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Using Ultrasound Images of the Forearm

to Predict Finger Positions
Claudio Castellini, Member, IEEE, Georg Passig, and Emanuel Zarka

Abstract—Medical ultrasound imaging is a well-known tech-
nique to gather live views of the interior of the human body. It

is totally safe, it provides high spatial and temporal resolution,

and it is nowadays available at any hospital. This suggests that it
could be used as a human–computer interface. In this paper, we

use ultrasound images of the human forearm to predict the finger

positions, including thumb adduction and thumb rotation. Our
experimental results show that there is a clear linear relationship

between the features we extract from the images, and finger

positions, expressed as angles at the metacarpo-phalangeal joints.
The method is uniformly valid for all subjects considered. The

unavoidable movements of the ultrasound probe with respect to

the skin and of the skin with respect to the inner musculoskeletal
structure are compensated for using the optical flow. Typical

applications of this system range from teleoperated fine manipu-

lation to finger stiffness estimation to ergonomy. If successfully
applied to transradial amputees, it could be also used to recon-

struct the imaginary limb, paving the way to, e.g., fine control of

hand prostheses, treatment of neuropathic/phantom limb pain and
visualization of the imaginary limb as a tool for the neuroscientist.

Index Terms—Learning and adaptive systems, rehabilitation, ul-

trasound imaging.

I. INTRODUCTION

D EVELOPED soon after the second World War as a diag-

nostic device, ultrasound imaging, also known as medical

ultrasonography (US) is a noninvasive technique to visualize

structures inside the human body. (A comprehensive reference

to medical ultrasound is the classical textbook [1].) The general

principle is that of wave reflection/refraction: in modern ultra-

sound medical devices, an array of piezoelectric transducers is

used to generate a focused wave of ultrasound in the range of

2–20 MHz which penetrates the body part of interest; partial

reflection of the wave at the interfaces between tissues with dif-

ferent acoustic impedance (density) is then gathered and con-

verted, in the so-called B-mode, to a gray-scale 2-D image.

High-gray-valued ridges in the image denote therefore tissue in-

terfaces. Modern US machines can achieve sub-millimeter spa-

tial resolution and/or real-time temporal resolution, penetrating

several centimeters below the subject’s skin. The technique is
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easy to set up and it has no known side effects, to the extent that

one of its best known applications is the imaging of the fetus

with prebirth diagnostic purposes. Additionally, although ultra-

sound machines are not cheap, they are nowadays found essen-

tially in any hospital, making the technique easily available.

Such an accurate, safe, and widespread technique is likely

to have an immediate application as a human–computer in-

terface. In particular, here we focus on one such use, namely,

determining finger positions using features extracted from US

images of the human forearm. For a long time, US imaging

has successfully been used as a diagnostic tool for hand mus-

culoskeletal disorders such as, e.g., synovitis and rheumatoid

arthritis [2]–[4], so US images should contain enough in-

formation to reconstruct the position, velocity and/or force

exerted by the fingers. If this happens to be the case, a system

enforcing this idea would have potential applications in, e.g.,

ergonomy and precise teleoperation and manipulation when

operated by intact subjects, and could be a breakthrough if used

by amputees, letting them control hand prostheses to a so-far

unknown degree of precision. (Of course this claim is subject

to many assumptions—see Section IV for more about it.)

The feeling that the idea is viable stems, as a start, from plain

observation of the US imaging of the human wrist as the fingers

move. Consider the movie “fingers.avi” included in the supple-

mental material. The movie is recorded from a healthy subject

using a standard portable US machine (see Section II-A2 for

more details). The transducer lies on the ventral side of the right

wrist orthogonal to the axis of the forearm (see also Fig. 2, right

panel). As the subject’s fingers move, a clear relationship be-

tween the changes in the image and the hand configuration is

apparent; although not elementary, the changes appear repeat-

able and related to the flexion of single fingers, even in the case

of the thumb adduction and rotation. Flexion of the pinkie finger

for example, results in a “hole” opening and closing near the

left-upper corner of the image. Comparison with an anatomical

representation of the very same section (see Fig. 1) suggests that

we are looking at the motion of one of the tendons of the M.

Flexor Digitorum Superficialis.

A. Overview of the Methodology and Results

In this paper, we show a positive result along this line. Six

healthy human subjects were instructed to mimick with their

right hand the movements performed by an animated human

hand model on a computer screen. The hand configuration and

US images of the corresponding wrist would be gathered and

synchronized during the experiment, using a dataglove and the

above mentioned US machine. The movements consisted of re-

peated flexion of the fingers plus adduction and rotation of the

1534-4320/$31.00 © 2012 IEEE
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Fig. 1. Comparison of a typical US image of the human wrist (left) and a pictorial representation of its anatomy (right, representing section “A” in the middle
panel, both figures reproduced from [26]). Annotations on the left panel highlight the ulna (1), the radius (2), and theM. Pronator Quadratus (3) on the ultrasound
image. Above the area of the Quadratus, circular sections of the flexor tendons are clearly visible.

thumb, in several different configurations. Offline, local spatial

features were extracted from each frame. The features encode a

linear approximation of the gray-level distribution around a set

of interest points. The points are chosen to belong to a uniformly

spaced grid, irrespective of any anatomical detail of the subject.

Regression analysis reveals that these features are almost per-

fectly correlated (in the sense of the standard Pearson correla-

tion) to finger positions, leading to a prediction error of as little

as about 1% of the position range. The correlation is higher

where the sections of anatomically relevant muscles appear; for

example, pinkie movement is highly correlated with features ex-

tracted near the section of the F.D.Superficialis, i.e., from the

upper-left corner of the images seen in the movie—where the

“hole” grows and shrinks. A regression matrix can be esti-

mated via, e.g., least-squares, so that , where rep-

resents the position of the fingers (six angles measured at the

metacarpo-phalangeal joints) and encodes the visual features

extracted from the US frames. In order for the approach to work

fine, the transducer must be as still as possible with respect to

the skin and skeleton of the subject; unwanted motion is com-

pensated for by evaluating the optical flow at key frames and

using it to shift the position of the interest points in order for

the extracted features to always represent the same information.

This method is shown to significantly prevent drift errors during

the experiment and improve the prediction accuracy.

The paper is organized as follows. After reviewing the related

work, we describe the experimental setup and the processing

techniques employed (Section II); we then show the experi-

mental results (Section III) and lastly, conclusions and future

work are presented (Section IV).

B. Related Work

Extensive work on the use of live ultrasound imaging to

control a one-degree-of-freedom hand prosthesis appears since

2006 in a series of joint Chinese/British studies by, among

others, Zheng [5]–[7]. The authors focus on the large extensor

muscle of the forearm, M. Extensor Carpi Radialis, and show

high correlation between the wrist extension angle (detected

with a goniometer) and the change in size of the projection

of the muscle itself in the image. This is a computationally

easy visual feature (unsurprisingly, the authors claim it can be

evaluated in real-time) which happens to be linearly related to

a particular movement. The technique of determining muscle

contraction using ultrasound imaging is therein named son-

omyography, a term that we will not use here as we do not

necessarily target muscle contraction only.

As far as we know this method has not yet been applied to

the whole hand/finger system, and the authors have never con-

sidered more than one feature at the same time. This restricted

focus is probably motivated by the diversity and complexity of

the changes in US images as joint positions change: the single

identified feature is related to a precise anatomical change, a re-

lation which would be quite hard to assess in the general case. It

is likely that a more general treatment in that case would require

a detailed model of the kinematics of the human forearm, plus a

detailed model of the changes in the projected US image as the

hand joints move—a task which seems overtly complex.

As opposed to that, in this work we take a more image-pro-

cessing-/machine-learning-oriented approach: we employ a uni-

formly-spaced set of visual features from each image, extract

uniform features from each point and then use data gathered

from a dataglove to relate joint positions and images, without

the need of a detailed anatomical model. The approach is there-

fore dramatically extended, and since the relationship between

image features and joint positions turns out to be linear, we can

keep the computational burden within such limits that it can be

used online.

The only attempt so far at modelling finger positions appears

in [8], where significant differences among optical flow compu-

tations for finger flexion movements are reported, but not ana-

lyzed in detail. Optical flow [9] does not really seem the best

feature choice in this case, since it is a derivative operator, hard

to compute and prone to accumulating integral errors when ap-

plied to position recognition.

This paper can be seen as the follow-up to [10], in which the

same approach was applied to the limited case of one human

subject in extremely controlled conditions (namely, taking care

that no probe/skin/skeleton relative movement would happen).

II. EXPERIMENT DESCRIPTION

A. Data Gathering Setup

1) Hand Motion: An 18-sensor right-handed Cyberglove

(Cyberglove Systems , see also Fig. 2, left panel) is used to

gather the finger positions. The Cyberglove is a light fabric,

1http://www.cyberglovesystems.com
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Fig. 2. Data capturing devices: (left to right) the Cyberglove; the location of its sensors (sensors 16, 12, 8, 4, 0, and 3 are used); the ultrasound transducer placed
onto the subject’s wrist. Moisture due to ultrasound conductive gel is clearly visible.

rather elastic glove, onto which 18 strain gauges are sewn;

the sewing sheaths are chosen carefully by the manufacturer,

so that the gauges exhibit a resistance which is proportionally

related to the angles between pairs of hand joints of interest.

The device can then return 18 8-bit values, proportional to

these angles, for an average resolution of less than one degree,

depending on the size of the subject’s hand, a careful wearing

of the glove and the rotation range of the considered joint.

(For practical reasons, the subject must wear a cotton glove

below the Cyberglove; we verified that this would not limit the

precision of the device.)

We consider six hand motions, namely flexion/extension of

the five fingers and thumb adduction/abduction. Thumb flexion/

extension is roughly equivalent to thumb rotation, indeed a very

important motion, characteristic of the high primates and para-

mount for most activities of daily living. The choice of these six

motions is also motivated by the fact that they are enforced by

the most advanced hand prosthesis of the world at the time of

writing, namely the Vincent Hand (Vincent Systems GmbH ).

The above motions are captured by considering the five

metacarpo-phalangeal glove sensors, placed where the proximal

phalanxes of the fingers meet the palm, plus the thumb/index

abduction sensor for the thumb abduction/adduction. For each

subject we performed a simple calibration consisting of asking

to stretch/bend the subject’s joints to extreme positions, there-

fore recording each motion’s extreme values. We then used

these extreme values to normalize the sensor values between

0 and 1, so that 0 corresponds to the relaxed stance and 1 to

the maximum voluntary contraction. (Values are nevertheless

sometimes outside this range since nothing prevents the sub-

jects to go beyond the limits while performing the required

movements.)

According to the placement of the sensors on the Cyberglove

(see Fig. 2, central panel), we choose sensors 16, 12, 8, 4, and 0

for the pinkie, ring, middle, index, and thumb flexion/extension,

and sensor 3 for the thumb rotation. A careful hardware calibra-

tion enables us to obtain a resolution of 7–7.5 bits over the con-

sidered ranges, actually way below one degree in all cases. Ap-

proximate angle ranges and resolutions are reported in Table I.

The glove values are captured at 88 Hz, the maximum rate

allowed by the serial port communication on the setup machine

under Windows XP.

2) Ultrasound Imaging: US images are gathered using a

General Electric Logiq-e portable ultrasound machine (see web-

2http://www.handprothese.de/vincent-hand

TABLE I
APPROXIMATE RANGES (IN DEGREES AND IN CYBERGLOVE UNITS) AND
RESOLUTIONS (IN DEGREES) OF THE SIX CONSIDERED FINGERMOTIONS

site ) equipped with a 12L-RS linear transducer; the ultrasound

“B”-mode is selected, resulting in a gray-valued image repre-

senting a section of what lies directly under the transducer. After

an initial round of examinations, we chose the following set-

tings: ultrasound frequency of 12MHz, minimal onboard image

preprocessing (i.e., noise rejection/edge enhancement), focus

point at a depth of about 1.3 cm, minimum depth of field (“focus

number” set at 1). This results in a frame rate of 28 Hz. These

settings match those already used in [10].

The transducer is lightly but firmly fixed on the subject’s

wrist using a commercially available vise; this gives to the setup

some flexibility, accounting for smaller and larger forearms. The

transducer lies near the distal radioulnar articulation at the level

of theM. Pronator Quadratus as depicted in Fig. 2, right panel.

The output image (consider Fig. 1 again) is therefore a section

of the wrist along the transverse plane, containing the ulna and

radius, the M. Pronator Quadratus itself, and the tendons re-

lated to almost all flexor muscles.

Images generated by the US machine are captured from the

VGA video output using a commercial VGA frame grabber,

then sent via Ethernet to a standard PC.

B. Experimental Protocol

1) Subject Pool and Stimulus: Six subjects, all able-bodied,

22–39 years old, joined the experiment. Each subject would sit

in front of a large PC screen, wear the glove and then lie her/his

hand and part of the forearm relaxed on an orthopaedic support.

The chair, the screen, the support, and the glove were adjusted

prior to the experiment in order to obtain maximum comfort.

The US transducer was then fixed just above and onto the wrist,

tightly but comfortably. Standard ultrasound gel was applied

between the transducer’s head and the skin to allow the correct

functionality of the US machine. The subjects were given no

knowledge of what the experiment was about; they were simply

3http://www.gehealthcare.com/euen/ultrasound/products/portable/logiq-e
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Fig. 3. The experimental setup: the subject would mimic the hand-model
movements, as seen on the computer screen; meanwhile, the glove and
ultrasound machine would gather hand motions and US images.

instructed to perform with the right hand what the hand model

on the screen would do, trying to mimic both the movement

and its speed. The model is controlled using exactly the same

six motion values at a real-time rate of 25 Hz. Fig. 3 shows the

situation.

The stimulus (that is, what the hand model would actually

do) consists of a sequence of basic movements, either single- or

multi-finger. Single-finger movements are: pinkie, ring, middle,

index, and thumb full flexion and back, and thumb full adduc-

tion and back. Multi-finger movements are: (a) simultaneous

flexion of the pinkie and ring, (b) simultaneous flexion of the

middle and index, (c) simultaneous flexion of the pinkie, ring,

middle, and index, and (d) like (c) but also adducting the thumb,

as in a typical “flat grasp,” used to grasp credit cards or DVDs.

Each movement is performed at three different speeds (1, 3, and

5 s for full flexion and back) and repeated two times (single-

finger movements) or three times (multi-finger movements); in

between movements, 1.5 s of rest are allowed. All in all, there

are 72 movements (36 single- and 36 multi-finger ones); appro-

priate labels are applied to all samples in order to understand

what movement and what speed is associated to each US frame

and hand position. Each experiment lasted about 6 min (3 min

single-, 3 min multi-finger movements); no fatigue or discom-

fort were reported by any of the subjects.

2) Synchronization and Preprocessing: Data synchroniza-

tion is enforced on a Windows PC equipped with a multi-core

processor, by gathering data from each device (i.e., the hand

model, the glove, and the US machine) asynchronously and ac-

curately time stamping each received datum. Time stamping is

enforced by the HRT library [11], giving an experimentally-de-

termined precision of 1.9 on the machine used. Linear inter-

polation is used to find the glove motion and stimulus values

best corresponding to the time at which each image is received

on the PC. All data are then low-pass filtered with a Butterworth

fifth-order filter, cutoff frequency at 1 Hz. This relatively strong

filtering was chosen after an initial round of experiments, and

found to yield the best results. Actually, since visual features are

linearly related to position features [10] and position features are

linearly related to finger joint angles (due to the linearity of the

cyberglove), the bandwidth of both signals is directly limited by

the speed of the movements (we have verified this for a relevant

number of sample signals). As per the stimulus, movements are

performed in cycles lasting 1, 3, 5 s, therefore the signal band-

width is uniformly limited below 2 Hz, so that 1 Hz seems to be

a reasonable value to cut off all high-frequency noise without

introducing too much delay in the real-time prediction.

3) Image Grabbing and Validation: As the US machine we

employed has no way of streaming images directly to a PC, im-

ages are grabbed from an external VGA connector using a com-

mercial frame grabber as stated above. The US machine gener-

ates images at a rate which depends on the chosen B-mode set-

tings; in our case, that was 28 Hz. These images are streamed

through the VGA port at a resolution of 1024 768 at 60 Hz, as

is customary. The frame grabber grabs the images at an unsyn-

chronized rate of about 56 Hz (the precise rate cannot be fixed

a priori as it depends on on-board software compression which

cannot be disabled) and streams them in turn through an Eth-

ernet connection.

Since the image stream is asynchronous, images must be

checked for validity before being used as they are received

by the system; i.e., one must verify that frame is a

complete, different frame with respect to frame . This is done

by checking the difference between two consecutively grabbed

frames, evaluated as the sum of absolute differences of the gray

levels. Three clearly increasing, repeatable noise levels were

identified and associated to the following.

a) Framegrabber noise: the same ultrasound image is

grabbed twice by the framegrabber. The frame is consid-

ered invalid and discarded, except in case c (see below).

b) Ultrasound noise plus framegrabber noise an update of

the ultrasound image occurred; the frame has changed on

the US since the last grab. The frame is considered valid.

c) Tearing due to the unsynchronized grabbing the top half

of the image has been updated (type b above) whereas the

bottom half has not (type a); the frame is then discarded

and the next frame of type a is then scheduled for usage.

At the end, only the valid frames are retained. Inspection of

the length of the recorded sequence has proved the effectiveness

of the approach. Additionally, each frame is cropped to the por-

tion of interest; that is, irrelevant information such as, e.g., the

windows border, menus, etc., are discarded.

C. Data Processing and Analysis

1) Choice of the Image Features: Visual inspection of the

US images while moving the fingers reveals that image defor-

mations are highly localized according to anatomy and the posi-

tion of the transducer. For instance, flexion of the pinkie finger

appears as a local modification at the upper-left corner of the

image, as that is the location where one would expect the sec-

tion of the related tendon to appear. The choice of features is

therefore that of local features—numbers extracted from a re-

gion of interest (ROI) centered around one of interest points

, .

Potentially, there are interest points in each and every image

area where finger-related modifications appear. In this case, one

must first identify the areas of interest for each finger and for
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Fig. 4. (Left) A graphical representation of the three features extracted from each interest point. (right) Three ROIs located near the zones of the image
where most changes are seen for pinkie flexion and thumb adduction (1,3) and where almost no movement is observed (2). The features are represented as nor-
malized vectors where and are the vector components. Consider also the movie “features.avi,” included in the supplemental material.

each subject, then estimate a potentially different shape for each

ROI. We rather employed a simpler alternative: we chose a uni-

formly-spaced grid of interest points, and a circular area around

each point. The center coordinates of each ROI, and the radius

, are chosen such that there is minimum overlapping among

pairs of ROIs. Formally

Each ROI is the local axial section of a very complex 3-D ob-

ject, namely the complete musculoskeletal structure of the wrist,

which is made of soft tissue structures, adjacent and shifting

along each other as muscles and tendons move. A full model of

the motion seen in each ROI would require modelling carefully

this 3-D motion and its view from across. This is clearly an ex-

tremely hard task, and anyway not in the focus of this work. We

rather make some abstract considerations.

Firstly, local changesmanifest themselves as alterations in the

gray values inside the ROI, in particular as rotations, enlarge-

ments/shrinkings, shifts, combinations of these, and even less

evident deformations due to the details of the musculoskeletal

structure entering and exiting the section. This hints at some

form of approximation of the gray value contents of the ROI;

that is, for each we extract a feature vector where

is the image gray level found at pixel and, with a

slight abuse of notation, is the set of gray values found

in the th ROI.

Secondly, image changes seem related by visual inspection

to positions of the fingers (and not, e.g., to velocities); this is

intuitively sensible since all changes in the body structure due

to voluntary contractions must be reversible when contraction

is released. This hints at the use of temporal zeroth-order fea-

tures, rather than first-order features such as, e.g., the optical

flow (see, e.g., [9]), also since in this framework, this technique

would mostly detect movement components in the - and -di-

rection of the image plane, but not along the axis perpendicular

to the section, which would be the main movement direction of

muscles and tendons. As a differential measure, it can yield in-

formation on absolute position after integration, but indeed will

be prone to integration errors (i.e., a random offset every time

the fingers go back to the resting position).

For all these reasons, the features used here are, for each ROI,

the local linear approximation of its gray-value contents. More

in detail , where

for all . Intuitively, denotes the mean image

gradient along the direction (rows of the image), is the same

value along the (columns) direction, and is an offset. Fig. 4

(left panel) graphically represents the coefficients. In order to

extract these features (and for all other image-related computa-

tions and evaluations) we used the HALCON v10.0 library by

MVTec.

2) A Toy Example: In order to test the effectiveness of the

chosen features, they are first applied to a toy example. Namely,

flexion of the pinkie and adduction of the thumb are selected

as two very different movements, and repeatedly performed by

one of the experimenters, in controlled conditions. Two corre-

sponding ROIs are then selected, near the regions of the im-

ages in which most changes appear during either movement;

a third ROI is chosen where almost no movement is noticed.

Fig. 4 (right panel) shows a graphical representation of the

and evaluated at the three ROIs, superimposed to a typical

US image. The features are represented as rotating normalized

vectors where and are the vector components.

Visual inspection of the three points, changing as the related

motions are performed, reveals that the chosen features are well

related to the finger positions (as recorded by the glove). Con-

sider the movie “features.avi” included in the supplemental ma-

terial; as one can see, ROI 1 (represented in red in the movie),

clearly correlates with the flexion of the pinkie finger; ROI 3 (in

green in the movie) correlates with the thumb position; and ROI

2 (in magenta in the movie) shows no apparent correlation with

either movement.

This toy example confirms strong local correlation between

finger positions and features extracted from each ROI, and

proves in hindsight that the choice of local features is a good

choice. In fact, an initial experiment revealed that high “cor-

relation zones” exist between finger motions and features, as

one can see from Fig. 5, showing the correlation coefficients

between each ROIs and the six degrees of motion. (For the

purpose of illustration, the correlation coefficients of the three

features , , and have been averaged out for each feature

point.) As one can see, specific areas of high correlation for the

first four degrees of motion exist (flexion of the pinkie, ring,

middle, and index finger) with highest correlation coefficients

of about 0.7. In contrast to this, for the movements of the thumb,

no feature points show very high correlation (for instance, the

highest correlation coefficient for thumb adduction is about

0.4), but in such a case we can still hope that the combination

4http://www.mvtec.com/halcon
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Fig. 5. Correlation between image features (average of for each ROI) and finger motions. Each colored rectangle matches the position of a ROI in the
image, and the color denotes the correlation existing between the features evaluated at the related ROI and the finger motion of the subfigure title.

of all local features is effective to predict the thumb position.

(See Section III for a full analysis.)

After an initial round of experiments, it was verified that the

optimal setting is to have ROIs, resulting in

visual features; the space between pairs of ROIs was chosen

to be 50 pixels and the radius of each ROI, 20 pixels. As we have

verified, the computation of all these features is extremely fast

and can be done in cinema-like real-time, that is, 25 Hz, on the

machine we used. As well, and somewhat surprisingly, we have

verified that the number and distribution of the ROIs, and their

radiuses, are not crucial to the prediction accuracy, as long as the

related values are chosen reasonably, that is, in order for them

to duly cover the surface of the US image and not to overlap too

much.

3) Linear Regression: In [10], we showed that a linear rela-

tionship exists between the above-described gray level approx-

imations and the finger positions (angles at the hand joints). So,

for each frame an image feature vector is associated

to a finger position vector . Least-squares regression is

applied to each dimension of the output space in order to obtain

linear coefficients for the input space values. In other words,

for each degree of motion with , we evaluate

with such that

This procedure ends up in a 6 645matrix , which can further

on be used to estimate new image feature vectors: . We

employ the Matlab standard linear regression function.

In order to have an idea of the generality of this procedure,

i.e., of how applicable this procedure is to features extracted

from so-far-unseen images, we perform a form of cross-vali-

dation. For each subject, the collected data are first randomly

permuted; then a subset of the data set (training set) is chosen

to perform the estimation of ; the prediction error is evaluated

on the rest of the data set (testing set). Different training set sizes

are chosen, namely containing of the whole data set, where

; it is expected that the prediction error would

rise as increases. No sample normalization is performed. This

training/prediction cycle is repeated for 20 times, each time with

a different permutation, then mean and standard deviation of
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the obtained error rate are reported. As an error measure, we

evaluate the square-root mean-square error normalized over the

range of the target values (NRMSE).

4) Compensation of Transducer Motion: As is intuitively

clear—and so it turned out after an initial round of experi-

ments—the features are highly sensitive to the

values inside the ROI: even a small shift in can sensibly

alter the features-to-position map and make , as previously

evaluated, much less effective. Small movements of the sub-

ject’s forearm with respect to the transducer are inevitable, due

to the gel, the normal motion of human limbs and fatigue. We

compensate for this by evaluating the optical flow between

reference frames and then using it as a map to locally shift the

center of each ROI.

We consider as reference frames the images taken in the

resting stance. During one session, composed of 72 move-

ments, rest is reached 73 times. Related frames are identified by

comparison with the stimulus plus a visually-determined time

shift. The first resting frame is taken as reference; then for each

further resting posture, the frame in the middle is considered

for comparison. Optical flow is then evaluated and the feature

points are shifted accordingly to the optical flow vector values.

One problem with the probe motion compensation is that, due

to the shift of the feature points, some of themmove out of scope

during the session. In that case, these feature points transfer

wrong information and are therefore not considered when esti-

mating . Hence, the algorithm has to be applied twice: the first

time to evaluate all the features that transfer correct information

through out the whole session, and the second time to extract the

feature values from these feature points. This also means that

when applying the probe motion compensation, some informa-

tion is lost. In other words, the marginal feature points (on av-

erage 45 feature points; 135 features) are not taken into account

when estimating . The motion compensation can be switched

on and off, enabling a full analysis of its effectiveness.

III. EXPERIMENTAL RESULTS

A. Regression Accuracy

Consider first Fig. 6, showing the NRMSE obtained by linear

regression on each finger position, according to the size of the

training set and for each subject. It is apparent from the figure

that linear regression is highly effective in all cases. When the

training set size is one-half of the total data set ( in the

figure), the NRMSE ranges from 1.08% (middle finger, sub-

ject 3) to 2.65% (pinkie finger, subject 1). As expected, as the

training set size is reduced, the NRMSE increases to a maximal

value of 9.67% (pinkie finger, subject 1 again) when . The

increase looks superlinear. Notice that there is no “best” finger

overall. Fig. 7 shows comparisons between typical real and pre-

dicted finger positions.

B. Probe Motion Compensation

Consider now Fig. 8, showing the effect of the probe motion

compensation mechanism on the NRMSE. We choose here to

show some of the worst cases of Fig. 6, that is Subjects 1 and

2 when , and then to repeat the experiment with an even

smaller training set size, namely .

Fig. 6. Per subject accuracy of linear regression. Mean values obtained over
20 random permutations of the training set.

As is apparent, the use of probe motion compensation is

highly effective, reducing the NRMSE by a statistically sig-

nificant amount, especially in the cases when the error is high.

For example, considering the pinkie flexion when , the

NRMSE of subject 1 drops from 35.82% 9.94% to 13.54%

3.76%; for subject 2 the drop is from 30.82% 7.26% to

13.65% 4.22%. Student’s t-test yields in both cases.

C. Implementation

The above described system has been demonstrated using

a three dimensional, 22 DoFs graphical model of a human

hand, both to show the stimulus to the subject and to show the

prediction. The model bone structure is configured using the

six estimated finger positions and a simple nonlinear coupling

among the internal DoFs; it is then rendered using the free

utility Blender (The Blender Foundation ). The six values are

streamed to the model by the prediction system using a local

host-based UDP stream at 25 Hz.

The whole sequence of movements was administered to a

single, intact subject while the system would gather synchro-

nized joint angles and US images. Subsequently, the matrix

was estimated and then used to predict the hand configura-

tion from the images alone. The result is visible in the movie

“demo.avi,” included in the supplemental material. At the end

of the demo the subject reported a remarkable feeling of owner-

ship of the model, while no fatigue or discomfort was detected.

Notice that, in this case, the probe is not placed on the wrist but

on the ventral side of the forearm, at a medial distance between

the wrist and the elbow. (See the Section IV for more details on

the probe positioning.)

5http://www.blender.org
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Fig. 7. Typical example comparisons between true and predicted finger positions. Notice the higher errors (for instance for Subject 1 around samples)
as is increased.

Fig. 8. Effect of the motion compensation on typically high errors. Error bars denote the mean and standard deviation NRMSE obtained on the 20 permutations.

IV. CONCLUSION

A. Discussion

The experimental results shown above clearly indicate that

US imaging of the human wrist can be effectively used as a

means to reconstruct the hand posture, up to a remarkable pre-

cision. This is the main finding of this work. More precisely:

it is no surprise that the information required to reconstruct the

hand configuration is in the images, since US is a widespread

tool for medical diagnosis of hand conditions (and, in fact, for a

number of other conditions). What remained to be demonstrated

is that the information can be effectively extracted and used to

this aim.We claim that the answer to this question if affirmative.

A further, more surprising outcome of this experiment is that,

if the type of features we use is chosen, then there is a linear

relationship between them and the hand posture (finger joint

angles). This result was already published in [10], but here we

show that it holds uniformly for all subjects considered; it holds

when subsampling is applied; and the relationship is robust with

respect to relative motion between the subject’s forearm and the
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US transducer—in that case we demonstrate the usefulness of a

simple compensation technique based upon optical flow compu-

tation. (Of course, too much motion will disrupt the approach.)

In our opinion, this is not trivial at all even though the features

are themselves first-order approximations of the gray levels in

the ROIs. Indeed, such features encode local structural motion

as seen in a section of the forearm, but it is not clear why this

motion is linearly related to finger position. Actually, in order

to fully understand this phenomenon, a model of the muscu-

loskeletal structure, its motion and the view across a section of

it would be required, but this is not the focus of this paper. No-

tice that our approach is totally blind to anatomy: features are

the same for each ROI, and ROIs are chosen to be uniformly

distributed across the image.

The most interesting consequence of the linearity of this re-

lationship is that the whole system can be implemented online

(ongoing research). The only problematic point seems that of

optical flow calculation, but that is required only whenever a

new reference frame is detected, that is, not in real-time.

B. Future Work

The main problem so far encountered is the forearm/trans-

ducer motion, which eludes the compensation mechanism in

extreme cases; but this problem should be largely solved by

improving the setup—especially, a more apt transducer is re-

quired. For example, the transducer might be steadily fixed on

the forearm via a belt; or it might be worn as a glove (silicone

liner) with single transducers sewn atop, placed according to

optimal muscular activity. We actually have hints that B-mode

sonography might not be required at all, and this would greatly

simplify the design of a new generation of transducers. Research

in this direction is already on the way.

A more interesting point is that of finding features which are

less sensitive to small changes in the US image. So far we use

Least-Squares regression to estimate , but this could be made

more robust by employing some for of regularized regression

such as, e.g., regularized least squares [12], [13]. An orthogonal

direction to be explored is that of allowing for more transducer

motion, therefore probably breaking the linearity of the map,

and then using more involved machine learning methods rooted

in the probabilistic framework (e.g., support vector machines

[14]). A further very desirable characteristic is that of enforcing

online learning, which implies in the linear case the periodic re-

computation of as the map changes, due to, e.g., transducer

motion or new movements enforced by the subject. In that case

a sensible way ahead is represented, e.g., by incremental regu-

larized least squares, an approach which does not depend on the

number of acquired samples (i.e., it does not grow indefinitely),

but only on the dimension of the input space.

Further experiments have revealed that within reasonable

limits, the radius of each ROI does not affect the accuracy of

the system; on the other hand, there is a clear trade-off between

the number of ROIs and the error. Finding a minimum set of

ROIs is of course an interesting path ahead; ROIs could also be

determined by local correlation with single-finger movements,

and then some form of source separation could be used to

enforce composition of these movements into multi-finger

motions.

C. Applications

The application of the results shown in this paper are multi-

farious and potentially quite wide. Ultrasound imaging could be

used as a means of interaction in virtual reality as well as in real

environments, to control a mechanical hand or a model, leading

to very accurate teleoperation, performed without any sensor on

the subject’s hand (such as, e.g., an instrumented glove).

An even more interesting application, though, is in rehabilita-

tion of neuropathic pain patients, mainly upper-limb amputees

and complex regional pain syndrome patients. Neuropathic

pain is felt in the missing or impaired limb and has a so-far

unknown origin; according to neurological studies performed,

among others, by Flor [17], [18] and Maihöfner [19], this kind

of pain is related to the degree of cortical reorganization hap-

pening in the brain as a consequence of the sensorial feedback

loop breakdown implied by such diseases. As first shown by

Ramachandran [20] and confirmed more recently [21], one

promising path ahead is represented by mirror therapy, in

which a mirror is used to give the patient the illusion of a

restored limb, therefore closing back the sensorimotor loop,

albeit in a very incomplete fashion.

During mirror therapy the patient must necessarily perform

with the imaginary limb what (s)he performs with the intact

limb. Apparently this simple exercise can ease the pain and

even, in some cases, awaken the phantom limb. Our system

could then be used to show to a patient the imaginary limb, this

time moving freely and voluntarily. Employed in a virtual re-

ality scenario, or with a real robotic hand, the system could give

the patient an almost perfect illusion and feeling of immersion,

and constitute a better treatment of neuropathic pain.

Of course this idea relies on the assumption that enough

residual activity can be found in the stump/impaired limb.

Hints at a positive answer to this question exist [22]–[25]

although so far only the electromyographic signal has been

studied to this end. Given the enormously richer amount of

information carried by the ultrasound images with respect to

electromyography, we conjecture that this would be the case

with our system, too.
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