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Abstract—Left Ventricular Diastolic Dysfunction (LVDD) is a 
decompensatory change in the relaxation properties of the heart, 
the risk for which increases with age. Currently, physicians use a 
decision-tree-like algorithm to distinguish between discrete 
LVDD levels. This approach, based on cut-off thresholds, can 
potentially lead to information loss and possibly to misdiagnosis. 
    This paper aims to explore an alternative diagnostic method to 
determine LVDD risk level, taking into account a wide variety of 
attributes available in patient records, without pre-setting cut-off 
thresholds. Using a large dataset derived from the Baltimore 
Longitude Study of Aging (BLSA), and adjusting the data for age 
and gender, we employ the Chi Square test and the information 
gain criterion to identify attributes that correlate well with the 
physician-assigned grades; such attributes are referred to as 
distinguishing attributes.  We then apply the expectation maximi-
zation (EM) algorithm, as well as the K-Means, in order to cluster 
records that are represented using distinguishing attributes.  
    While clusters resulting from the K-Means are not stable, three 
stable and tightly-formed clusters, which are obtained from the 
EM algorithm, roughly correspond to the physician-assigned 
categories. Based on the results from the EM algorithm, we can 
compute a patient’s probability to have low, high or no risk for 
LVDD, and use this probability as a basis for defining a risk score 
to determine the patient’s LVDD severity. 

Keywords—unsupervised learning; clustering; left ventricle di-
astolic dysfunction; EM algorithm 

I. INTRODUCTION  
    Left Ventricular Diastolic Dysfunction (LVDD) is a cardiac 
condition caused by decompensatory changes in the relaxation 
of the heart, the risk for which increases with age[1]. It is cha-
racterized by elevated filling pressures in the left ventricle 
despite normal or sub-normal diastolic volume. LVDD may 
result in insufficient pumping of blood to the rest of the body. 
Diagnosis and treatment is often difficult[2], because similar 
blood flow pattern may occur for both high and low LVDD se-
verity levels. As diastolic dysfunction is a major cause of heart 
failure[4], it is important to make a correct early diagnosis so 
that patients can get appropriate treatment and maximal benefit. 

Currently, cardiologists assign four discrete grades of 
LVDD[3], namely: normal condition (grade 0), impaired relax-
ation pattern (grade 1), pseudonormal filling dynamics (grade 
2), and restrictive filling dynamics (grade 3). This assignment 
is based on pre-defined cut-off thresholds applied to three 
attributes (See [3] for the algorithm): the ratio of the early (E) 
to late (A) ventricular filling velocities (E/A ratio), indexed 
Left Atrial Volume (LAVi), and the ratio of E to early diastolic 
mitral annular velocity (denoted Em) (E/Em ratio).  

    The E/A ratio describes the ratio between passive and active 
blood flow across the mitral valve[7]. In a healthy heart, the E 
velocity is higher than the A velocity[10]. With aging, the left 
ventricular wall may become stiff, leading to decreased passive 
filling capacity of the left ventricle and an  increasing need for 
active filling[4]. The fact that both people with normal diastolic 
function and patients with severe LVDD can have an E/A ratio 
higher than 1, makes early diagnosis of LVDD difficult. Thus 
additional measures are recommended[18]: i) The E/Em ratio is 
used for estimating left ventricular (LV) filling pressure[9], 
derived from the movement speed of the ventricular tissue[3]. 
As elevated filling pressures are the main physiological conse-
quence of diastolic dysfunction (DD), identifying those pres-
sures can help detect DD[8]. Typically an E/Em ratio above 12 
is associated with increased LV filling pressures[3]. ii) The 
indexed Left Atrial Volume (LAVi) assessment[11], calculated 
by indexing the volume of the left atrium to body surface area, 
reflects the cumulative effects of filling pressures over time[5], 
unlike E/A or E/Em ratios, which reflect filling pressures at the 
time of measurement. LAVi is used to differentiate between 
LVDD grades 0 vs. 2 and 0 vs. 3, when the E/Em ratio is in the 
intermediate range of 8-12. 

The threshold-based grading suffers several shortcomings, 
including the use of only a few available measurements in the 
diagnosis, and the potential loss of information through the use 
of pre-set thresholds. We propose an alternative framework to 
determine the LVDD risk level, without using cut-off thre-
sholds. Our scoring framework is based on unsupervised learn-
ing, and does not assign discrete grades, but rather indicates 
the probability of a condition to be severe, given attributes that 
are tested to be informative about LVDD severity levels.  

By assigning probabilities, this framework avoids the draw-
back of using explicit cut-off threshold, and has the potential to 
better utilize patient data. Moreover, using probability rather 
than a discrete grade has the advantage of providing more in-
formation about a patient’s potential risk level as opposed to a 
discrete binary decision of the severity group to which a per-
son does (or does not) belong. A clear high probability value, 
e.g. 0.9, may help physicians to confidently assign a high 
LVDD severity level, while a flatter probability distribution 
(e.g. 0.55 vs. 0.45) can assist in recognizing borderline cases. 
    The rest of the paper is organized as follows: Section II 
introduces the data and the terminology. Section III explains 
the clustering algorithms that are used. Section IV presents the 
results while Section V concludes the paper, discusses out-
comes limitations, and outlines directions for the future work. 
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II. DATA AND DISTINGUISHING ATTRIBUTES 
    The dataset throughout the work consists of records from a 
subset of patients who participated in the Baltimore Longitude 
Study of Aging (BLSA) [7]. A total of 6,642 records were ga-
thered from 1,888 participants during multiple visits over a 
period of 34 years (1979-2012). Four discrete grades were 
assigned to the patients using the decision-tree-like algorithm[3]. 
    We focus on records with assigned LVDD grades of 0-2, 
leaving out records with grade 3, because it is straightforward 
for a physician to identify the most severe cases and there is 
less room for improving this aspect. In contrast, lower severity 
levels are relatively harder for physicians to differentiate. As 
multiple visits are not aligned in time across patients, we use 
only the last visit record of each patient as our base dataset, for 
a total of 890 records (430 are male and 460 are female; 533 
people are grade 0, 258 are graded 1 and 99 are graded 2). 
    Each record is described by 182 attributes, excluding identi-
fication fields (id and visit time). Two types of attributes are 
assessed: continuous and discrete. Most of the continuous attri-
butes are Doppler ultrasound measurements[9], describing either 
heart structure or blood flow. Most discrete attributes consist of 
Yes/No answers to clinical inquiries. Not all attributes are infor-
mative for distinguishing among LVDD grades. We aim to 
identify attributes  that correlate well with – and are potentially 
predictive of – LVDD severity level, and refer such attributes as 
distinguishing attributes. To find out these attributes, we use  
physician-assigned LVDD severity levels as  ground-truth class 
labels, and employ the Pearson’s Chi Square test[12] to identify 
attributes that correlate strongly with LVDD grades. 

The magnitude of association between an attribute and the 
LVDD severity level may be exaggerated due to confounding 
factors[6], e.g. age and gender. To identify attributes that do  
not reflect age or gender, but rather truly reflect the  propensity  
of a patient (of any age) to demonstrate a certain LVDD se-
verity level, we separated the data into female and male groups, 
as well as into different age groups, and created 10 female sets 
and 10 male sets. The association of each attribute with the 
physician-assigned grade is tested separately, within each of 
the 20 datasets, as well as within the original dataset as a 
whole. Table I shows the 20 datasets with their age range and 
the number of records within each set. 
    To ensure each dataset provides statistically significant mea-
sures, we allow overlapping age interval across age-groups. An 
advantage of having such an overlap is that we can test an 
attribute on a variety of age scopes to ensure the attribute is 
independent of age. Attributes that consistently distinguish 
between the same pair of LVDD grades regardless of the 
variability in age boundaries, are more likely to be associated 
with LVDD grade regardless of the specific age. We also 
removed attributes that have a high ( 40%) rate of missing 
values, because: 1) It is impractical to impute data when the 
missing rate is so high; and 2) Ignoring missing values in an 
attribute with high missing rate introduces bias and skews to the 
estimates of parameters like mean and variance.  
    Having removed high missing rate attributes, we employ the 
Chi Square test to check if there is a significant association 
between a remaining attribute and the LVDD severity level. 
The continuous attributes are discretized by using equal-width 
binning[14] before the test. We examine one attribute and one 
pair of LVDD grades, Si and Sj, at a time, to check whether the 

distributions of the attribute’s value are the same or different 
between records with Si compared to those with Sj, Three pairs 
of LVDD severity grades are compared: 0 vs. 1, 1 vs. 2, and 0 
vs. 2. If the p-value generated from the Chi Square test is lower 
than 0.05, it suggests that the distributions of the attribute 
values are statistically significantly different, between one 
LVDD grade vs. another. If all p-values associated with the 
attribute are low across all three pairs of grades, we conclude 
that the attribute is informative and can distinguish well among 
all LVDD severity levels.  
    The Chi Square test results indicated that only two attributes 
statistically significantly differentiate among all three pairs of 
LVDD severity levels, namely E/Em ratio and Mitral Valve 
Early Filling Point (MV E Point). However, quite a few attribu-
tes were found to differentiate well between two out of the three 
pairs of LVDD grades. While such attributes are likely to be 
useful for distinguishing between certain pairs of severity-levels, 
using them for representing patients may diminish the contribu-
tion of other informative attributes tested to be correctly distin-
guishing between the severity-level-pairs for which these 
attributes were found to be non-informative. To minimize this 
type of effect, we set 0.4 as an upper bound on the p-value for 
selecting distinguishing continuous attributes, while we employ 
the information gain[13] (IG), which is used for measuring how 
well an attribute discriminates between target classes (LVDD 
grades), as an additional measure to ensure that the selected 
discrete attributes are informative. We found that if a discrete 
attribute contributes an IG below 0.018, the attribute is unlikely 
to differentiate well between a pair of grades. Therefore discrete 
attributes whose IG is below 0.018 are removed. For the 
remaining attributes, if all three p-values obtained from the Chi 
Square tests are below 0.4 and two of them are below 0.05, 
these attributes are selected as distinguishing attributes; each of 
them can statistically significantly distinguish at least two pairs 
of LVDD grades without impeding the differentiation with 
regard to the third pair. Table II shows the distinguishing 
attributes and the pairs of LVDD grades that are distinguished 
by them. Each distinguishing attribute can differentiate between 
at least two pairs of LVDD grades.  

III. CLUSTERING METHODS 
    Having identified the distinguishing attributes, we employ 
two well-known clustering methods, K-means[19] and the Ex-
pectation Maximization[15] (EM), to cluster patients based on 
the distinguishing attribute values that are used to represent 
each records. We use our own implementation rather than 
open-source tools such as Weka[16], because the latter do not 

TABLE I. DATASETS CREATED FOR AGE AND GENDER ADJUSTMENT. AGE 
SCOPE SHOWS THE RANGE OF AGE FOR EACH DATASET. COUNT SHOWS THE 
SIZE OF EACH DATASET. ‘F’ IN THE DATASET NAME, INDICATES ONLY 
FEMALE RECORDS ARE INCLUDED, WHILE ‘M’ INDICATES MALE.  

Age Scope 
Female Male 
Dataset 
Name Count Dataset 

Name Count 

50-64 F5064 139 M5064 99 
50-70 F5070 204 M5070 159 
≥50 F50up 375 M50up 407 
60-74 F6074 175 M6074 159 
65-80 F6580 163 M6580 196 
≥65 F65up 236 M65up 308 
75-90 F7590 108 M7590 170 
≥75 F75up 120 M75up 185 
≥81 F81up 73 M81up 112 
Full range Female 430 Male 460 
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support customized initialization of the cluster’s parameters. 
Both clustering algorithms were applied to three datasets: 
female, male, and the dataset with both genders. We do not run 
experiments over each of the 20 datasets described in Section 
II, as those were only devised for selecting distinguishing 
attributes. Moreover, many sets are small, and do not reflect 
the whole patient population. As such, we use three large data-
sets of female, male and gender-mixed set in the experiments. 
    The initialization of cluster parameters is non-random, and 
is based on the physician assigned LVDD grades, as these 
assignments reflect some prior knowledge about LVDD cate-
gories. This information would be lost if random initialization 
is used. As there are three LVDD grades that are of interest in 
the data, we use three clusters in the experiments, although 
future work will examine a larger number of clusters, to possi-
bly find concrete subclasses of patients within the data. Nota-
bly, the clustering algorithms as a whole do proceed in an 
unsupervised fashion, even when the initialization is based on 
labels that were pre-assigned to the data. 
    Each algorithm requires initialization of several parameters. 
The maximum iteration number for both clustering methods is 
set to 100. For K-Means, we initialize the centroid of each 
cluster by random seeding from different LVDD grades. A 
random grade 0 record is used as the initial centroid for cluster 
0, likewise, a random grade 1 record is used for cluster 1, and 
a random grade 2 record is used for cluster 2. This seeding 
reflects a priori bias toward having three clusters that roughly 
correspond to three major severity levels. To test the stability 
of the K-means, we run 20 experiments on each of the datasets; 
each experiment initialized using a different seed assignment. 
The parameters for the EM include: for each cluster, the initial 
Gaussian mean and variance of each continuous distinguishing 
attribute, and an initial value for seeding the mode of each 
discrete distinguishing attribute for each cluster. To initialize 
these parameters, as well as to utilize the prior know-ledge of 
physician assigned categories, we sample a small set according 

to a fixed (small) sampling fraction[17]. For a sampling fraction 
of a%, we draw at random a% of the records in each LVDD 
category to initialize each potentially respective cluster. From 
the sample, we compute the Gaussian mean and variance of 
each distinguishing attribute Ai for each cluster. For a discrete 
attribute Dk, we find the mode of Dk in the sample to initialize 
the value of Dk in the cluster. We keep the sampling fractions 
low so as to not over-bias the EM, and let the algorithm con-
verge in an unsupervised manner based on all the data it rece-
ives. To test stability of the EM, we chose four low fractions: 
10%, 20%, 30%, and 40% to create different sample sets. We 
run 20 experiments for each fraction and compare the clusters 
obtained from the EM with the physician-assigned categories. 

IV. RESULTS AND DISCUSSION 
    Clustering is usually applied to datasets where no prior class 
information is available. However, to validate the connection 
between the obtained clusters and the physician-assigned 
LVDD grades, we use Table III to analyze the resulting clus-
ters, showing the distribution of records in each cluster (and 
each LVDD category) for each dataset and demonstrating how 
stable in size the resulting cluster is across different runs. 
    Clusters obtained from the K-means showed high variability 
and instability depending on the initial centroids; the distribu-
tion of instances in clusters varies greatly across experiments, 
including results with empty cluster, or uniformly distributed 
clusters. As such, we do not further discuss these results here.     
In contrast, the clusters produced by the EM show stability 
across all runs, and the respective cluster sizes remain similar 
across all experiments under different initializations. Approx-
imately 98% of the records in each dataset were always as-
signed into the same cluster across different runs. Based on the 
data shown in Table III, the ratio between the size of the as-
signed cluster 0 and the size of dataset remains at around 37%; 
the size of cluster 1 roughly remains at around 43%; the size of 
cluster 2 roughly remains at around 18%.  
    According to the resulting clusters from the EM, almost all 
records in cluster 0 are LVDD grade 0, while most records that 
were LVDD grade 1 are placed in cluster 1, and most records 
that were assigned grade 2 are placed in cluster 2. In addition, 
the means of the E/A ratio in each cluster are very similar to 
the means in the corresponding pre-assigned LVDD catego-
ries. The standard deviation for most attributes in each cluster 
is smaller compared to the standard deviation measured within 
the pre-assigned categories. This indicates that tighter clusters 
are formed by the EM algorithm. Since the resulting clusters 
are stable and tight, cluster 0 can be viewed as corresponding 
to no LVDD risk, cluster 1 can be viewed as to low LVDD risk 
and cluster 2 can be regarded as relatively high LVDD risk. 
     Our clusters are based on patient-representation through 18 
distinguishing attributes, as opposed to the three used by phy-
sicians in the decision-tree-like process. Having more dis-
tinguishing attributes as part of the clusters characteristics, can 
provide additional information to physicians regarding recur-
ring patterns across different severity levels of LVDD. More 
importantly, the availability of the clusters and their respective 
mean and variance, allows us to calculate, for each person, a 
probability to be at a low, high or no risk for LVDD. There-
fore, these clusters can serve as a way to assign continuous risk 
scores to a patient, without employing pre-set thresholds.  

TABLE II.  DISTINGUISHING ATTRIBUTES AND THE PAIRS OF LVDD GRADES 
THAT ARE STATISTICALLY SIGNIFICANTLY DIFFERENTIATED.   
 

Attribute Name 
Pair of LVDD grades that are 
statistically differentiated 

 0 vs. 1 0 vs. 2 1 vs. 2 

C
on

tin
uo

us
 A

ttr
ib

ut
e 

E/A Ratio Y   Y 
Doppler Heart Rate (Echo HR) Y   Y 
End Diastolic Volume Teich 
Algorithm (EDV Teich) Y Y   
E/Em Ratio Y Y Y 
Left Atrium (LA) Dimension Y Y   
Indexed LA Volume (LAVi)   Y Y 
Lateral Em Y Y   
MDRD Formula for Creatinine 
Clearance Rate (MDRDcr_cl) Y Y  
Mitral Valve Early Filling Point 
(MV E Point) Y Y Y 
Relative Wall Thickness (RWT) Y Y   
Septal Am   Y Y 

D
is

cr
et

e 
A

ttr
ib

ut
e 

β-Blockers Y Y   
Angiotensin Type (ANG Medint) Y Y   
Renin-Angiotensin-Aldosterone 
System Drug (RAAS Drugs) Y Y   
Simplified Renal Disease Formula 
(MDRDrenfail) Y Y   
Heart Failure Type (HF Medint)   Y Y 
Atherosclerosis (Athero) Y Y   
 Coronary Artery Disease (CAD) Y Y   
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    As mentioned in Section I, these probabilities can represent 
a level-of-confidence, by showing how likely a patient is to be 
in each LVDD risk level, thus having a specifically important   
advantage in borderline cases, as opposed to a discrete decision 
of the severity group to which a person does (or not) belong. 
For instance, when using the decision procedure, it is difficult 
to decide on the correct LVDD grade for a patient, whose E/A 
ratio is 1.24, E/Em ratio is 10.4 and LAVi is 28.01. While the 
decision procedure assigns an LVDD grade of 2, this assign-
ment is rather arbitrary; a small measurement error  (e.g. 0.011) 
could change the LAVi to just below the 28 ml/m2 threshold, 
leading to an LVDD grade of 0. In contrast, our probabilistic 
model assigns the same patient with a probability 0.927 to be 
at no risk of LVDD, a probability of 0.001 to be at low risk, 
and 0.072 to be at high risk. Such a probabilistic assignment is 
clearer, reflecting both the most likely case and the alternatives, 
while also likely to be more reliable as it incorporates informa-
tion from 18 significant measures as opposed to only three.  

V. CONCLUSION AND FUTURE WORK 
    In this study, we proposed an alternative way to assign 
LVDD risk level by clustering data using the EM algorithm, 
and viewing the probability of a patient to belong to each 
cluster as a basis for a continuous risk score. We first employed 
the Chi Square test to select informative distinguishing attri-
butes. We next employed unsupervised learning to cluster 
patient records, where the latter were represented as vectors of 
distinguishing attributes. While the clusters obtained from the 
K-means were neither meaningful nor stable, the clusters 
obtained from the EM consistently correspond to physician-
assigned LVDD categories. Having the stable clusters, we can  
compute the probability of a person to have low, high or no 
LVDD risk. The probabilities can serve as a basis for a conti-
nuous risk score to determine the LVDD risk level of a patient.   
    Throughout this study, we have used the last visit record to 
represent each patient. We shall extend it to include the 
complete set of records per patient, while accounting for the 

temporal aspect of the extended data. We have also focused on 
clustering data into three clusters, while utilizing  physician-
assigned LVDD labels to initialize the parameters. As the three 
clusters resulting from the EM are stable, in future studies we 
shall increase the number of clusters used, in order to possibly 
uncover subclasses within the data, which can be indicative of 
subgroups of patients with distinct LVDD forms. 
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TABLE III.  A. THE DISTRIBUTION OF RECORDS IN EACH CATEGORY ASSIGNED BY 
A PHYSICIAN, ACROSS THE THREE MAIN DATASETS; B. THE DISTRIBUTION OF 
RECORDS AMONG THE CLUSTERS OBTAINED FROM THE EM ALGORITHM, ACROSS 
THE THREE MAIN DATASETS, UNDER THE FOUR DIFFERENT INITIALIZATION 
SETTINGS. (SAMPLING FRACTIONS). 
A.                             Physician-Assigned LVDD Category 
 Group 0 Group 1 Group2 Total 
Male dataset 260 (60.5%) 109 (25.3%) 61 (14.2%) 430 (100%) 
Female dataset 273 (59.3%) 149 (32.4%) 38 (8.3%) 460 (100%) 
Base dataset 533 (59.9%) 258 (29.0%) 99 (11.1%) 890 (100%) 
B.               Clusters Resulting from the EM Using Male Dataset 
Sampling 
Fraction Cluster 0 Cluster 1 Cluster 2 Total 
10% 159 (37.0%) 191 (44.4%) 80 (18.6%) 430 (100%) 
20% 161 (37.4%) 181 (42.1%) 88 (20.5%) 430 (100%) 
30% 160 (37.2%) 182 (42.3%) 88 (20.5%) 430 (100%) 
40% 160 (37.2%) 182 (42.3%) 88 (20.5%) 430 (100%) 

Clusters Resulting from the EM Using Female Dataset 
10% 167 (36.3%) 216 (47.0%) 77 (16.7%) 460 (100%) 
20% 171 (37.2%) 212 (46.1%) 77 (16.7%) 460 (100%) 
30% 169 (36.7%) 213 (46.3%) 78 (17%) 460 (100%) 
40% 171 (37.2%) 211 (45.9%) 78 (17%) 460 (100%) 

Clusters Resulting from the EM Using Base Dataset 
10% 339(38.1%) 399(44.8%) 152 (17.1%) 890 (100%) 
20% 334(37.5%) 390(43.8%)  166 (18.7%) 890 (100%) 
30% 334(37.5%) 390(43.8%) 166 (18.7%) 890 (100%) 
40% 334(37.5%) 390(43.8%) 166 (18.7%) 890 (100%) 
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