiometric corrections, arel_j 

calculated from the original UAV irradiance measurements, arel_j calculated from the edited 
UAV irradiance measurements (only for Kerinkallio, see also Figure 10), final mosaic with 
three bands with arel_j based on radiometric block adjustment. The sample plots are marked with 

red circles and the reflectance panels are marked with blue circles in the rightmost mosaics. 
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(a) (b) 

Figure 10. Values of parameter arel_j for each image on both blocks for channel 14  

(L0 = 636.30 nm) (a) in Kerinkallio and (b) Mukkula. 

The Mukkula dataset provided uniform mosaic without corrections because of the stable and sunny 
weather conditions (Figure 9b). The radiometric block adjustment provided arel_j parameter values 

between 0.84 and 1.17, confirming that the variation of illumination conditions was small (Figure 10b). 
Mosaics were visually uniform both before and after the adjustment (Figure 9b). 

  
(a) (b) 

Figure 11. Reflectance calculated in 3 m × 3 m windows of a regular grid of points in an  
8 m × 8 m point interval presented as a function of relative azimuth angle and view zenith angle. 

(a) The raw reflectance observations and (b) the fitted bidirectional reflectance factor surface. 

We evaluated the impact of anisotropy by sampling reflectance values of the Mukkula dataset in a 
point grid with an 8 m point interval and plotting it as the function of the zenith and azimuthal angles of 

illumination and observation, and calculating a fitted bidirectional reflectance factor surface. This 
provided an averaged anisotropy for the forest area for the time of the campaign (Figure 11). The 
anisotropy was mostly less than 10% when limiting viewing zenith angles to <±15° from the nadir, 

which was the view zenith angle range used in the mosaicking; the high noise in the observations was 
due to the fact that we did not apply any point selection, thus the observations included both shaded and 



Remote Sens. 2015, 7 15482 

 

 

sun-illuminated pixels. The anisotropy was small in comparison to the actual variation of the reflectance 
and would have been challenging to determine using a small image block. We tested the bidirectional 

reflectance distribution function (BRDF) correction with the Mukkula dataset, but the results were not 
satisfactory; this was due to the fact that the current method has been developed for targets that do not 
have remarkable height differences with respect to the flying height, such as agricultural crops. The 

Kerinkallio data was captured in changing illumination conditions, making the BRDF correction even 

more complicated. 

3.3. Individual Tree Detection 

The watershed method performed well with the dense DSMs. We evaluated the tree extraction results 
in the study areas (Figure 12). These included 91 trees with a diameter at breast height over 25 cm. The 
accuracy of detection was 74.7%. Error of commission was 12 trees (13.1%). 

 

Figure 12. Visualization of tree detection. Part of FPI mosaic, where detected trees are 
marked with green circles. 

3.4. Spectral Data of Trees 

A strategy of using an average of the six brightest pixels provided the most logical separation of the 
crown color classes when concerning the averaged spectra over the entire dataset. The infested and 

healthy classes that were separable when using the brightest pixels (Figure 13a,c) could not be separated 
when averages of all pixels were used (Figure 13b,d); the shadows caused this deterioration of the 
average spectra. Spectra of the dead trees differed significantly from the normal canopy reflectance 

spectra; the spectra were brighter in the visible wavelengths and darker in the NIR wavelengths. Only 
minor differences can be seen in the spectra of infested and healthy trees; in comparison to the healthy 
trees, the infested trees have a higher reflectivity in the red and green portions of the spectrum, and lower 

reflectivity in the NIR part of the spectrum. The levels of spectrums were higher for trees in Mukkula 
than for trees in Kerinkallio. Shapes of the spectra were, however, similar. 

We analyzed the differences in the spectra of infested and dead spruces, with respect to healthy 

spruces, in order to select the most relevant bands for the vegetation index calculation (Figure 14). The 
first of the three best normalized channel ratios for the data from the ANOVA-analysis, according to 
Equation (4), corresponded to the NDVI using the channels with a central wavelength of λ1 = 793.8 nm 

and λ2 = 626.3 nm. The second was based on differences at the red-edge using the channels with a central 
wavelength of λ1 = 772.8 nm and λ2 = 725.8 nm. The third was based on visible light channels from 
green (λ1 = 550.6 nm) and red (λ2 = 626.3 nm) areas. 
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(a) (b) 

 
 

(c) (d) 

Figure 13. Average spectra with standard deviation bars of the healthy, infested and dead 
trees based on the image window, with a 1 m diameter in (a) Kerinkallio, average of six 

brightest pixels; (b) Kerinkallio, average of all pixels; (c) Mukkula, average of six brightest 

pixels; and (d) Mukkula, average of all pixels. 

  
(a) (b) 

Figure 14. Differences of spectrums of infested and dead spruces, with respect to healthy 
spruces in (a) Kerinkallio and (b) Mukkula. 
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3.5. Classification Results 

The classification of all three color classes (healthy, infested and dead) was challenging, due to the 

weak separation of the infested and healthy trees (Table 6). The indices provided slightly better 
accuracies than use of the full spectrum. When processing both areas simultaneously, the best overall 
accuracy was 76% (ϰ = 0.60) (78 samples in total). We also processed the Kerinkallio and Mukkula 

areas separately, although the number of the samples was low (39 in both datasets) (Table 6). The results 
were better for the Mukkula dataset; at best, the overall classification accuracy was 90% (ϰ = 0.79). For 
the Kerinkallio dataset, the best overall classification accuracy was 72% (ϰ =0.56). Potential explanation 
for better results of the Mukkula dataset could be the better imaging conditions during the data capture, 
which could have improved the separation of classes (see also Figure 14). 

Table 6. Classification results for the case with three classes. N: number of samples;  

k: number of nearest neighbors used. 

Features Area N k 
Number 

of Classes 

Overall 

Accuracy (%) 
Kappa 

Producer’s Accuracy (%) 

Healthy Infested Dead 

Spectrum both 78 4 3 75.64 0.31 77.78 46.67 88.89 

Indices both 78 4 3 75.64 0.60 86.11 33.33 85.19 

Spectrum Kerinkallio 39 3 3 71.79 0.56 50.00 63.64 88.89 

Indices Kerinkallio 39 3 3 69.23 0.53 50.00 54.55 88.89 

Spectrum Mukkula 39 3 3 79.49 0.55 88.46 0.00 88.89 

Indices Mukkula 39 3 3 89.74 0.79 96.15 50.00 88.89 

Table 7. Classification results for the case with two classes. N: number of samples;  
k: number of nearest neighbors used. 

Features Area N k 
Number 

of Classes 

Overall 

Accuracy (%) 
Kappa 

Producer’s Accuracy (%) 

Healthy Infested Dead 

Spectrum both 78 4 2 90.48 0.81 91.67 - 88.89 
Indices both 78 4 2 90.48 0.80 94.44 - 85.19 

Spectrum Kerinkallio 39 3 2 89.29 0.77 90.00 - 88.89 
Indices Kerinkallio 39 3 2 85.71 0.70 90.00 - 83.33 

Spectrum Mukkula 39 3 2 91.43 0.78 92.31 - 88.89 
Indices Mukkula 39 3 2 94.29 0.85 96.15 - 88.19 

Good separation could be obtained when using only two classes (healthy and dead) (Table 7). In the 

integrated classification of the both areas, the best result was obtained using vegetation indices; the 
overall accuracy was 90% (ϰ = 0.80; number of samples 78). When the two target areas were classified 
separately, the Mukkula area provided slightly better results. This dataset provided the best results with 

an overall accuracy of 94% (ϰ = 0.85); the producer’s accuracies were 96% for the healthy trees and 
89% for the dead trees (number of samples 39 in each area). 

Results of classification of all trees in the study areas are shown in Figures 15 and 16. 
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(a) (b) 

Figure 15. Visualization of classification results using FPI color-infrared (a) and RGB (b) 
images on background. 

 
(a) (b) 

Figure 16. Tree level classification results in (a) Kerinkallio and (b) Mukkula. Segmentation 
is based on tree detection (Section 2.6). 

4. Discussion 

4.1. Monitoring Infestation of Ips typographus 

The climate change has already amplified the economic and ecological impacts of insect outbreaks. 
A rapid development of UAV-based remote sensing systems is enabling high-resolution and cost-efficient 

monitoring of forest environments. Hyperspectral sensors are powerful in detecting small anomalies in 
spectral characteristics of objects, i.e., tree crowns. In this study, we developed methodology for a 
UAV-based remote sensing system that utilizes photogrammetry and novel miniaturized hyperspectral 

sensor technology based on Fabry–Pérot interferometer (FPI). The data processing approach includes 
distinguishing spectral characteristics of individual crowns of trees at different stages of infestation. The 
method can be employed in monitoring changes in tree crown color by forest pest insects, such as bark 
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beetles. The method is suitable when data in high detail is required and the target areas are relatively 
small. Practical implementations for this monitoring system include focal points of new insect-induced 

infestations and infestations in private-owned forests or urban forests and parks. We investigated the 
potential of the new method in detecting the infestation status of I. typographus at a tree-level in the 
Norway spruce, in urban forests of the city of Lahti. We captured image blocks in two sampling areas 

for assessing the performance of the method. The imaging system collected very high spatial-resolution 

image data; GSD was 2.4 cm for the RGB images and of 9 cm for the hyperspectral images at the nominal 
flying height of 90 m; at treetops, the GSDs were 1.1–2.3 cm and 4.0–9.5 cm with the RGB and 

hyperspectral images, respectively. 

4.2. Geometric Performance 

Geometric performance was consistent with the expectations. Image matching provided dense and 

detailed DSMs of the canopy surface with approximately 10 cm point density; the high quality could be 
expected based on previous studies with the Agisoft PhotoScan software [40,41]. The special feature of 
the processing was that the RGB images and several bands of FPI images were simultaneously used in 

the photogrammetric processing. Absolute height accuracy of the point clouds was on the level of 1–2 m. 
This is the expected level of absolute accuracy when using autopilot GPS and barometric data as a 
georeferencing reference. The internal, relative accuracy was estimated to be on the level of decimeter 

and thus feasible for branch level analyses as well as for derivation of accurate tree height information 
(if the terrain elevation could be obtained from the same DSM). The absolute accuracy can be improved 
by implementing more accurate GPS-positioning to the system, or by using ground control points as has 

been shown in previous studies [48,49]. Further aspects in the forest 3D characterization include the 
vagueness of tree crowns, and in windy weather, the tree movement will cause further deterioration in 
the reconstruction; these topics should be elaborated in further developments. This study proved for the 

first time the feasibility of the FPI technology in capturing 3D hyperspectral data in forested areas. 

4.3. Radiometric Aspects 

One of the advantageous features of the UAV systems is that the data capture can be carried out below 

clouds. However, this also sets challenges for the processing. We used UAV-based irradiance 
observations and a radiometric block adjustment to eliminate the radiometric non-uniformity of the 
image data [37]. The method compensated, at an average level, the illumination differences within image 

blocks; however, the spectra of individual trees were at different levels in the two datasets. The different 
conditions during the data acquisition were presumably the reason for the difference in the overall 
spectral levels of the two test blocks: the test plots in Kerinkallio were collected under variable 

illumination conditions, during partially cloudy weather, whereas during the flight of Mukkula, the 
weather was sunny and illumination was stable. The radiometric image corrections improved the results, 
but further studies are needed to normalize the datasets collected in sunny and cloudy weather if 

anticipating the analysis in a single classifier. We also pointed out the challenges in correcting the 
reflectance anisotropy effects in small image blocks collected in forested scenes. In future, it is necessary 
to investigate means to account for the BRDF effects in forested datasets, in particular, if multi-view 

reflectance observations are utilized in the interpretation task. It is obvious that approaches that 
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differently consider the areas in sunshine or in various shadowed condition are needed [50,51]. 
Furthermore, for UAV remote sensing, the radiometric aspects need to be considered carefully [52,53]. 

One potential method for reducing the need for BRDF correction of image mosaics is to use high 
overlaps in the image capture and use the central parts of images in mosaicking. Furthermore, a stable 
illumination condition is recommended during the data capture if detailed spectral analyses are required. 

4.4. Individual Tree Detection 

The accuracy of delineating individual tree crowns from image-based point clouds has been a rare 
research topic. To our best knowledge, there are no publications concerning the issue in boreal forests. 

The tree delineation processes has been mainly developed for inventory related data retrieval, and 
detecting right number of trees has been the main issue, rather than the outline of a single tree crown. 
As the difference between ALS and image-based point clouds have been detected [54,55], we would like 

to point out that in the future, evaluation of the performance of image-based point clouds in tree 
delineation is an important line of studies that should be covered. When compared to ALS-based studies, 
the accuracy of detection reported in our study was roughly at the same level (e.g., [56,57]). However, 

only the biggest trees (DBH > 25 cm) were taken into account, which likely improves the reported 
detection rate. 

4.5. Classification 

The high-resolution data provided many possibilities for selecting features for the classification 
process. Our approach was to use an object based method and to calculate single features for each tree; 
another approach could have been to use all pixels of each tree, or even to take all pixels from each 

multi-view image to characterize the trees, or alternatively to use pixel based approach. The tree-level 
approach was feasible in the case of infestation by I. typographus, as the infestation usually leads to 
gradual, crown-wide symptoms until rapid death of the tree. The branch-level symptoms are rare [27]. 

Our results showed that the use of the brightest pixels in image windows, with a diameter of 1 m, 

provided better separation of the various classes than the use of averaged values; the latter quantity 
included both sunny and shaded pixels. In further studies, different features should be investigated.  

For example, Korpela et al. [50] used four different illumination classes, and used more pixels in the 
classification for each tree when investigating tree species classification. Puttonen et al. [51] used 
division into sunlit and shaded pixels to boost tree species classification with imagery that was not 

radiometrically corrected. Their method improved the classification by a few percent in comparison to 
their reference method. 

The trees were classified as healthy (green), infested (yellow attack) and dead (grey). The class dead 

was clearly distinguishable from the healthy and infested classes. The classification into two classes 
provided good results, with an overall accuracy of 90% and Cohen’s kappa of 0.80 (78 samples). The 
separation of spectra of the infested and healthy trees was poorer. The overall accuracy was 76% and the 

kappa was 0.60, at best, when using three color classes (healthy, infested, and dead) (78 samples). The 
use of three spectral indices provided better results than the use of full spectra, which was consistent 
with the expectations; the neighboring channels are typically correlated and in the case, where training 

samples are limited in number, using too many features in classification is likely to result in poorer 
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classification than with less features that were well selected [58]. The limitation of the experiment was 
that the training sample was very small. The class red attack was missing from the test area, and the 

number of trees with yellow attack was low. Furthermore, there were no observations of green attack, 
which was in practice impossible to identify with the survey methodology used in this study [20]. 
According our ground observations, green attack can be detected as a thin resin flow from the very first 

attack holes on a trunk, shifting a tree from a healthy class towards yellow attack. The trees with the very 

first infestation stage should be separated from healthy trees while collecting a ground reference for a 
further development of a methodology. This kind of more comprehensive approach could be carried out 

in unmanaged forested areas with all the stages of bark beetle attack available, such as in conservation 
areas or national parks. 

It is worth noting that the UAV image datasets were collected in difficult illumination conditions, 

which probably caused some deterioration of the results. The classification accuracies are comparable 
to the previous studies in identifying different types of infestations with various sensors [17,24,25,27], 
but due to the small sample size, it is difficult to make further conclusions about the performance. The 

conclusion whether this accuracy is sufficient or not, is dependent on the application. However, the 
classification results can be considered to be very promising for further development of a methodology 
of distinguishing different phases of tree health and its depression. Important means to improve the 

identification of the dead trees and the yellow and red attack phases, in particular, will be to collect 
datasets in better imaging conditions, improve the radiometric processing, use more comprehensive 
training data, emphasize more in feature extraction and use more comprehensive classification method, 

such as the random forest based approaches. In contrary, we expect that the detection of the green attack 
might be extremely difficult [20]. Further interesting possibilities will be to add spectral data beyond the 
visible and near infrared wavelengths, in particular in short-wave infrared and thermal ranges [27,29]. 

Furthermore, integrating UAV measurements with satellite instruments, such as Landsat 8, might 
provide a deeper insight on the classification procedure, and might also offer possibility to extend the 
results to larger areas; this is interesting topic for future developments. It is also obvious that more 

information of the spectral characteristic of the green attack is needed, simultaneously with tree-wise 

ground truth [20]. Laboratory measurements could provide this information. A highly interesting 
approach would be to monitor areas with active bark beetle attacks with a high temporal resolution (e.g., 

weekly), using a hyperspectral UAV remote sensing system, which would provide observation data 
about the gradual spectral change within some weeks after a mass attack on Norway spruce trees. 

4.6. Outlook 

Timely managed actions are needed in forest protection against biotic disturbance agents, such as 
tree-killing bark beetle species. Several forest insect pests have benefitted from climate change and its 
drivers, such as heat spells and gales [1,11]. Traditional ground surveys are inadequate in locating the 

very first symptoms by phloem-consuming insect herbivores. The “infested” tree crown class showed 
promising results, particularly at the NIR area of the spectrum for further development of the method. 
Further improvements for the method could provide valuable information on the very initial green attack, 

indicating the risk in time. The information on incipient stress by pest insects is crucial for integrated 
pest management systems and forest health management planning. A UAV platform with hyperspectral 
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sensor technology could provide the precise tools for the detection of crown discoloration, particularly 
in cumbersome and remote terrains [16]. In addition to bark beetles, this method can be applied for any 

other destructive biotic agents causing similar symptoms, e.g., the pine wood nematode 
(Bursaphelenchus xylophilus [59]). In addition, for commercial forests, the technology may be adopted 
for target areas under intensive survey needs, such as urban forest sites and parks. The developed  

UAV-based hyperspectral 3D remote sensing approach is feasible also for other applications in forestry 

where the tree color is important, such as tree species classification. The approach is cost-efficient in 
particular if spontaneous or high temporal frequency data capture is necessary. 

5. Conclusions 

Low-cost, miniaturized hyperspectral imaging technology is becoming available for small UAV 
platforms. This technology could be efficient for carrying out small-area inspections of anomalous 

reflectance characteristics of trees at a very high level of detail. In this investigation, a novel miniaturized 
hyperspectral frame imaging sensor was used to identify mature Norway spruce trees suffering from 
infestation by the invasive bark beetle I. typographus. We developed a processing approach for analyzing 

spectral characteristics for high spatial resolution photogrammetric and hyperspectral image data in a 
forested environment, as well as for identifying damaged trees. The point clouds measured, using dense 
image matching, enabled extraction of single trees with an accuracy of 74.7%. The results of 

classification of trees into healthy, infested and dead classes were promising. In particular, separation of 
healthy and dead trees provided a producer’s accuracy of 90% and a Cohen’s kappa of 0.80. The fine 
spatial resolution and combination of structure and hyperspectral information were unique approach. For 

the authors’ knowledge, this was the first study of using a hyperspectral imager in small UAV to identify 
bark-beetle-induced damage symptoms at a tree level. Furthermore, the results proved for the first time 
the feasibility of the Fabry-Pérot interferometer based hyperspectral imager in providing 3D 

hyperspectral information of tree canopies. We expect that the remote sensing technology developed 
here will be of great value in the future for identifying tree-wise damage, for investigating spectral 

characteristics of symptoms from early infestation until the death of the tree, as well as for other 

applications in forestry where the tree crown color is important, such as tree species classification. 
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