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Using Vector Quantization for Image Processing 

PAMELA C. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACOSMAN, KAREN L. OEHLER, EVE A. RISKIN, MEMBER, IEEE, 

AND ROBERT M. GRAY, FELLOW, IEEE 

Image compression zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis the process of reducing the number of 
bits required to represent an image. Vector quantization, the map- 
ping of pixel intensiry vectors into binary vectors indexing a limited 
number of possible reproductions, is a popular image compression 
algorithm. Compression has traditionally been done with little 
regard for image processing operations that may precede or follow 
the compression step. Recent work has used vector quantization 
both to simplify image processing tasks-such as enhancement, 
classification, halftoning, and edge detectio-nd to reduce the 
computational complexiry by performing them simultaneously with 
the compression. After briefly reviewing the fundamental ideas of 
vector quantization, we present a survey of vector quantization 
algorithms that perform image processing. 

I. INTRODUCTION 

Data compression is the mapping of a data set into 
a bit stream to decrease the number of bits required to 
represent the data set. With data compression, one can store 
more information in a given storage space and transmit 
information faster over communication channels. Suppose 
a source is producing symbols from an alphabet of size 
2b at a rate of R symbols per second. Each symbol can 
be described with an index that is b bits long. Because 
the rate of the source is Rb bits per second, the data would 
need to be compressed to be transmitted over channels with 
capacity less than Rb. 

The two types of data compression are lossless and lossy. 
Lossless compression has the advantage that the original 
information can be recovered perfectly from the compressed 
data. Short indices (less than b bits) are assigned to high- 
probability symbols, and long indices (more than b bits) 
are assigned to low-probability symbols. Lossless codes are 
variable rate because the number of bits allocated to source 
symbols differs. Whereas the source would still produce 
R symbols per second, only Rm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 Rb bits per second 
are required on average to identify them. The compression 
ratio is defined as b:m, and is limited by the source entropy 
rate, a measure of the randomness inherent in the source. 
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For example, if all the source symbols are independent and 
equally likely (maximum randomness), a lossless code must 
have a bit rate that is no lower than Rb bits per second. 
Alternatively, one could use a lossy code that operates at 
rates below the source entropy rate. Lossy compression 
introduces error into the data, so the original data cannot 
be perfectly recovered. Vector quantization (VQ) [l]. [21], zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[59], described in the next section, is an algorithm for lossy 
compression. 

An image compression system may serve as a front 
end for a digital image processor. Digital image pro- 
cessing is the processing of a two-dimensional set of 
data. It includes representation and modeling, enhancement, 
restoration, analysis, and reconstruction. Images are often 
processed in different ways, and there are open questions 
about how the image processing operations interact with 
each other. Which operation should be performed first? 
Which operation makes another processing task simpler 
or more complex? This paper addresses the question: Do 
any image processing operations naturally and effectively 
combine with VQ algorithms? Two attributes of VQ suggest 
that such smart compression is possible. First, the VQ 
design techniques of clustering and classification trees have 
a long history of applications to image processing, including 
enhancement and classification. Second, since a VQ system 
uses a collection of possible image reproduction blocks, an 
image processing routine can be applied to this set of blocks 
ahead of time rather than to the compressed image itself. 

By combining other signal processing goals into the 
design of the VQ, the compression system can be better 
customized for a particular application. Isolated examples 
of these ideas have appeared in the literature, but little at- 
tempt has been made to unify them as a common approach; 
this is our goal. We begin with a description of unstructured 
(full search) vector quantization and tree-structured imple- 
mentations. We then examine a number of variations on 
the VQ design algorithms that allow for the incorporation 
of image processing into the compression system. 

11. VECTOR QUANTIZATION 

Vector quantization is an image compression algorithm 
that is applied to vectors rather than scalars, and it can 
be easily understood through scalar quantization. Scalar 
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ENCODER zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Fig. 2. Vector quantizer. 

Fig. 1. 2D example of VQ. 

quantization maps a large set of numbers to a smaller one 
and includes such operations as “rounding to the nearest 
integer,” although in general the quantization levels do 
not have to be either integers or evenly spaced. Vector 
quantization rounds off (or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAquantizes) groups of numbers 
together instead of one at a time. These groups of numbers 
are called input vectors, and the quantization levels are 
called reproduction vectors. To specify a vector quantizer, 
one needs the set of possible reproduction vectors and a rule 
for mapping input vectors to the reproduction vectors. A 
two-dimensional example of a VQ is shown in Fig. 1. The 
dots represent the reproduction vectors and the mapping 
rule is indicated by the lines, which delineate the boundaries 
between regions. Any input vector lying in a given region 
maps to the reproduction vector in that same region. 

Another way of depicting this system is in Fig. 2, which 
shows a VQ that operates directly on image pixel blocks. 
The input image is parsed into a sequence of groups of 
pixels, possibly 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 2 squares as shown in the figure, but 
larger squares and rectangles and other shapes are often 
used. The encoder views an input vector X and applies its 
mapping rule to select one of the N possible reproduction 
vectors from its codebook. The chosen reproduction vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Y ,  is also called a codeword and is (usually) a gray-scale 
pixel block of the same dimension as the input block. The 
index zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi of Y; is a binary vector. Notice that X and X 
are slightly different in Fig. 2 to demonstrate that VQ is a 
lossy compression technique. If the code has a fixed rate of 
b bits per input vector, then i has length b. With a variable 
rate code, the indices i have variable length, and b is their 
average length. The compressed image is represented by 
these indices i, and the compressed representation requires 
fewer bits. For example, for an 8-bit per pixel (bpp) original 
image, the input block requires 4 x 8 = 32 bits. For a 
fixed rate code with 256 codewords in the codebook, each 
codeword has an 8-bit index. Thus the compression ratio is 
32 : 8, or 4 : 1. The decoder also has a copy of the codebook, 
and it operates as a simple table lookup. Upon receiving an 
index i, the decoder puts out the stored codeword Y;. 

The operation of the decoder is thus completely described 
once we have specified the codebook. The operation of the 
encoder requires a choice of the mapping rule. The basic 
Shannon source code model provides an encoder that is 
optimal for a given codebook if the goal is to minimize an 

average distortion. If we assume d ( X ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 0 measures the 
distortion or the-cost of reproducing an input vector X as 
a reproduction X, and if we further assume that the overall 
distortion (or lack of fidelity) of the system is measured 
by an average distortion, the optimal encoder for a given 
codebook selects the vector Y ,  if 

In other words, the encoder operates in a nearest neighbor or 
minimum distortion fashion. A full search VQ is an unstruc- 
tured collection of codewords. The encoder determines the 
closest one by an exhaustive search. A structured codebook 
uses a constrained search to speed up the encoding, but it 
is not guaranteed to find the overall nearest neighbor in the 
codebook. 

The choice of distortion measure permits us to quantify 
the performance of a VQ in a manner that can be computed 
and used in analysis and design optimization. By far 
the most commonly used distortion measure for image 
compression is the mean squared error, in spite of its often 
cited shortcomings. Although there are many approaches to 
code design, the algorithms surveyed here are all based on 
clustering techniques, such as the Lloyd (Forgey, Isodata, k- 
means) algorithm. The Lloyd algorithm has been described 
in detail in a variety of places (see, for example, [l], [21], 
[24]). It iteratively improves a codebook by altemately 
optimizing the encoder for the decoder (using a minimum 
distortion or nearest neighbor mapping) and the decoder 
for the encoder (replacing the old codebook by generalized 
“centroids”). For squared error, centroids are the Euclidean 
mean of the input vectors mapping into a given index. 
Code design is usually based on a training set of typical 
data rather than on mathematical models of the data. For 
example, to produce a VQ for magnetic resonance chest 
scans, one begins with a set of 20 to 30 representative 
scans. These images are divided up into training vectors, 
and the clustering algorithm is run on this set. 

111. TREE-STRUCTURED VECTOR QUANTIZATION 

Shannon theory states that VQ can perform arbitrarily 
close to the theoretical optimal performance for a given 
rate if the vectors have sufficiently large dimension. Unfor- 
tunately, code complexity grows exponentially with vector 
dimension. The practical solution to this “curse of dimen- 
sionality” is to constrain the code structure. This solution 
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Fig. 3. Unbalanced and balanced trees. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
results in codes that are not mathematically optimal, but it 
will likely provide better performance with implementable 
codes for a given rate. There are many common constrained 
code structures zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 11, [21], including lattice-based codes, 
classified VQ, multistep VQ, product codes (gain/shape 
and mean removed), predictive VQ, finite-state VQ, and 
tree-structured VQ. The only constrained code structure we 
describe here is tree-structured VQ (TSVQ) because it is 
used in several of the combined systems for compression 
and image processing. 

TSVQ avoids the full search of an unstructured codebook. 
Figure 3 depicts two simple binary trees. In both cases, the 
codeword is selected by a sequence of binary decisions. 
Vector reproductions are stored at each node in the tree. 
The search begins at the root node. The encoder compares 
the input vector to two possible candidate reproductions, 
chooses the one with the minimum distortion, and advances 
to the selected node. If the node is not a terminal node 
(leaf) of the tree, the encoder continues and chooses the 
best available node of the new pair presented. The en- 
coder produces binary symbols to represent its sequence 
of left/right decisions. The stored index is then a path map 
through the tree to the terminal node, which is associated 
with the final codeword. The two trees differ in that the 
one on the right is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbalanced and all indices have the same 
length R. This tree yields a fixed rate code. The other is 
unbalanced and has indices of differing length. Here the 
instantaneous bit rate-the number of bits per input vector 
or pixeldhanges, but the average rate is constrained. Like 
a lossless code, an unbalanced tree gives the code the 
freedom to allocate more bits to active areas and fewer 
bits to less active areas such as background. The goal in 
lossy compression, however, is to choose long or short 
codewords to minimize average distortion for a given bit 
rate, not to match improbable or probable vectors as in 
lossless coding. The search complexity of a balanced tree 
is linear in the bit rate instead of exponential but at the cost 
of a roughly doubled memory size. For unbalanced trees the 
search complexity remains linear in the average bit rate, but 
the memory can be considerably larger unless constrained. 

A. Growing Trees 

Tree-structured codes are designed by combining cluster- 
ing with ideas from classification and regression tree design 
[3]. Classification trees apply a sequence zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof tests to an 
input to classify it. The general philosophy of classification 
tree design is a gardening metaphor: First grow a tree and 
then prune it. To grow a TSVQ, one begins with a set of 

Fig. 4 Growing a balanced tree. 

training vectors and calculates its centroid. This centroid 
is the optimum rate 0 codeword and is associated with 
the root node. The cluster of data is then split into two 
subclusters. The split can involve perturbing the root node 
centroid slightly and associating the root node centroid 
and its perturbation with the two new child nodes. The 
iterative clustering algorithm is then run on the pair. The 
data points shift back and forth between the two subclusters 
until the subclusters stabilize, and their centroids represent 
the codewords at the first level of the tree. There are now 
two quite different options. 

1 )  Split All Terminal Nodes (Balanced Trees): The tree 
can be extended by simultaneously splitting the two clusters 
associated with the two current terminal nodes and running 
the iterative clustering algorithm on each pair. For each 
current terminal node, only the training vectors in that 
node's cluster are used to design the node's children. The 
clustering algorithm will eventually converge for all the 
split clusters to give a new balanced tree with four nodes 
in the second level. One continues to grow the tree in this 
manner. This technique is depicted in Fig. 4. 

Balanced trees have two clear drawbacks. As the tree 
grows, some nodes may become sparse in training vectors, 
and the resulting clusters may not generalize well to outside 
data. Some nodes may even be empty and will waste bits. 
Also, there will likely be too many codewords to represent 
inactive vectors and too few to represent active vectors. 

2) Split One Node at a Time (Unbalanced Trees): An 
altemative design paradigm is to split nodes one at a time 
rather than zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAan entire level at a time. After the level one 
codebook has converged, one chooses one of the two child 
nodes to split and runs a clustering algorithm on that node 
alone to obtain a new unbalanced tree with three terminal 
nodes. One then repeats the procedure, choosing one of 
the three nodes. This continues until the tree reaches the 
desired average rate. The two common methods of choosing 
which node to split are not optimal. The first is to split the 
node with the largest contribution to the average distortion 
[42]. The second approach is optimal in an incremental 
or greedy fashion. Splitting a node causes an increase in 
average rate AR and a decrease in average distortion AD. 
We split the node that maximizes the magnitude slope 
lAD/AR( to get the largest decrease in average distortion 
per increase in average bit rate [62]. This splitting algorithm 
is a natural extension of a fundamental design technique for 
classification and regression tree (CARTTM) design [3]. 

B .  Pruning Trees 

Whether balanced or unbalanced, the growing algorithm 
is greedy and does not consider the impact that the current 
split has on future splits. Furthermore, even the unbalanced 
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Fig. 5. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
intermediate file generation. 

Separate sequential decoding and processing steps with 

tree can result in sparsely populated or improbable nodes 
that cannot be fully trusted to typify long run behavior. 
A solution to both these problems is to prune the tree 
[6]. Pruning removes a node and all its descendants and 
hence reduces the average bit rate and increases the average 
distortion. The idea is to minimize the magnitude of the 
increase of average distortion per decrease in bit rate 
lAD/ARi (the same quantity we maximized in growing 
the tree). Because we have the entire tree, we can consider 
the effect of removing entire branches rather than individual 
nodes. Thus we can find the optimal subtrees of an initial 
tree that provide the best distortion-rate tradeoff. The 
optimal TSVQ’s of decreasing rate formed by pruning an 
initial tree are nested (form embedded codes) which makes 
the pruning algorithm work efficiently. These codes have 
a successive approximation character in that the distortion 
decreases on average as the bit rate increases. 

The advantages of variable rate TSVQ are that it usually 
yields lower distortion than fixed rate full search VQ for a 
given average rate and block size, encodes with a sequence 
of binary decisions, and has a simple design algorithm. It 
also has a natural successive approximation (progressive) 
property and is well matched to variable rate environments 
such as storage or packet communications. 

IV. DIGITAL IMAGE PROCESSING AND VQ 

Digital image processing can be divided into several 
different classes of applications, including representation 
and modeling, enhancement, restoration, analysis, and re- 
construction. Typically, when one processes a compressed 
image, the steps are cascaded as shown in Fig. 5. The 
original data are first compressed and stored as a list of 
codeword indices. The decoder reads in the indices and 
generates the decompressed data set (reconstructed image), 
thereby expanding the compressed data file back to its 
original size. In Fig. 5, the decompressed data look slightly 
different from the original data to indicate that although 
the file sizes are the same, the decompressed data are not 
the same zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas the original due to the VQ. The processor 
operates on the decompressed data to generate the processed 
result. The decompressed data and the processed result are 
shown differently in Fig. 5 to indicate that the processed 
information may not even be an image. 

Several ways of combining the decoding and processing 
steps have appeared in the literature. The simplest of 
these ways merely eliminates the need for the intermediate 
decompressed data file. As the decoder retrieves blocks 
from the codebook, the blocks are immediately sent for 
processing. This situation is diagramed in Fig. 6. As we zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

indiced P d  

mdebook mdebook 

Fig. 6. Sequential decoding and processing steps with no inter- 
mediate file. 

codebook zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 
linlred 

cdebook 

Fig. 7. Perform processing on the codebook. 

discuss in Section VIII, this combination might be useful 
when the original data set is very large (e.g., 3D data of 
size 512 x 512 x 512 pixels at 8 bpp = 134 Mbytes) and 
the processed result is much smaller. In this case, one may 
not be able to accommodate the entire decompressed data 
set even briefly on the system. 

What characteristics of the processing let it be combined 
with the decompression step? Clearly the processor must be 
able to operate on subblocks of the image that are no larger 
than the size of the codewords. In addition, the codewords 
must be processed independently of each other or at least 
of the blocks which have not yet been decompressed. In 
general, a subblock can be anything from a single point to 
the whole image. The key issues in combining processing 
with VQ are the size of the operational subblocks and 
whether the subblocks are processed in an independent 
(nonoverlapping) or dependent manner. If, in addition to 
operating independently on codeword-sized subblocks, the 
processor also depends only on information available at the 
time of codebook design, then the system in Fig. 6 can 
be further simplified. At the time of codebook design, each 
codeword is processed as if it were a subblock of an image. 
Each codeword is then linked to the result of processing the 
codeword, as shown in Fig. 7. This result may be another 
image subblock (a processed version of the codeword), or it 
may be a piece of information (e.g., a class assignment for 
the image subblock or a determination of edge orientation 
within the subblock). We use a circle to represent the result 
of processing the codeword to differentiate it from the 
original codewords. 

The processing is done off-line at the time of codebook 
design, and the decoder codebook contains the codewords 
and processed results linked together. When the system 
decompresses an image, the decoder can put out the code- 
words, the processed result, or both, and no additional time 
is required. This system appears in Fig. 8; most of the 
image compressionlprocessing algorithms we will describe 
are based on this figure. 

A trivial example of combining VQ and image processing 
is thresholding, which operates on a gray-scale image in a 
pointwise manner. The VQ is designed as usual, and each 
pixel in each codeword is thresholded to produce the linked 
codebook. When the codebook is used for decompression, 
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Fig. 8. Combined decoding and processing steps. 

processed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
result 

mdebook from 

deaign algorithm linked 
codebook 

Fig. 9. Combined decoding and processing steps, where en- 
coder’s codebook has been modified by knowledge of processing. 

the decoder can select the output from either the original or 
the thresholded codewords. Thus a thresholded-compressed 
image can be obtained for no postprocessing costs. 

What are the costs in combining VQ and image process- 
ing? First, the decoder must store the processed codewords, 
which requires varying amounts of storage space. Second, 
if the processing step normally depends on the entire 
decompressed image, the results obtained by processing 
the codewords off-line would be different from the results 
usually obtained. Thresholding, however, works on inde- 
pendent blocks (pixels) and therefore the results obtained 
by thresholding the codewords in advance or thresholding 
the decompressed data file are clearly the same. 

Even the simple thresholding case may not be as straight- 
forward as described. One may want to modify the standard 
VQ design algorithm based on the processing operation 
that follows. With thresholding, many codewords may map 
to the same thresholded vector, and one could modify the 
design algorithm not to waste those codeword indices. This 
situation is diagramed in Fig. 9, and classification applica- 
tions based on this model are discussed in Section VI. 

All the examples in the literature follow one of these 
models. In the sequel we introduce a variety of image 
processing operations that can be combined with VQ. We 
consider the key issues of operational block size, block 
independence, and the need for altering the VQ design. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A .  Enhancement 

The goal of image enhancement is to accentuate certain 
features of the image for subsequent analysis or display. 
Examples include contrast enhancement, pseudocoloring, 
noise filtering, sharpening, and magnifying. VQ has the 
innate ability to remove “speckle” noise because of the 
smoothing or averaging performed by the centroid oper- 
ation. For medical images, it was suggested in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[53], [9] 
that slightly compressed images yielded marginally better 
diagnostic accuracy and subjective quality ratings than 
did original images. Of course, such smoothing can be 

considered as enhancement only if the speckle is indeed 
undesirable noise and not the signal of importance. A 
discussion of the use of data compression (not specifically 
VQ) for filtering random noise is given in [45]. 

Histogram equalization (HE) is a powerful tool for con- 
trast enhancement. Global HE remaps pixel intensities in 
a pointwise fashion (thus subblock size zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1 x 1) with a 
remapping function based on the histogram of the entire 
image (size = N x N ) .  Despite the discrepancy in the 
two block sizes, neither of which is suitable for VQ, the 
operation can be made compatible with VQ by substituting 
the histogram of the training images used to design the 
VQ for the histogram of the decompressed input image. 
Global and adaptive histogram equalization are described 
in Section V. 

B. Classification and Analysis 

Scene analysis and image understanding range from 
character recognition and medical image analysis to auto- 
matic defect analysis and cartography. Most such problems 
require examination of blocks considerably larger than a 
VQ vector, but the algorithms usually begin with low- 
level operations on small blocks. A VQ can be used for 
this low-level classification or detection, and the low-level 
classification itself may be useful. Examples of classifi- 
cation and edge detection are given in Sections VI and 
VII. Classification and analysis problems are often solved 
with tree-structured methods, and thus a natural meld with 
tree-structured VQ may exist. 

C.  Visualization 

Scientific visualization is the use of computer graphics 
techniques for displaying experimental or simulated data. 
Visualization includes techniques for displaying volumetric 
(3D) scalar fields as 2D images. Such 3D arrays of digital 
data representing spatial volumes arise in many scientific 
applications, including medicine, nondestructive evaluation, 
astrophysics, and meteorology. Isosurface generation is the 
construction of a polygonal model which approximates a 
contour surface in the volume, thereby extracting and dis- 
playing a single surface from the volumetric data. Another 
example is volume rendering, which treats the entire 3D 
scalar field as a collection of sources and attenuators and 
integrates these contributions along the viewing direction to 
form a projected image of the translucent volume. Section 
VI11 presents an algorithm for combined VQ and volume 
rendering that provides storage savings and may yield faster 
rendering. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
D. Reconstruction and Representation 

Halftoning is the conversion of a gray-scale image to 
a bilevel image suitable for display on a binary device. 
A combination of compression and halftoning would be 
useful for transmitting images by facsimile, transmitting 
images to printers, and storing images for display on 
monochrome monitors. This problem has been examined 
by Vander Kam et al. [34], [35] and is discussed in Section 
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E. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOne particular halftoning process, error diffusion, is 
particularly challenging to combine with VQ because it is 
a neighborhood process. 

Image reconstruction encompasses many methods of gen- 
erating images from raw data. Examples include recon- 
struction of medical zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACT images from 1D projections and 
reconstruction of synthetic aperture radar (SAR) images 
from complex radar returns. Because of the nature of the 
signal processing required by the SAR processing, VQ can 
be used to simplify reconstruction computations following 
compression. This technique is described in Section X. 

v. CONTRAST ENHANCEMENT 

Histogram equalization is a contrast-enhancement method 
for increasing the dynamic range of images to bring out 
features hidden in dark regions or washed out by light 
areas. Histogram equalization remaps each pixel to an 
intensity proportional to its rank among surrounding pixels zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[32]. Transforming each pixel according to the inverse of 
a cumulative distribution function alters the histogram or 
empirical distribution of the pixel intensities. If the cumu- 
lative distribution function is the empirical distribution of 
the image, the result is a more uniform distribution of pixel 
intensities. Histogram equalization effectively widens the 
perceived dynamic range of the image. 

In global histogram equalization, one calculates the in- 
tensity histogram for the entire image and then remaps the 
intensity of each pixel to be proportional to its rank in 
this global histogram. A single, global remapping function 
does not provide much flexibility. For example, in the 
original image of Fig. 10, the dark areas of the cortex 
have intensities in the range of 70-80, and the brighter 
pixels have intensities > 110. A function that maps pixels 
in the range of 70-80 to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlower values, and maps pixel 
intensities > 110 to higher values would enhance the 
contrast between the various structures in the cortex. In the 
spinal column area, however, the vertebrae have intensities 
in the range of 70-80, and the intensities of the darker 
interstices between the vertebrae range from 30 to 40. 
In this area of the image, the remapping function should 
map 7 M O  to higher values and 3 0 4 0  to lower values, to 
make the vertebrae more clearly distinguishable from their 
surroundings. Global histogram equalization, however, uses 
only one mapping function for the entire image. 

"his problem is addressed by adaptive histogram equal- 
ization (AHE), in which the histogram is calculated for 
pixels in a context region (usually a square) and the remap- 
ping is done only for the center pixel of the square. This 
can be called pointwise histogram equalization because, for 
each point in the image, the histogram is calculated only 
for the square context region centered on the point and that 
point alone is remapped. Because this is computationally 
intensive, the bilinear interpolative version is an alternative 
to lower the computational complexity [57]. It calculates 
the histogram for only a set of nonoverlapping context 
regions that cover the image; the remapping of pixel 
intensity values is then exact for only the centers of these 

Fig. 10. Original image. 

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11. Bilinear interpolative adaptive histogram equalization. 

context regions. For all other pixels, a bilinear interpolation 
from the nearest context region centers determines the 
appropriate remapping function. 

With the bilinear interpolative AHE, the remapping func- 
tion for a given pixel of intensity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi at location (z,y) is 
determined from the nearest four context regions as shown 
in Fig. 11. If zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm+- denotes the mapping at the grid pixel 
(z+, y-) to the upper right of (z, y) and similar subscripts 
are used for the other surrounding context regions, the 
interpolated AHE result is given by 

m(i) =a[bm++(i) + (1 - b)m-+(i)] 

+ [I - ~][bm+-(i)  + (1 - b)m--(i)] (1) 

where 

Pixels in the border regions of the image are handled 
separately by using a linear interpolation from the two 
nearest context region centers or, in the comers, using only 
a single remapping function. A 256 x 256 pixel image 
typically has sixteen zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA64 x 64 context regions. 

A. Combined VQ and Histogram Equalization 

Instead of performing the decoding and equalizing oper- 
ations sequentially, one can perform them simultaneously 
by equalizing the decoder's codebook off-line at the time 
of codebook generation [8]. Although the histograms of 
the future test images are not available at the time of 
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codebook generation, the histogram of the training sequence 
is available. The intensity distribution of the training set 
must be very similar to that of the test set for a VQ 
codebook to work well, and in such a case, the histograms 
would likely be quite similar. 

We implemented combined VQ and global histogram 
equalization by constructing the global histogram for the 
training set and equalizing the codebook with this global 
histogram. Each pixel of each terminal node remaps to 
a new intensity proportional to its rank in the global 
histogram. The new codewords are stored at the decoder 
along with the original codewords. The resulting system 
follows the model of Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8. In this application, the original 
data, the decompressed data, and the processed result are 
all zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA256 x 256 gray-scale images. The radiologist can view 
either the equalized or the unequalized series of compressed 
scans (or both); both ways require the same amount of time 
to reconstruct the image. 

The simultaneous combination of VQ and AHE is not 
straightforward. AHE remaps a pixel’s intensity using a 
histogram local to that pixel, so one must know the pixel’s 
spatial location in addition to its intensity to determine the 
appropriate remapping function. AHE cannot be simply ap- 
plied to VQ, because although the intensity of any pixel in 
a codeword is known, its “location” is unknown. Because 
the codewords represent centroids of clusters of training 
sequence vectors, the concept of a codeword’s “location” 
within the training images is vague; the codeword likely 
does not exist in any of the images. We divided each 
training image into the sixteen context regions shown in 
Fig. 11 [7]. The pixels from the corresponding regions of 
the training images were pooled to form sixteen different 
intensity histograms. The codewords were equalized using 
each of the sixteen different histograms, and the resulting 
equalized versions of the codewords were stored at the 
decoder along with the original codewords. Because the 
input image is scanned in a fixed raster order, the spatial 
location of each vector was known to the decoder. The de- 
coder automatically generated the coefficients zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb from 
(2) for the input vector location and selected and linearly 
combined the four equalized versions of the codeword. The 
resulting system follows the model in Fig. 8, with the 
reproduction vectors linked to sixteen different equalized 
versions of themselves. The system differs slightly from 
the model in that a small amount of postprocessing (the 
linear combination) is required at the decoder. 

To demonstrate combined AHE and VQ, an unbalanced 
tree was grown to an average depth of 2 bpp on a training 
sequence of 10 magnetic resonance (MR) mid-sagittal brain 
scans of 10 different subjects. The 256x256 training images 
were blocked into 2 x 2 vectors. The tree was pruned back 
to 1.7 bpp and each leaf codeword equalized over the 
sixteen histograms from the training sequence. Figure 10 
shows the original test image, which is not in the training 
set. Figures 12 and 13 show the regular compressed and 
adaptively histogram equalized compressed images. The 
image quality of the equalized compressed image is very 
high, and its contrast is enhanced. The invaginations of the 

Fig. 12. Regular compressed image at 1.78 bpp. 

Fig. 13. Adaptively histogram equalized compressed image at 
1.78 bpp. 

cortex are more obvious, and the vertebrae are more clearly 
differentiated from the interstitial spaces. 

VI. CLASSIFICATION 

Combining vector quantization with classification is nat- 
ural because both techniques can be designed and im- 
plemented using methods from statistical clustering and 
classification trees. The goal of such a combination is to 
incorporate classification information into the codewords by 
classifying the codewords themselves during code design. 
By combining VQ and low-level classification, certain 
simple features in an image can be classified automati- 
cally as part of the compression process. The classification 
requires no more bits to describe than those required for 
compression alone, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAan important feature in low-memory or 
low-bandwidth situations. Such a combination can be used 
to highlight regions in the reconstructed image belonging to 
a specific class or to provide an efficient front end to more 
sophisticated full-frame recognition algorithms. If the VQ 
output is intended for classification, the compression design 
can provide better performance than if the quantization and 
classification algorithms were designed independently. 

The notion of using a VQ to classify is implicit in the 
classical nearest neighbor (NN) classification algorithms 

1332 PROCEEDINGS OF THE IEEE, VOL. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA81, NO. 9, SEPTEMBER 1993 



[17], [lo]. The NN classifier is constructed by labeling 
every training vector by its class and then using the 
entire training set with the corresponding classes as a VQ 
for future vectors. A new vector is classified by finding 
its nearest Euclidean neighbor in the training set and 
then assigning the label of that nearest neighbor to the 
new vector. In this case, the entire training set is the 
codebook, which can be extremely large. Although this 
can be considered as an application of VQ to classifier 
construction, little compression of the input is realized if the 
training set is large. One can reduce the codebook size by 
eliminating a subset of codewords whose removal causes 
the least damage to the classifier performance [12], [20], 
[28]. Instead of applying explicit clustering to minimize 
the squared error of a reduced set of labeled templates, the 
nearest neighbor literature considers classification error (or 
Bayes risk) when reducing the codebook size. 

An early example of using VQ for joint classification and 
compression was described by Hilbert [30]. Hilbert applied 
clustering techniques to training vectors to produce a code 
in a manner similar to the Lloyd algorithm. The result- 
ing codewords were labeled using a maximum likelihood 
classifier developed from the training data. When these 
codewords were used for encoding, the labels provided si- 
multaneous classification. An adaptive clustering algorithm 
produced variable-size codebooks that better represented 
variations in the training data. Lossless source coding 
applied to the encoder output further reduced the bit rate. 
The algorithm was applied to multispectral Landsat images, 
which were both compressed and classified into eight 
classes of crop types. This method follows the model in Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
8, in which the VQ decoder can either put out codewords for 
the input vector or the classification of the input vector. In 
Hilbert’s case, the data classification was not incorporated 
into the clustering algorithm. Thus the design algorithm 
was essentially a cascade of separate compression and 
classification steps, although the overall system provided 
simultaneous compression and classification. 

More recent methods modify the clustering algorithm 
used to design a VQ to improve classification ability. Such a 
system has the form of Fig. 9. Perhaps the best known such 
technique is that of Kohonen zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAer al. [36]-[38] who proposed 
a variety of learning vector quantizers (LVQ) to perform 
classification using a VQ encoder and codebook. The 
encoder operates as an ordinary minimum mean squared 
error selection of a representative from the codebook but 
the codebook is designed to attempt to reduce classification 
error implicitly rather than reducing mean squared error. 
Kohonen argued that for the case of Gaussian data, the 
partition induced by a VQ can approximate that required for 
a Bayes estimator; his algorithm is based on this intuition. 
Kohonen’s approach has been widely used for classification 
of such disparate applications as the classification of speech 
sounds zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 141, of objects in clutter in synthetic aperture radar 
[27], of proteins [44], of bird songs [47], and of oceanic 
signals [22]. 

Kohonen’s algorithm is similar to Stone’s general for- 
mulation of nearest neighbor methods for parametric re- 

gression, in which a general weighting dependent on class 
membership of several nearest neighbors can be appIied to 
the classifier [64]. Viewed in this way, Kohonen’s algorithm 
can be considered a clustered simplification of the nearest 
neighbor approach. As in the nearest neighbor classifier, 
compression ability is not explicitly considered in LVQ. 
Kohonen’s general goal was to imitate a Bayes classifier 
with less complexity than other neural network approaches, 
but there is no explicit minimization of classification error 
in the code design. 

We describe a method of explicitly combining classifica- 
tion and compression using TSVQ in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[5 11. The training set 
is classified by determining those features to be recognized 
in subsequent images. In this example, aerial photographs 
are hand-labeled by a human observer as regions of man- 
made or natural objects. This zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa priori knowledge is used 
when designing the TSVQ codebook to improve the clas- 
sification accuracy over that of ordinary TSVQ. 

Because the classification and compression are done 
simultaneously, one tree-structured search both encodes and 
classifies each image subblock. Stored with each codeword 
in the codebook is a label for the best class prediction 
for image subblocks that map into it. The best predictive 
class for a given codeword is determined by a majority 
vote of the a priori class assignments of the training vec- 
tors represented by that codeword. This classification rule 
is essentially an empirical maximum a posteriori (MAP) 
classifier based on the VQ output, where the necessary 
conditional probabilities are estimated by the relative fre- 
quencies when the VQ is applied to the training set. Once 
the encoder selects the best codeword, the preliminary 
classification of the subblock is a simple table lookup; no 
other computations are required. In effect, this classification 
comes “for free” once the codebook has been designed 
off-line. 

The classification accuracy can be explicitly incorporated 
into the VQ design through the node splitting strategy. 
Three splitting strategies are natural: 

Criterion 1 (Ordinary TSVQ) Split the node with 
the largest lAD/ARI as in Section 111, yielding 
ordinary greedily grown TSVQ for comparison. 
Criterion 2 Split the node that is “worst” in terms 
of percentage of misclassified training vectors. 
Criterion 3 Split the node that is “worst” in terms 
of number of misclassified training vectors. 

The encoder and the centroid reproduction levels are cho- 
sen to minimize squared error. The first splitting criterion 
represents an ordinary TSVQ codebook design method, 
but the latter two splitting criteria represent a modified 
design method for constructing a codebook with reduced 
classification error. 

In [51] the training set consisted of five images. The 
images were 512 x 512 8-b gray-scale aerial photographs 
of the San Francisco Bay area. Each 16 x 16 pixel subblock 
in the training set was classified as either man-made or 
natural. The original test image is shown in Fig. 14. 
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Fig. 14. Original aerial image (8 bpp). Fig. 15. Image compressed at 0.46 bpp using a compres- 
sion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/ classification encoder. 

Table 1 PSNR and Classification Ability Using TSVQ 
Codebooks Grown Using Various Splitting Criteria 

~ ~ ~~ ~ 

Criterion: 14rdinary 2 3 
TSVQ 

Test PSNR (dB) 23.4 22.8 22.7 

Test classification 0.7 1 0.74 0.75 
ability zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Each of the splitting criteria was used to construct a 
TSVQ codebook at an average bit rate of 0.5 bpp. A test 
image outside the training sequence was encoded with the 
resulting codebooks. Compression and classification ability 
results are shown in Table 1. The compression ability 
is measured by the peak signal-to-noise ratio (PSNR). 
The classification ability is measured by the fraction of 
vectors classified correctly by the encoder relative to the 
classification standard created by the human observer. In 
general, the first splitting criterion provided the lowest mean 
squared error in the encoded images at the expense of 
reduced classification ability. The other splitting methods 
provided poorer compression ability (the encoded images 
were slightly more blocky in appearance) but better classi- 
fication ability for the test image. Choosing the splitting 
criterion involves a tradeoff between compression and 
classification quality; some splits serve one purpose better 
than the other. This example demonstrates how knowledge 
of the subsequent processing can be used to modify the 
codebook design algorithm to improve the subsequent pro- 
cessing. Again, this is the situation we have illustrated in 
Fig. 9. 

Ideally, the compressed images would be viewed as a 
color image so that the classification information could 
be indicated by color superimposed on the gray-scale 
reconstructed image. Such a contrast makes the natural 
and man-made features of the image easier for a human 
viewer to differentiate. Because it is difficult to display 
the compression and classification results simultaneously 
in a gray-scale image, the results are shown separately 
here. Experimental data are shown for images encoded 

Fig. 16. Image compressed at 0.46 bpp using a compres- 
sion /classification encoder where man-made subblocks are 
replaced by solid white subblocks. 

and classified with a codebook grown using the second 
criterion. Figure 15 shows the image compressed to 0.46 
bpp. In Fig. 16, the subblocks classified as natural are 
displayed directly while the subblocks classified as man- 
made are replaced by solid white blocks. The classification 
ability was modest; at 0.46 bpp the best classification 
encoder still had zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA25% misclassification error on the training 
sequence. This large error partly reflects the quality of 
the training sequence, however. The hand-labeling was 
affected by the human observer’s resolution and consistency 
limitations. The classification results were comparable to 
results from the CARTTM algorithm, a traditional tree- 
structured classification technique 131. 

Another approach to using VQ to compress and classify 
explicitly incorporates a Bayes risk component into the 
distortion measure used for code design; this trades off 
mean squared error with classification error zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[52].  

Suppose that one wants to classify the input signal as 
being in one of two classes (say 0 or 1) and that the cost 
of misclassifying a vector in class zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIC as being in class j is 
c k , j .  Assume that C k , k  = 0. Given a classifier h(z), which 
assigns a VQ index i to a class 0 or 1, the Bayes risk is 
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given by 

B=Co, lPr(h= 1andXisinclassO) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
+ Cl,o-Pr zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( h  = 0 and X is in class 1). 

One can replace the usu! design goal of minimizing an 
average distortion E [ d ( X ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX)], such as mean squared error, 
by a modified average distortion E [ d ( X ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX ) ]  + AB, where 
X is a Lagrange multiplier by which the relative importance 
of average distortion and Bayes risk can be adjusted. The 
average distortion depends only on the VQ encoder and 
decoder, whereas the Bayes risk depends only on the VQ 
encoder and on the classifier function h. A variation of 
the Lloyd algorithm that resembles the optimization used 
in entropy-constrained VQ [5] can be run to minimize 
the modified average distortion: Given an initial codebook 
(possibly designed to minimize squared error alone) and 
a classifier (possibly an empirical Bayes classifier based 
on conditional probabilities in the labeled training set), the 
following iteration is performed: 

Encode the training data by choosing the VQ index i 
for each input vector that minimizes the modified dis- 
tortion, (squared error) + (A  x conditional Bayes risk), 
resulting from mapping the input into VQ index i. 
Update the reproduction vectors corresponding to the 
VQ indices by computing the Euclidean centroids of 
the training vectors mapping into them. 
Update the classifier decision for each VQ index by 
using a Bayes classifier on the labeled training data. 

The iteration is continued until further improvements 
are negligible. Like the Lloyd algorithm, this is a descent 
algorithm, and results in a reduction of the average modified 
distortion at each step. 

The conditional probabilities Pr (X is in class zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk lX)  
needed to compute the Bayes risk within the training set 
are simple fractions depending on how many times the 
observed vector occurs with a specific class label. Outside 
the training set these probabilities must be based on a model 
or empirically estimated. Alternatively, outside the training 
set one can use the simple but suboptimal encoder, which 
simply minimizes Euclidean distance, as LVQ does. 

This method has been used to analyze simulated data, 
identify pulmonary tumor nodules in computerized tomog- 
raphy (CT) images, and identify man-made regions in aerial 
images [52]. For CT images, the algorithm was used to 
design a VQ codebook that both compressed the images and 
classified vectors in the images as tumor or nontumor. The 
locations of the tumors were determined by radiologists, 
and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 x 2 training vectors were labeled accordingly. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA 2- 
bpp full search codebook was constructed using unbalanced 
classification costs, making missed tumors 100 times more 
detrimental than false alarms. Compression results on a CT 
image outside the training set are shown in Fig. 17. This 
image contains three circular tumors in the left lung. The 
resulting classification of this image is shown in Fig. 18. 
The algorithm correctly identifies substantial parts of each 
of the three tumors. The classification here involves no 
extra decoding complexity when implemented and is based 

Fig. 17. CT image compressed at 2 bpp using a compres- 
sion / classification encoder. 

Fig. 18. CT image compressed at 2 bpp using a compres- 
sion /classification encoder where light regions represent vectors 
classified as tumor. 

entirely on small blocks with no context. It is significantly 
simpler than many other recognition algorithms and can 
provide a useful front end to more sophisticated algo- 
rithms yielding an overall performance improvement and 
complexity reduction. 

Recent work by Owsley and Atlas used multidimensional 
ordering of VQ codebooks in classification of vector-series 
patterns (such as spectrograms) [54]. By structuring the 
codebooks so that the relative positions of the codevectors 
in the codebook correspond to distances between code- 
vectors, they made the codevector indices a meaningful 
representation of the information in the vectors. They were 
then able to classify based on the series of indices. Classi- 
fiers such as neural networks, which would be overloaded 
by the presentation of the entire spectrogram, benefited 
from the more efficient representation. Other applications 
of VQ to classification may be found in [41, [431. 

VII. EDGE DETECTION 

Variable rate VQ has some inherent edge-detecting prop- 
erties. A variable rate TSVQ usually uses more bits for 
regions of greater activity (such as edges) and fewer bits 
for homogeneous or inactive regions. The number of bits 
allocated to a particular block provides information about 
the block. This is illustrated in the instantaneous rate image 
of Fig. 19. The original image of Fig. 1 1  has been encoded 
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Fig. 19. Instantaneous rate image. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
with 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 2 blocks to an average rate of 1.8 bpp, with 
encoding depth from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 to 18. The blocks at the greatest 
depths are shown in white, those with the shortest path 
lengths are displayed in black, and the depths in between 
are in shades of gray. The edges around the head as well 
as some of the internal edges are clearly visible from the 
instantaneous rate picture. 

In another example of using VQ for edge detection, VQ 
has been used to implement gradient magnitude edge detec- 
tion [33]. The second directional derivative edge detector 
described in [25], [26] combines naturally with VQ because 
it works on small image blocks (typically, 5 x 5 or 7 x 7). 
This VQ-based edge detector also fits into the scheme 
diagramed in Fig. 8. 

The second directional derivative edge detector estimates 
the gradient magnitude at each pixel location in the image 
with a facet. The facet models a digital image as being 
derived by sampling a continuous underlying gray-scale 
intensity surface. This surface can be represented by a low- 
degree (usually quadratic or cubic) bivariate polynomial. 
The gradient direction and magnitude, the second direc- 
tional derivative in the direction of the gradient, and the 
contrast are all obtained in terms of the facet polynomial 
coefficients. The center pixel of the block is labeled as 
an edge pixel if the second directional derivative in the 
direction of the gradient has a negatively sloped zero 
crossing within a threshold radius of the center of the pixel 
and if the edge contrast exceeds a threshold value. 

The VQ-based edge detector is applied to each codeword 
in a codebook and the edgelno edge information is stored 
with the codeword. Edge detection is then performed by 
VQ encoding and table lookup of the edge information. 
The VQ encoding differs from ordinary VQ in that a 
sliding block is used so that every pixel in the image 
appears as the center of a block. Usually, the image is 
tiled in a nonoverlapping manner. This algorithm is a 
“trainable edge detector,” which has lower computational 
complexity than a conventional gradient edge detector. 
Further complexity can be saved by encoding with larger 
VQ blocks to determine edge information for multiple 
pixels at one time. 

The VQ-based edge detector was applied to a motion 
sequence obtained from a camera mounted on a mobile 
robot in an outdoor environment, using a greedily grown 
unbalanced TSVQ with 5 x 5 vectors at a rate of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 b zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 vector 
[33]. Because we are using a sliding block VQ so that every 
pixel appears in 25 different vectors, the effective bit rate 
is 6 bpp. The VQ was trained on the first frame of the 
motion sequence and tested on the next 20 images of the 
sequence. The result was compared to the case in which 
the second directional derivative edge detector was applied 
directly to the original test image (with no encoding). The 
comparison showed that all dominant edges in the original 
image are detected in the compressed image at this rate and, 
in fact, the algorithm gave fewer false positive edges by 
rejecting many high-frequency low-contrast texture edges. 
At the same time, it preserved the low-frequency high- 
contrast edges. Recent extensions to this work include a 
supervised classification scheme that uses human input to 
reclassify the output of the VQ-based edge detector; this 
is similar to using VQ for classification as described in 
Section VI. 

VIII. VOLUME RENDERING 

3D scalar fields arise in many applications. Empirical 
measurements of sonic waveforms or tomography radiation 
are processed to obtain density samples of a solid over a 
3D volume. In other cases, such as the stress distribution 
over a mechanical part or the pressure distribution within 
a fluid reservoir, the 3D scalar fields are calculated numer- 
ically using finite-difference or finite-element techniques. 
The data set typically represents volume elements (voxel) 
samples of some scalar field zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf that are available on a cubical 
grid. The goal of visualizing the data is to understand the 
spatial distribution of the field values over the domain on 
which the function is defined. This can be done with volume 
rendering, which generates a 2D image from the 3D data 
set. The volume renderer computes an image by assuming 
a translucent material model and a lighting model and then 
rendering from a given point of view. The volume renderer 
forms an image in two stages: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAshading and ray tracing. 

Shading requires the assumption of a material model 
that assigns a color c and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAan opacity a to each point 
in the volume. In a simple material model, color and 
opacity are user-defined functions of the scalar-field value 
alone. In a more complicated implementation, the volume 
is modeled as a composition of one or more materials 
[13], and either the material composition of each voxel is 
provided directly or classification is used to estimate these 
percentages from the original data. In this model, values of 
c and a are assigned to each material and are calculated 
from the material composition in each voxel. In addition, 
the surface physics within the volume are approximated 
by assigning to each material a density characteristic p .  A 
surface is considered to occur within the volume whenever 
two or more materials with different p values meet. The 
strength of the surface is proportional to both the magnitude 
of the difference in p and the sharpness of the transition 
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from one material to the other. The surface normal vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(n,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAny, n,) can be required by the volume renderer so 
that the color value can incorporate directional shading and 
the gradient magnitude zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI( of 11 can influence the opacity 
level. 

The ray tracer integrates the color and opacity values 
along each of a set of rays passing from a chosen viewpoint 
through the volume. It resamples the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc and Q values along 
each ray and composites the samples. The computation 
consists of incrementing the position, resampling c and a 
with a trilinear interpolation from the surrounding voxel 
values, and blending the sample into the pixel of the final 
2D image. 

Such a volume rendering system typically processes the 
data in raw, uncompressed form. For large data sets, the 
storage used by these methods is very high and rendering 
speed is generally slow. For example, even if only a single 
8-b value of the scalar field f is stored for each voxel, 
the complete original (or decompressed) file will amount to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
134 Mbytes for a 512 x 512 x 512 voxel array. Depending 
on the complexity of the material and lighting models, and 
depending on whether the user wants to render the same 
material model from different viewpoints without having 
to recompute values, the file may be expanded to include 
the various derived quantities, yielding as many as seven 
values for each voxel: f, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn,, ny,  nz ,  11 of 11, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc,  a. 

A. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACombined VQ and Volume Rendering 

Ning et al. showed VQ to be a particularly useful tech- 
nique for compressing volumetric data [50]. In addition to 
providing a respectable amount of compression, VQ meets 
two criteria specifically important for pipelining it with 
volume rendering. VQ provides fast (table lookup) decod- 
ing so that rendering is not slowed by the decompression. 
VQ also allows random access to voxel values, which is 
advantageous because voxel access pattems are viewpoint- 
dependent. Capitalizing on these advantages, Ning et al. 
[50] implemented a system in the form of Fig. 6. A 
separate VQ codebook was designed for each volume to 
be compressed. In this case, the codebook must be stored 
in addition to the list of indices, and the compression 
ratio cited must include the codebook. When the volume 
is visualized, the renderer performs the shading and ray 
tracing steps directly on the decompressed data as they 
arrive. The algorithm was tested on a fluid flow data set. 
Only the scalar field values were stored for each voxel. 
This combined system provided excellent image quality 
with 17:l compression and only a modest 5% increase 
in rendering time. Recreating the entire decompressed file 
was not necessary, and thus the 17:l storage savings were 
retained throughout the entire processing operation. 

In further work [48], [49], Ning et al. showed that 
the shading and ray-tracing steps could be accelerated 
by performing precomputations on the codebook before 
decoding. The system differs slightly from the model in Fig. 
8, in which the processing on the codebook is only done 
once at codebook generation time. In volume rendering, 
because the user typically wants to select which colors 

and opacities correspond to the different features in the 
volume, c and a cannot be calculated at the time of 
codebook generation but must wait for the user to specify 
the correspondence immediately prior to decoding. At this 
point, the rendering can be sped up by performing the c 
and a calculations on only the codebook rather than by 
decompressing the full volume and calculating the values 
for each voxel in the decompressed volume. The ray- 
tracing step can also be accelerated. Each codeword in 
the codebook can be ray-traced from the user-specified 
viewpoint to form a set of projected bit maps. This step 
involves trilinear interpolation of the c and a values and 
combining them for the samples within each codeword. 
When the volume is decompressed, the entire volume 
can be ray-traced by stepping from block to block and 
compositing the samples from the appropriate precomputed 
bit maps. Compared to the standard ray tracer for full 
volumes, time is saved in two ways: Fewer steps are taken 
because the steps are on a block basis rather than on a 
sample basis, and each step is less costly because the 
trilinear interpolation has already been done. The algorithm 
was tested on a data set of computerized tomographic scans 
and on an air jet study. At a compression ratio of 6:1, 
the time savings for the shading step was approximately 
1 OOO: 1 ,  and the speedup for ray tracing was approximately 
1O:l. 

IX. HALFTONING 

Halftoning is the process of rendering gray-scale (usually 
8 bpp) images to print them on binary (black and white) 
devices such as laser printers. Although the pixels in a 
halftoned image must be either black or white, the illusion 
of continuous shades of gray can be created by appropriate 
choices of the percentage and pattems of black pixels in 
each region of the image. The data rate of an uncompressed 
halftoned image is 1 bpp which is already reduced relative 
to the rate of the original gray-scale image. However, large 
halftoned images still require several megabytes of data 
to be transmitted to the printer. Data compression can be 
used to reduce transmission delays and printer memory 
requirements. 

Ordered dither [46], [65] is a simple halftoning technique 
that operates independently on blocks. In (3), X is a 4 x 4 
dither matrix for dithering 8-bpp gray-scale images [46]. 
The entire gray-scale image is scanned in a nonoverlapping 
manner with the dithering matrix, and each gray-scale pixel 
is compared to the appropriate threshold value in the matrix. 
If a pixel’s intensity is above the threshold, it is set to 
white; otherwise, it is set to black. Thus the decision for 
each pixel depends on its position in the block as well as 
its original gray-scale intensity value. The quality of the 
resulting halftoned image depends on the size and entries 
of the dithering matrix. 

136 40 168 

56 184 24 152 
248 120 216 88 

x = ( 8  200 72 232 104 ) 
(3) 
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Because each block is processed independently, ordered 
dither can easily be implemented with VQ if the dithering 
matrix and the VQ block are the same size (or the VQ 
block size is an integer multiple of the dithering matrix 
size). One applies the dithering matrix to each vector in 
the codebook to form linked VQ codebooks, as in Fig. 8. 
The main codebook contains gray-scale vectors, and the 
processed codebook contains binary vectors. 

Error diffusion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 181 is a neighborhood halftoning process. 
It is more complex than ordered dither but usually leads to 
higher halftoned image quality when the printing resolution 
is low zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(300 dots/in and below). The error between the 
input gray-scale pixel and its binary output is spread out 
over neighboring pixels by adding to the input a weighted 
combination of output errors from pixels above and to 
the left of the input. The updated input is compared to 
a fixed threshold to make the black or white decision. 
Combining error diffusion with VQ is challenging because 
it is a neighborhood process; however, it can lead to a 
significant decrease in the computational complexity. We 
are still exploring this problem. 

Vander Kam zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al. present an algorithm for a joint vector 
quantizer and halftoner design [34]. A frequency-weighted 
distortion measure based on the human visual response 
is used both to design the VQ and to select the binary 
reproduction for an input gray-scale vector. Full search 
VQ is used to select the binary vector that measures a 
low frequency-weighted distortion compared to the input 
gray-scale block. The halftoning algorithm is block-based 
(like ordered dither) so that it is easily compatible with 
VQ but is more complex and higher quality than ordered 
dither. The compressed halftoned image quality is then 
improved by including contextual information to allow 
more output reproductions. Vander Kam et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal. found that 
their joint VQ / halftoner gave better results than either first 
compressing and then halftoning or vice versa (for their 
halftoning algorithm). In later work, they further improved 
the system’s performance by replacing the full-search VQ 
with an entropy-constrained VQ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[5 ] .  They obtained good 
image quality at bit rates as low as 0.1 bpp [35]. 

X. SYNTHETIC-APERTURE RADAR RECONSTRUCTION 

Synthetic-aperture radar (SAR) is used to obtain high- 
resolution images of the Earth and other planetary bodies 
from aircraft and spacecraft [ 1 11. The system illuminates 
the target with microwaves, which are relatively unaffected 
by cloud cover and precipitation, so illumination by the 
sun is not required for proper exposure. The retuming 
radar signals are processed to determine the reflectivity 
of the target at various range locations (perpendicular to 
direction of flight) and azimuth locations (along direc- 
tion of flight). SAR uses these consecutive radar pulses 
at incremental antenna positions along the flight path to 
synthetically model an extremely long antenna aperture. 
Doing so improves the spatial resolution in the azimuth 
direction. The reflectivity of each point in the reconstructed 
image is obtained by correlating the raw data returns 
with a spatially dependent 2D reference function, which 

performs a focusing operation (also called range/azimuth 
pulse compression). The results can be displayed as an 
image with intensity corresponding to reflectivity. Because 
the computational demands of processing raw SAR data 
are high, the radar retums are usually digitally sampled and 
transmitted from the airborne source to ground processing 
facilities. The high data rates required for transmission 
make compression desirable. Traditionally, the compressed 
data have been decompressed before correlation with the 
location-dependent reference function for reconstruction. 

A. Combined VQ and SAR Reconstruction 

Vector quantization can be combined with the subsequent 
image processing task of reconstruction to significantly 
reduce both the bandwidth requirements and the com- 
putational demands of image reconstruction at the cost 
of higher memory requirements and somewhat degraded 
image quality [ 2 ] ,  [60]. To reduce the reconstruction com- 
plexity, the reference function can be considered to be 
spatially invariant so that a single function can be used 
to reconstruct multiple points in the final image. The VQ 
codewords can be correlated with this spatially invariant 
reference function to form preprocessed codewords. This 
allows direct SAR reconstruction of the image from vector 
quantized blocks. Reconstruction requires only summation 
of the appropriately shifted preprocessed codewords. Elim- 
inating the need for real-time multiplications significantly 
speeds up the reconstruction process. This method is similar 
to the model of Fig. 8, in which the VQ decoder can put 
out either codewords representing the raw data or processed 
image segments corresponding to the reconstructed image. 

The method has two main drawbacks. First, because 
the correlation step produces preprocessed codewords of 
significantly larger dimension than their unprocessed coun- 
terparts, significantly more memory is required. The mem- 
ory requirements can be reduced somewhat by using a 
related technique that performs the range and azimuth 
correlation separably using two codebooks (for 1D vec- 
tors in the range and azimuth directions) processed with 
corresponding 1 D reference functions [ 2 ] ,  [60]. Second, 
image quality is degraded because of the approximation 
of the location-dependent reference function by a spatially 
invariant one. Inaccuracy in this focusing operation blurs 
the images. Using the spatially varying functions in a 
combined VQ/reconstruction system would require cross- 
correlating each of the codewords with each of the possible 
functions and storing all the results at the decoder; the 
memory requirements for this are prohibitive. 

Although this algorithm was demonstrated on the SAR 
application, it is applicable to many other processing al- 
gorithms such as computing the discrete Fourier transform 
1611. 

XI. RELATED WORK IN SPEECH PROCESSING 

Vector quantization has been extensively used for speech 
compression, but it can also be used for other speech 
processing tasks including speech and isolated word recog- 
nition, speaker recognition and verification, and noise sup- 
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pression. The ideas involved are related to the image 
processing examples. Abut devoted an entire section in his 
IEEE VQ reprint collection zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 11 to the use of VQ for speech 
processing. 

VQ has found wide use in speech recognition systems 
as a front end, but it can also be used as a pattem- 
matching technique to perform all or part of the recognition 
itself. Isolated utterance recognition can be performed by 
constructing a separate VQ codebook for each word in the 
vocabulary. In the recognition phase, average distortions 
between inputs and the various codebooks are computed 
and the utterance corresponding to the codebook with the 
smallest distortion is chosen. Such codebooks can also be 
used as a preprocessor to a word recognition system by 
eliminating those word candidates with high distortion [ 191, 
[39]. Performance can be improved by adding temporal 
information to the distortion measure used to select the VQ 
codewords [31], [S I .  The modified distortion penalizes the 
selection of codewords unlikely in the given context, and 
improves the overall performance. 

In other speech recognition systems, VQ has been com- 
bined with Hidden Markov Models (HMM). In the SPHINX 
system at Carnegie Mellon University [40], for example, 
VQ is used to discretize continuous data. The SPHINX 
system uses a size 256 codebook of 12-dimensional lin- 
ear predictive coding cepstrum coefficients, and the VQ 
codewords are the symbols used in the HMM’s of the 
system. When an input sequence is presented, the cepstral 
coefficients are vector-quantized, and the probability of the 
VQ codeword sequence given each HMM in the system 
is calculated. The utterance represented by the most likely 
HMM is selected. The SPHINX system recorded speaker- 
independent accuracy rates of 94% on a large vocabulary. 
For a review of the use of HMM’s in speech recognition 
systems, see [56]. 

In recent related work, Pook and Ballard [58] have used 
VQ for HMM’s that are applied to robot sensor data. The 
VQ is used to classify four different types of teleoperated 
robot manipulations. The classification is used both to filter 
and symbolize sensor data for later recognition schemes 
and to capture the salient characteristics of the sensor data 
so that they may later be mapped to autonomous control 
space. VQ has been used by Yang, Xu, and Chen [66] on 
spectral coefficients for an HMM in a robotics system for 
learning human skills. 

VQ can also be used for speaker recognition using a small 
VQ codebook consisting of highly representative speaker- 
specific feature vectors [29], [41], [63]. To differentiate 
between two speakers, training utterances from the two 
speakers are used to train two separate codebooks. Some 
clusters may overlap from one codebook to the other. A set 
of feature vectors is generated from an unknown speaker 
and encoded with each codebook. The speaker’s identity 
is considered to be verified if the cumulative distortion 
between the input and a codebook is less than some preset 
threshold. Finally, VQ can be used as part of a noise- 
reduction algorithm which maps noisy speech features into 
clean ones [15], [16], 1231. 

XII. CONCLUSION 

Our goal has been to describe the fundamental ideas of 
vector quantization and to survey ways in which design 
algorithms based on clustering and classification trees can 
be modified to incorporate image processing into VQ. We 
have provided examples of some of these methods including 
combining compression with histogram equalization, clas- 
sification, edge detection, halftoning, and reconstruction. 
The goals of these algorithms are to reduce the complexity 
of the processing that follows the decompression step or 
to provide better overall quality by jointly optimizing the 
two operations instead of cascading them independently. 
Some of these techniques are recent in origin and the 
results are preliminary, but they suggest that the inherent 
enhancement and classification capabilities of clustering 
and classification trees can yield compression algorithms 
that perform a variety of signal processing functions. 
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