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Abstract

Rabies is an important zoonotic disease distributed worldwide. A key question in rabies epidemiology is the identification
of factors that impact virus dispersion. Here we apply new analytical methods, based on phylogeographic reconstructions

of viral lineage movement, to undertake a comparative evolutionary-epidemiological study of the spatial dynamics of

rabies virus (RABV) epidemics in different hosts and habitats. We compiled RABV data sets from skunk, raccoon, bat and
domestic dog populations in order to investigate the viral diffusivity of different RABV epidemics, and to detect and

compare the environmental factors that impact the velocity of viral spread in continuous spatial landscapes. We build on

a recently developed statistical framework that uses spatially- and temporally-referenced phylogenies. We estimate
several spatial statistics of virus spread, which reveal a higher diffusivity of RABV in domestic dogs compared with

RABV in other mammals. This finding is explained by subsequent analyses of environmental heterogeneity, which

indicate that factors relating to human geography play a significant role in RABV dispersion in domestic dogs. More
generally, our results suggest that human-related factors are important worldwide in explaining RABV dispersion in

terrestrial host species. Our study shows that phylogenetically informed viral movements can be used to elucidate the

factors that impact virus dispersal, opening new opportunities for a better understanding of the impact of host species
and environmental conditions on the spatial dynamics of rapidly evolving populations.

Key words: phylodynamics, viral phylogeography, molecular epidemiology, relaxed random walk, RABV, spread.

Introduction

Understanding the processes that cause variation in the
rate of biological invasions (which includes both emerging
pathogens and ecologically invasive species) remains a key
question in spatial population biology. In addition to host
behavior and environmental factors, the spatial dynamics
of an emerging infectious disease will also be affected by
stochastic variation in the invasion process itself
(Melbourne and Hastings 2009). One way to evaluate
this variation is to directly compare different spatial dy-
namics caused by the same pathogen or invasive species.
Although large data sets of spatio-temporal incidence can
be used to make such comparisons (Mundt et al. 2009),
such data can be difficult and time consuming to collect.
Through phylogeographic approaches, gene sequence data
may provide a practical alternative to direct observation

for the investigation of spatial processes in ecology and
epidemiology.

Phylogeographic analyses based on viral gene sequences
are increasingly used to gain insight into spatial epidemic
processes. Phylogeography is the study of shared ancestry,
inferred using phylogenetic methods, in a geographic and
temporal context (Silva et al. 2013). Phylogeographic analysis
of animal and human viruses can provide valuable insights
into the spatial dissemination of outbreaks and epidemics
(Holmes 2004; Faria et al. 2011). Complementing traditional
epidemiology, evolutionary analyses can reconstruct the
spatio-temporal history of an epidemic even when surveil-
lance records are scarce or absent (Dellicour, Rose, and Pybus
2016). Further, phylogeographic approaches can infer linkages
among infections and reveal rare but influential founder
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events thatmay not be evident otherwise (Pybus et al. 2012).
The rapidly increasing availability of viral genomic data pro-
vides an opportunity to develop and apply new evolutionary
approaches that can quantify the spatial dynamics of virus.
Here we use new phylogeographic techniques to investigate
whether host species and environmental factors can explain
the spatial dispersion of rabies virus. Answering questions
such as these will help to better predict infectious disease
emergence from animal reservoirs.

The rabies virus (RABV, genus Lyssavirus, family
Rhabdoviridae) is an RNA virus whose genome comprises
�12,000 nucleotides and contains five genes. RABV is the
etiological cause of rabies, a fatal infection of the central ner-
vous system usually transmitted through bites by infected
animals. Various mammal species including dogs, foxes, rac-
coons, skunks, mongooses and bats, act as both reservoirs and
vectors of the virus. In 1886, Louis Pasteur developed a rabies
vaccine that has since allowed the development of preven-
tion strategies and postexposure prophylaxis (WHO 2005;
Warrell and Warrell 2004). Despite the availability of this vac-
cine, RABV still causes approximately 59,000 human deaths
per year, and remains one of the most virulent diseases of
animals and humans (Hampson et al. 2015). Almost all
human deaths are caused by infections with dog RABV
(Bourhy et al. 2008) and the majority occur due to the lack
of ready accessibility to rabies vaccine and immunoglobulins
(Knobel et al. 2005; Dodet et al. 2008). In recent years, a
number of RABV epidemics have been studied using phylo-
geographic approaches (Carnieli et al. 2011; Hayman et al.
2011; Picard-Meyer et al. 2012; Pi~nero et al. 2012; Fusaro
et al. 2013; Seetahal et al. 2013; Tohma et al. 2014; Zieger
et al. 2014; Horton et al. 2015). Phylogeography has been
used to understand the spread of rabies virus at both large
(Biek et al. 2007; Talbi et al. 2009; Kuzmina et al. 2013; Troupin
et al. 2016) and small geographic scales (Bourhy et al. 2016).
However, these efforts have used a variety of different analysis
techniques and each stands in isolation. It is therefore im-
portant to undertake formal comparative analyses in order to
elucidate the differential impact of host species and environ-
mental conditions on RABV spread.

Here, we perform a comparative analysis of the spatial gen-
etics of different outbreaks of the same virus, with the aim of
understanding towhat extent different host species and envir-
onmental variables affect spatial dynamics. We analyze five
instances of RABV spread in differentmammalian populations
and different locations using a common statistical framework.
Our approach computes statistics relating to spatial dissemin-
ation and allows the identification of specific environmental
factors that impactviral lineagedispersionvelocity.Weselected
five publicly available viral genetic data sets associated with
distinct epidemics: (1) RABV in North American skunks
(Kuzmina et al. 2013), (2) RABV in North American raccoons
(Biek et al. 2007), (3) RABV in North African domestic dogs
(Talbi et al. 2010), (4) RABV in vampire bat populations in
eastern Argentina (Torres et al. 2014) and (5) RABV in vampire
bats in eastern Brazil (Vieira et al. 2013). These data sets are
named hereafter as the “skunk”, “raccoon”, “dog”, “bat-1”, and
“bat-2” RABV data sets, respectively. The data sets all contain

acceptably long nucleotide sequences (800–3,000nt) that are
spatially distributedoverbroadgeographic ranges andare asso-
ciated with precise information on the dates and locations of
sampling, and on host species.

Through a detailed comparative analysis, we aim to (1)
reconstruct the spatio-temporal epidemic history of each
outbreak, (2) estimate and compare spatial diffusion coeffi-
cients for each instance of RABV spread, and (3) use statistical
tests to identify which environmental factors determine
RABV spread, and whether those factors are shared or vary
among independent outbreaks.

New Approaches

We present a phylogeographic approach in continuous space
to address epidemiological questions in a quantitative frame-
work. We aim to identify the environmental factors impact-
ing the spatial dynamics of different epidemics of the same
virus (the rabies virus, RABV) in different host species (do-
mestic dog, skunk, raccoon, and vampire bats) and different
geographic contexts. To directly compare epidemics, we
apply the same analysis procedure to multiple independent
RABV data sets. Our method improves on that described in
Dellicour, Rose, and Pybus (2016) which is available in the R
package SERAPHIM (Dellicour et al. 2016; see the related
manual and new tutorials available within the package for
further details). An important feature of the modification
used here is the ability to approximate Bayes factor support
values for each environmental factor. This improvement ena-
bles a more straightforward interpretation of the statistical
results. Further, because the new approach now requires only
one randomization per sampled tree, we also significantly
decrease computation time. An increase in computational
efficiency makes more practical large-scale comparative stud-
ies, such as those reported here.

Results

We employ an analytical procedure that comprises five dis-
tinct steps, described in detail in the “Materials andMethods”
section. The workflow can be summarized as follows: (1) we
first extract information contained in spatially- and tempo-
rally-referenced phylogenies, which are inferred using a
Bayesian continuous phylogeographic method implemented
in BEAST (Lemey et al. 2010). In order to take into account
uncertainty in phylogenetic estimation, we use a sample of
100 trees from the posterior distribution of phylogenies for
each data set. The velocity, distance and duration of spatial
movement along each phylogeny branch in each tree are
represented by a vector. (2) Second, these vectors are used
to estimate and compare spatial diffusion coefficients and
other spatial summary statistics for each RABV host species.
(3) Third, a series of environmental factors are investigated.
Each factor (e.g., elevation) is described by a raster that defines
the spatial heterogeneity of that variable. This raster is used to
calculate an “environmental distance” for each phylogeny
branch, which represents both the actual distance travelled
and the degree to which that environmental factor facilitated
or impeded lineage movement. (4) Correlations between
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phylogenetic branch durations and the environmental dis-
tances are then estimated. (5) Finally, the statistical support
for these correlations is evaluated against a null distribution
generated by a randomization procedure and formalized as
Bayes factor support.

A visual comparison of the general trends in spatial diffu-
sion history for the five RABV epidemics analyzed here is
shown in figure 1. Each is inferred from a set of phylogeo-
graphic molecular clock trees whose nodes all have defined
locations and durations. These reconstructions reveal two
main diffusion patterns: (1) continual range expansion, as
observed in the skunk and raccoon data sets, and the bat-2
data set, and (2) viral lineage diffusion within an endemic
area, which is apparent for the dog and bat-1 RABV data
sets. For the two latter cases, uncertainty in the estimated
locations of the most ancestral nodes (colored in red) is large
and encompasses a considerable fraction of entire sampling
area. Furthermore, plots for each data set of the maximal
spatial epidemic wavefront through time (supplementary
fig. S1, Supplementary Material online) indicate that the
bat-2 RABV spread in Brazil is associated with the slowest
wavefront velocity (�4 km/year), followed by the skunk
RABV spread (�6 km/year). This result contrasts with the
higher wavefront velocity estimated for bat-1 RABV in
Argentina (�24 km/year). Finally, dog and raccoon RABV
display similar wavefront velocities (�15–22 and �20 km/
year, respectively).

In order to compare the RABV diffusivity associated with
each host species, we estimated spatial diffusion coefficients
for each data set using two alternative statistics: the original
(Doriginal; Pybus et al. 2012) and weighted (Dweighted; Trov~ao
et al. 2015) estimators. While Doriginal is an estimate of the
average diffusion coefficient associated with each branch in
the tree, Dweighted is a weighted average across the tree.
Consequently, values of Doriginal are approximately twice as
large as those for Dweighted (supplementary fig. S2,
Supplementary Material online). In addition, it is interesting
to note that the mean and coefficient of variation of the
diffusion coefficient values tend to be positively correlated
for the Doriginal metric, but for not for the Dweighted statistic
(supplementary fig. S2, Supplementary Material online).
While Doriginal is calculated in a manner similar to an arith-
metic mean of the branch-specific values, Dweighted is calcu-
lated in a manner similar to a weighted mean. As a
consequence, Dweighted is less sensitive to extreme values on
short branches while Doriginal will be more affected by the
among-branch variation this imposes (see the “Materials
and Methods” section for detail). Despite these differences,
both statistics clearly show that the dog RABV epidemic in
North Africa is characterized by the highest diffusivity
(Dweighted¼�1300 km/year2; fig. 2). In contrast, estimated
diffusion coefficients for the skunk, raccoon and bat RABV
are lower and more similar to each other (Dweighted¼�550–
700 km/year2; fig. 2). In addition, if we compare the variation
in diffusion coefficients among lineages then we observe
greater among-branch variation for the dog RABV
and smaller among-branch variation for the raccoon RABV
(fig. 2).

For each RABV data set, several environmental factors
were tested as potential correlates of virus dispersal. As an
illustration of the environmental data used, the nine factors
evaluated for the spread of dog RABV in North Africa are
shown in supplementary figure S3, Supplementary Material
online. Randomization tests were performed to assess the
level of significance of the correlations between phylogeny
branch durations and “environmental distances”. Results of
the randomization tests are reported in supplementary table
S1, Supplementary Material online, and the most important
results are gathered in table 1 for comparison. We report a
Bayes factor (BF) value for each combination of data set, path
model, and environmental factor that was tested. Following
the interpretation of BF values defined by Jeffreys (1961), BF
values higher than 10 and 103/2 are considered as “strong” and
“very strong” evidence for a correlation between dispersal
durations and environmentally scaled distances.

For the bat RABV data sets, none of the environmental
factors were significantly associated with viral lineage move-
ment, under any model/parameter combination (BFs<10;
see supplementary table S1, Supplementary Material online).
For the skunk RABV data set, we found strong evidence
(BF>10) for a correlation between dispersal durations and
environmental distances, for the croplands and human popu-
lation density factors (when treated as conductance factors
with the least-cost path model). For the same data set, we
also find a very strong effect (BF>103/2) of the human popu-
lation density raster using the random walk path model. For
the raccoon RABV data set, both the accessibility to nearest
major cities (time travel to nearest major cities of>50,000
inhabitants, hereafter referred as “inaccessibility”) and urban
areas are identified as important predictors with BFs>10 or
higher (table 1) when respectively treated as resistance and
conductance factors by the least-cost path model. For the
raccoon RABV data set, there is also strong evidence that
elevation (treated as a resistance factor) is associated with
rabies lineage dissemination. Specifically, the BF value for that
factor is>103/2 under the least-cost path model and>10
under the random walk path model. Finally, randomization
tests performed on the dog RABV data set highlight several
environmental factors that are associated with viral lineage
spread (table 1), which are: inaccessibility (BF>10, resistance
factor; least-cost path model), grasslands (BF>10 or higher;
conductance factor; least-cost path model), urban areas
(BF>103/2; conductance factor; least-cost path model),
human population density (BF>10; conductance factor;
least-cost path model) and elevation (BF> 10 or higher, re-
sistance factor; least-cost path). Human population density is
thus identified as an important factor for both the skunk and
the dog data sets, and inaccessibility, urban areas and eleva-
tion for both the raccoon and dog data sets.

Discussion

In this study, we show that the patterns of spread in five
RABV data sets are characterized by different dynamics of
spatial dispersal. Skunks and raccoons constitute �33% and
27% of rabid animals documented in United States in 2011,
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2565

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
b
e
/a

rtic
le

/3
4
/1

0
/2

5
6
3
/3

8
8
5
2
1
3
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2

Deleted Text: v
Deleted Text: s
Deleted Text: s
Deleted Text: s
Deleted Text: i
Deleted Text: ii
Deleted Text: u
Deleted Text: -
Deleted Text: s
Deleted Text: -
Deleted Text: s
Deleted Text: .
Deleted Text: s
Deleted Text: -
Deleted Text: s
Deleted Text: DISCUSSION
Deleted Text: s
Deleted Text: around 
Deleted Text: the 
Deleted Text: A


respectively (Blanton et al. 2012), and the skunk rabies virus is
one of the most broadly distributed terrestrial viral lineages in
North America (Kuzmina et al. 2013). For the skunk RABV
dataset, our results suggest that croplands and human popu-
lation density are associated with a greater degree of spatial
epidemic spread. Although Kuzmina et al. (2013) proposed
the importance of deserts and mountains as important bar-
riers to dispersal of skunk RABV, we found no significant link

between branch velocity and the “barren vegetation” and
“elevation” environmental layers for the same dataset.

In contrast, as previously highlighted by Biek et al. (2007)
and Dellicour, Rose, and Pybus (2016), there is strong evi-
dence that, for the raccoon RABV data set, elevation has a
significant negative impact on viral spatial spread. We also
find some evidence that human-geographic variables have an
impact on the lineage velocity of rabies viruses in the raccoon

FIG. 1. Reconstructed spatio-temporal diffusion of five RABV data sets: mapped consensus trees and 95% HPD regions based on 100 trees

subsampled from the post burn-in posterior distribution. Nodes of the consensus trees are coloured according to time, using a scale ranging from

red (MRCA) to blue (most recent sampling time). 95% HPD regions were computed for a series of time points and then superimposed using the

same red-to-blue temporal colour scale.

Skunk RABV Raccoon RABV Dog RABVBat RABV
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FIG. 2. Kernel density estimates of the diffusion coefficient parameters obtained using theDweighted statistic, for each data set. Plots show themean

diffusion coefficient among branches (x axis) versus the coefficient of variation “CV” of that value among branches (y axis). In each case, the three

contours show, in shades of decreasing darkness, the 50%, 75%, and 95% highest posterior density regions via kernel density estimation. We also

report the median value and 95% HPD interval of this statistic.
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data set (i.e., the inaccessibility and urban areas rasters treated
as resistance and conductance factors, respectively). However,
we do not find any significant impact of rivers acting as
barriers. This differs from the results reported by Smith
et al. (2002) in a more localized study of raccoon RABV in
Connecticut. Smith et al.’s (2002) study, which was not based
on viral genetic sequences but instead used amore traditional
model based on epidemiological records, identified a slower
local spread of RABV associated with river crossing events.

As dogs are terrestrial animals, their natural locomotion
alone is unlikely to explain the high diffusivity of dog RABV
identified here. Themovement of domestic dogs is likely to be
affected by human activity. Correspondingly, we identified
three human-related environmental rasters as important fac-
tors for dog RABV spread: inaccessibility (treated as resistance
factor), urban areas, and human population density (both
treated as a conductance factor). Hence the dispersal of
RABV within the North African domestic dog population
appears to be shaped by human-based connectivity and mo-
bility. Based on a discrete phylogeographic analysis and mar-
ginal likelihood estimations, Talbi et al. (2010) suggested that
the spatial dynamics of RABV in North African dogs was best
described by pairwise road distances between sampling loca-
tions. Our study statistically supports this hypothesis and
further highlights the importance of human geography in
explaining the spatial dynamics of domestic dog RABV.
More generally, the three factors correlated with dog RABV
spread are also identified as potential determinants of the
spatial dynamics of RABV in skunks (human population dens-
ity) and raccoons (inaccessibility, urban areas). Thus human-

related factors appear important across different continents
and host species in explaining RABV dispersion in terrestrial
host species. In bats, however, we do not find any evidence
that human factors have an impact on viral lineage spread. As
discussed below, this could be because bats are nonterrestrial
hosts whose dispersal remains largely unaffected by landscape
features shaped by human activities.

In Latin America, the common vampire bat (Desmodus
rotundus) is themost important source of human and animal
rabies (Benavides et al. 2016). This species is an important
RABV reservoir host and every year cattle and horses die from
rabies transmitted by this haemotophagous bat species
(Vieira et al. 2013; Torres et al. 2014). Benavides et al. (2016)
report that, in these regions, rabies virus invasions formwave-
fronts that can advance towards large and unvaccinated live-
stock populations that are bitten by bats. Because of their
aerial locomotion, it is unsurprising that we find higher diffu-
sivity of RABV in bats than for RABV in skunks and raccoons.
However, our study failed to identify strong support (BF>10)
for environmental factors thatmight be driving viral spread in
bats. There are several potential explanations for this. Firstly,
the complexity of RABV circulation in noeotropical bat com-
munities (de Thoisy et al. 2016) may obscure the impact of
any individual environmental factor on RABV dispersion vel-
ocity. Secondly, as mentioned earlier, landscape features may
have comparably less impact on the dispersal of a nonterres-
trial species. This would mean that there would be no envir-
onmental factor that appropriately explains the RABV
dispersion time, other than geographic distance alone.
Thirdly, it is possible that the factors we tested did not

Table 1. Selected Results of Randomization Tests: Bayes Factors (BF) ofmodel combinations for which the Estimated BFValue Is >10 forOne Path
Model.

RABV Data Set Environmental Least-Cost Path Model Random Walk Path Model

Factor k Conductance Resistance Conductance Resistance

Skunk RABV Croplands 1000 13.29 0.16 4.26 0.23

Human pop. density 100 4.26 0.37 32.33 0.30

Human pop. density 1000 13.29 0.43 49.00 0.33

Dog RABV Inaccessibility 10 1.08 15.67 0.15 0.96

Inaccessibility 100 0.35 13.29 0.12 2.70

Inaccessibility 1000 0.20 10.11 0.11 3.55

Grasslands 100 13.29 1.50 2.70 0.49

Grasslands 1000 32.33 0.72 24.00 0.32

Urban areas 10 32.33 3.35 0.52 0.00

Elevation 10 0.32 49.00 0.05 9.00

Elevation 100 0.11 5.67 0.14 11.50

Elevation 1000 0.19 4.56 0.28 10.11

Human pop. density 10 15.67 0.39 2.23 0.22

Raccoon RABV Inaccessibility 100 0.28 32.33 0.43 2.45

Inaccessibility 1000 0.30 15.67 0.30 2.45

Urban areas 10 19.00 0.35 1.56 0.32

Urban areas 100 24.00 0.30 1.63 0.28

Urban areas 1000 24.00 0.35 1.38 0.32

Elevation 10 0.09 49.00 0.09 19.00

Elevation 100 0.16 49.00 0.35 24.00

Elevation 1000 0.20 49.00 0.47 19.00

Bat-1 RABV — — — — — —

Bat-2 RABV — — — — — —

NOTE.—According to Jeffreys (1961), BF’s>10 and>103/2 (31.62; in italics) are respectively considered as “strong” and “very strong” evidence of statistical significance, that is, of

a significant correlation between environmental distance and dispersal duration.
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contain the ones that are relevant to the ecology of RABV in
bats. Finally, sampling bias or sampling from a restricted area
within a wider region of bat dispersal may compromise the
statistical power necessary to identify relevant factors.

While sampling bias imposes a general limitation on phy-
logeographic analyses, its impact is best characterized for the
discrete phylogeographicmethod (Lemey et al. 2009; DeMaio
et al. 2015; Baele et al. 2017). Indeed, with thismethod, over or
under sampling can directly affect estimates of model param-
eters (i.e., transition rates in and out of locations) and hence
can affect ancestral reconstruction. In the continuous phylo-
geographic method (Lemey et al. 2010), the relationship be-
tween sampling density in specific areas and model
parameters (i.e., the variance co-variance matrix of the diffu-
sion process) is, however, less straightforward, and this should
be addressed in more detail in future investigations. In add-
ition to sampling heterogeneity, we also need to consider the
impact of incomplete spatial coverage. If we fail to include a
clade or lineage from an unsampled area, then we simply do
not test the impact of the environment in that area on the
diffusion process. The conclusions we draw relate to how
environmental factors shape viral dispersal, and they there-
fore pertain only to the area from which we were able to
sample. Sparse, incomplete and poorly representative sam-
pling is still expected to result in ancestral reconstructions
that may not capture the underlying dispersal pattern well.
While our approach is conditional on these reconstructions,
this will primarily impact the statistical power in detecting
relevant environmental factors.

According to the distribution of rabies cases in United
States, published by the CDC (Centers for Disease Control
and Prevention, www.cdc.gov), the sequences in our skunk
and raccoon RABV data sets provide relevant coverage of the
occurrence records. Similarly, given that human population
density acts as a good proxy of domestic dog presence in
northern Africa, viral sequence sampling for that data set
appears to cover the host distribution in that region. Bat
RABV sampling, on the other hand, is harder to evaluate
and is more localized within the broader vampire bat distri-
bution in South America. This may explain, at least partially,
the absence of strong support (i.e., Bayes factors>10) for
environmental factors impacting RABV spread in bat popu-
lations (in line with the abovementioned point about under-
sampling leading to reduced statistical power). Therefore, we
cannot exclude the possibility that environmental variables
act as significant factors outside the relatively restricted sam-
pling areas for bat RABV.

Phylogeographic analyses of genetic sequences sampled in
two dimensional space (so-called “continuous” phylogeogra-
phy), enables detailed comparisons of the spatial dynamics of
different populations, or, in this case, different strains of the
same virus spreading in different regions or host species. By
inferring evolutionary relationships among sampled individu-
als, phylogenetic analysis (coupled with longitude and lati-
tude coordinates) can quantify virus spatial spread.
Phylogenetic branches from spatially- and temporally refer-
enced trees can be treated as movement vectors (Pybus et al.
2012) and collections of such vectors can be used to estimate

dispersal statistics and to test the association between disper-
sal velocity and environmental factors. Comparative applica-
tion of these methods can reveal how environmental factors
impact the dispersal dynamics of different epidemics. This
could become a useful addition to pre-existing quantitative
tools with applications to other emerging infectious diseases
that infect animals and humans. Such approaches could lead
to a better understanding of pathogen spread and could
ultimately inform the prevention, prediction and control of
emerging and zoonotic infectious diseases. The fact that we
can detect different associations between the environment
and viral dispersal for terrestrial and nonterrestrial host spe-
cies means that, in principle, it may be possible to use the
spatial dynamics of lineages to infer the likely host species of a
newly discovered pathogen whose reservoir or source popu-
lation is unknown.

Materials and Methods

A common analysis workflow was applied to each RABV data
set and involved five steps, outlined below. All analytical steps
were performed with R functions available in an updated
version of the package SERAPHIM (Dellicour et al. 2016; see
the related tutorials within the package for further practical
details about these scripts).

Step 1
The history of lineage dispersal was recovered from phyloge-
nies that were generated using a phylogeographic model,
such that the trees have branches that represent time and
have tips and internal nodes that each have a defined loca-
tion. In this study, such trees were reconstructed using a
phylogenetic relaxed random walk (RRW) diffusion model
implemented in BEAST (Lemey et al. 2010).

It is important that a RRW is used, and not a strict
Brownian motion model, because it is impossible to test
whether environmental factors correlate with branch diffu-
sion velocities if those velocities do not vary among phyl-
ogeny branches.

For each data set, we used the nucleotide substitution
model, molecular clock model, coalescent prior, and RRW
model that were used in the original study, when available
(supplementary table S2, Supplementary Material online).
Prior to phylogeographic analyses, we assessed the phylogen-
etic temporal signal within each dataset using regressions of
root-to-tip genetic distances against sequence sampling
times. Analyses used maximum likelihood trees inferred
with PhyML (Guindon et al. 2010) and the correlation and
determination coefficient (R2) of the regression were esti-
mated with TempEst (Rambaut et al. 2016). The P-values
were calculated using the approach of Murray et al. (2016)
and based on 1,000 random permutations of the sequence
sampling dates (Navascués et al. 2010). Root-to-tip regression
results are reported in supplementary table S3,
Supplementary Material online, and confirm the presence
of significant temporal signal (P-value< 0.05) in all data
sets reported here. For the dog RABV data set, a single phy-
logeographic reconstruction resulted in unacceptably high
uncertainty of the root location estimate (results not shown),
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which is not unusual for estimates of continuous traits at
deep phylogenetic nodes (Schluter et al. 1997).
Consequently, for the dog RABV data set, we performed sep-
arate analyses for the two major country-specific clades as
originally identified in Talbi et al. (2010). For the present study,
we selected a subset of 100 trees sampled at regular intervals
from the posterior distribution of trees (after burn-in had
been removed) and extracted the spatio-temporal informa-
tion embedded in these trees using the “treeExtractions”
function of the R package SERAPHIM (Dellicour et al.
2016). Specifically, each phylogenetic branch was considered
a vector defined by its start and end location (latitude and
longitude), and its start and end dates (in decimal units). Each
phylogeny branch therefore represents a conditionally inde-
pendent viral lineage dispersal event (Pybus et al. 2012). Using
these extracted vectors we generated a graphical representa-
tion of the inferred spatio-temporal spread of each data set
using the “spreadGraphic” function of the R package
SERAPHIM (Dellicour et al. 2016). In addition, for each
RABV data set, we also generated spatially referenced max-
imum clade credibility (MCC) consensus trees using
TreeAnnotator 1.8.3 (Drummond et al. 2012).

Step 2
Statistics of spatial dispersion for each data set were calculated
from the information extracted in step 1. We estimated the
spatial diffusion coefficient using two different approaches,
Doriginal and Dweighted. Doriginal is an estimation of the average
diffusion coefficient associated with each branch in the tree
(Pybus et al. 2012), whereas Dweighted is a weighted average
across the tree of the ability to diffuse (Trov~ao et al. 2015).

Doriginal ¼
1

n

Xn

i¼1

d2i
4ti

and Dweighted ¼

Pn

i¼1

d2i

Pn

i¼1

4ti

(1)

In equations (1), di and ti are, respectively, the geographic
distance travelled (great-circle distance in km) and the time
elapsed (in years) on each phylogeny branch. For a given tree,
branches with short duration will have less of an impact on
Dweighted than on Doriginal, and therefore also on the resulting
variance among Dweighted values across all trees. While both
statistics are measures of diffusivity, Dweighted can potentially
allow a better discrimination among epidemics with different
diffusivity because it is associated with a smaller variance. In
addition to the diffusion coefficients, we also generated
graphs that display, for each analysis, the temporal evolution
of the epidemic wavefront distance from the estimated root
location.

Step 3
Each of the vectors obtained in step 1 were assigned an
“environmental distance”, that is, a metric that was weighted
according to the values of an environmental variable at each
location (Dellicour, Rose, and Pybus 2016). We used two dis-
tinct path models to compute the environmental distance
allocated to each phylogeny branch for a given environmental

raster: (1) the least-cost path model, which uses a least-cost
algorithm to determine the route taken between the start
and end points (Dijkstra 1959), and (2) the randomwalk path

model, which uses circuit theory to accommodate uncer-
tainty in the route taken (McRae 2006; McRae et al. 2008).
Note that for these path models, each environmental raster
must be considered twice, once as a conductance factor (i.e.,
as a variable that facilitates movement) and once as a resist-
ance factor (i.e., impedes movement).

The spatial heterogeneity of each environmental variable
was defined using rasters. We investigated whether the fol-
lowing environmental rasters could explain variation in dis-
semination among rabies virus lineages: elevation, human
population density, inaccessibility (time travel to nearest
major cities of>50,000 inhabitants), major roads, main rivers
and the key land cover variables for each study area (e.g.,
“barren vegetation”, “croplands”, “forests”, “grasslands”,
“savannas”, “shrublands”, “urban areas”, “wetlands”; land
cover categorized according to the International Geosphere
Biosphere Programme, IGBP). For RABV spread in Argentina
and western Brazil, we also included in the analysis the cattle
population density raster. The sources of each of the original
raster files used in this study are listed in supplementary table
S4, Supplementary Material online. Note that we did not
systematically test every variable for each RABV spread.
Some environmental factors were discarded for specific
data sets because they were absent or virtually absent within
the area under investigation. Population density rasters
(human and cattle population densities) were also log-
transformed in order to avoid providing an excessive weight
to a few areas associated with high values. Furthermore, sev-
eral transformed conductance and resistance values vC and vR
were generated for each original raster, vC and vR¼ 1þ k*v,
where v is the original raster cell value. This transformation
was not applied to raster cells with no data, which mostly
correspond to bodies of water. The parameter k allows us to
define and test different strengths of raster cell conductance
or resistance, relative to the conductance/resistance of a cell
with a minimum value set to “1.” We tested three different
values for k: 10, 100 and 1,000. A detailed list of the different
combinations of environmental rasters, associated k values
and path models tested for each spread is available in supple
mentary table S1, Supplementary Material online.

Step 4
The correlation between the duration of each phylogeny
branch, that is, branch length in units of time, and its
weighted distances (see Step 3) was estimated for each of
the 100 posterior trees in the five data sets (Dellicour, Rose,
and Pybus 2016). Specifically, we estimated the statistic
Q¼ (R2env�R2null), where R

2
env is the coefficient of determin-

ation obtained when branch durations are regressed against
environmental distances computed on the environmental
raster, and R2null is the coefficient of determination obtained
when branch durations are regressed against environmental
distances computed on a “null” raster, that is, the environ-
mental raster with a value of “1” assigned to all the cells
(except cells with no original data). TheQ statistic (previously
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referred as “D” in Dellicour, Rose, and Pybus 2016) therefore
represents how much variation in lineage movement is
explained when spatial heterogeneity in the environmental
variable is taken into account, above and beyond that
explained by distance alone (Dellicour, Rose, and Pybus
2016). Therefore, when Q> 0, distances weighted according
to a heterogeneous environmental raster are correlated more
strongly with branch duration than distances computed on a
“null” raster (which represents geographical distance alone).
Since one Q value was calculated per sampled posterior tree,
we then obtained 100 Q values for each combination of en-
vironmental factor, k parameter value and path model.

Step 5
The statistical significance of the observedQ values was tested
against a null model of no impact of the environmental fac-
tor. To generate an appropriate null distribution for Q, we
used a randomization procedure implemented by Dellicour,
Rose, and Pybus (2016) and Dellicour et al. (2016): phylogen-
etic node positions were randomized within the study area,
under the constraint that branch lengths, tree topology and
root position are unchanged. Each sampled posterior tree was
randomized once to generate the equivalent value under the
null hypothesis; this results in a null distribution of Q values
that can be compared directly to the posterior distributions
of observed Q values. We approximate Bayes factor (BF) sup-
port for the environmental factors through the ratio of the
posterior odds over the prior odds for Qobserved>Qrandomized:

BF ¼
pe

1� pe
=

0:5

1� 0:5
(2)

where pe is the posterior probability that
Qobserved>Qrandomized, that is, the frequency at which
Qobserved>Qrandomized in the samples from the posterior dis-
tribution. The prior odds is 1 because we have an equal prior
expectation for Qobserved and Qrandomized. The formal estimate
of posterior predictive odds is analogous to computing BFs in
situations in which two alternative hypotheses exist, e.g. the
inclusion of rate parameters or predictors in BSSVS proce-
dures (Bayesian stochastic search variable selection; see equa-
tion [6] in Lemey et al. 2009). As described in Jeffreys (1961),
BF values higher than 10 and 103/2 (31.62) are respectively
considered as “strong” and “very strong” evidences of the
statistical significance of Qobserved.

Supplementary Material

Supplementary data are available at Molecular Biology and
Evolution online.
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