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Abstract In recent years, the development of powerful
viral gene transfer techniques has greatly facilitated the
study of gene function. This review summarises some of
the viral delivery systems routinely used to mediate
gene transfer into cell lines, primary cell cultures and in
whole animal models. The systems described were
originally discussed at a 1-day European Tissue
Culture Society (ETCS-UK) workshop that was held
at University College London on 1st April 2009.
Recombinant-deficient viral vectors (viruses that are
no longer able to replicate) are used to transduce
dividing and post-mitotic cells, and they have been
optimised to mediate regulatable, powerful, long-term
and cell-specific expression. Hence, viral systems
have become very widely used, especially in the field
of neurobiology. This review introduces the main
categories of viral vectors, focusing on their initial
development and highlighting modifications and
improvements made since their introduction. In partic-
ular, the use of specific promoters to restrict expression,
translational enhancers and regulatory elements to boost
expression from a single virion and the development of
regulatable systems is described.

Keywords Viral vectors . Gene therapy . Adenovirus .

Lentivirus

Gene transfer technology

In 2004, the entire human genome was sequenced and
over 25,000 genes were identified (Stein 2004). Some
of these initially uncharacterised genes have subse-
quently been identified, with many playing important
roles in cellular development, maintenance and
survival. Techniques that allow the study of these
novel genes have therefore been instrumental in
elucidating their function. Until relatively recently,
gene expression could only be altered in post-mitotic
neuronal cells using mouse transgenesis or microin-
jection of individual neurons in culture. However, the
first adenoviral and Herpes gene transfer systems
were highly effective at transducing neurons and
could hence be used to study gene function in whole
animal systems without developmental compensatory
effects (Hermens and Verhaagen 1998). Researchers
were quick to see the potential of such systems and
started to develop optimised vectors. An ideal gene
delivery would: (1) transfer genes into both develop-
ing and mature animals; (2) transduce cells with high
efficiency; (3) mediate high level, long-term expres-
sion; (4) cause limited cytotoxicity; (5) elicit a small/
negligible immune response in vivo; (6) incorporate
sufficient lengths of DNA so that transgenes of
interest can be accommodated and (7) mediate
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regulatable expression. These characteristics are dif-
ficult to find in a single vector system, and hence, a
variety of viral gene delivery systems have been
developed, each with its own advantages and dis-
advantages (Table 1).

Herpes simplex virus

Wild-type Herpes simplex virus (HSV) is a large
double-stranded DNA virus that infects and replicates
in the skin and mucous membranes. Due to the
natural tropism of HSV, initial studies were performed
on neurons (Ho and Mocarski 1988, 1989). Many
studies have now demonstrated long-term stable
transgene expression in the nervous system (Glorioso
and Fink 2009), and preclinical studies on models of
neurological disease, including glioma, peripheral
neuropathy, chronic pain and neurodegeneration,
show encouraging results (Cuchet et al. 2007). Wild-
type HSV is taken up by sensory nerve terminals and
transported by retrograde axonal transport to dorsal
root ganglion neurons where they may enter the lytic
cycle or establish a latent state from which the virus
may subsequently reactivate and spread. The HSV
vector systems therefore mimic this latent state,
producing a highly infectious, efficient vehicle for
the delivery of exogenous genetic material to cells.
The straightforward production of high-titre, pure
preparations of non-pathogenic HSV vectors, known
as amplicon vectors (Cuchet et al. 2007), was
achieved by introducing null mutations into viral
immediate early genes. This readily disrupts the

capacity for viral replication, but enables production
of the vectors by in vitro complementation of these
genes in trans. When used to transduce cells, these
HSV vectors cause a latent-like infection in both
neural and non-neural tissue. Further details on HSV
vecterology can be found in reviews by Epstein et al.
(Cuchet et al. 2007; Epstein 2005).

Adeno-associated virus

Adeno-associated viruses (AAV) are parvoviruses that
require co-infection with another helper virus (either
adenovirus or HSV) to mediate their replication. The
small non-enveloped icosahedral virions (18- to 26-nm
diameters) contain a single-stranded DNA molecule
(4–5 kb) that contains inverted terminal repeats (ITR)
which enable site-specific integration of wild-type AAV
into chromosome 19 as well as allow secondary
structure formation of the viral genome that aids viral
DNA replication with host cell polymerase (Ni et al.
1998). The non-pathogenic and persistent long-term
nature of AAV infection (Wright et al. 2003), combined
with its wide range of infectivity, made this virus an
important candidate as a therapeutic gene transfer
vector. In addition, the relatively small cis-acting
elements (the ITRs) in AAV vectors greatly reduce
the risk of recombination with wild-type virus as well
as the level of cellular immune response elicited,
therefore improving the safety of this vector in human
clinical applications (Koczot et al. 1973). Furthermore,
AAV vectors have a broad host and cell type tropism
transducing both dividing and non-dividing cells.

Table 1 Viral vector systems

Vector Entry Immune response Capacity (kb) Location Ease of production Expression

Retrovirus (inc lentivirus) Fusion Minimal 8 Integrates 108** Years

Adenovirus Receptor Brisk*** 36 Episomal 1012***** Weeks/months

AAV Receptor None 4 Integrates 108*** Years

HSV Fusion Brisk**** 30 Episomal 1010**** Weeks

The main characteristics of the four main viral vector systems being used to transfer genetic material into cells both in vitro and in
vivo are compared above. Each system has been modified since their initial creation, enabling the capacity for the foreign transgene to
be increase, especially in the case of adenoviral vectors where gutless vectors have a very large cloning capacity. The host immune
response differs between each system, with retroviruses and AAV showing little or negligible immune response. In addition, these two
systems facilitate long-term transgene expression. Adenoviral vectors have also shown increased longevity of transgene expression,
especially when the promoter included in the viral cassette is modified from CMV

Asterisks indicate the relative ease of production or the relative level of immune response, i.e. a greater ease of production or greater
immune response elicited is represented by a higher score
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The first infectious clone of AAV serotype 2 (AA2)
was established in 1982. It was used to generate the
first recombinant AAV (rAAV) vectors (Hermonat
and Muzyczka 1984) and has therefore been studied
in great detail, and many mechanisms involved in
AAV integration and latency have been elucidated
(Gao et al. 2002). AAV2 is widely used to transduce
neurons as it demonstrates neuron-specific expres-
sion. However, more recently, multiple serotypes of
wild-type AAV (12 human serotypes and more than
100 serotypes from nonhuman primates), each with a
different targeting capacity, have now been identified
(Daya and Berns 2008). Due to the diverse tissue
tropisms and potential to evade preexisting antibodies
against the common human AAV serotype 2, some of
these AAV serotypes may have the potential to be
developed as novel human gene therapy vectors
(Coura and Nardi 2007). The use of the different
AAV serotypes in a pseudotyping approach (the
genome of one ITR serotype being packaged into a
different serotype capsid) has allowed broad tissue
tropisms, with greater gene expression being seen in
muscle, retina, liver and heart (using AAV serotypes
1, 5, 8 and 9, respectively). Studies have also
examined the transduction and expression character-
istics of these serotypes in brain (Cearley et al. 2008),
and AAV9 was shown to transduce a large number of
cells with unique expression pattern. However, some
tissues remain refractory to transduction using avail-
able serotypes, presenting a major challenge for AAV-
based gene therapy in clinically relevant tissues. Two
approaches have been employed: (1) altering the
direct targeting of rAAV vectors by either the
insertion of small peptides or ligands directly into
the viral capsid sequence (e.g. aiding targeting of
endothelial cells; Stachler and Bartlett 2006; White et
al. 2004) or by site-directed, insertional mutagenesis
of the AAV2 capsid (Muzyczka and Warrington 2005;
Shi et al. 2001) and (2) using an associating molecule,
such as a bispecific antibody (Bartlett et al. 1999) or
biotin (Arnold et al. 2006) which interacts with both
the viral surface and specific cell surface receptor and
mediated indirect targeting. The latter approach
enables the coupling of different adaptors to the
capsid, ablating the native targeting and enhancing
specific targeting without significantly changing the
capsid structure.

Regardless of serotype, the production of rAAV
vectors involves splitting the AAV genome between

two plasmids: (1) a recombinant AAV vector plasmid
where the AAV capsid genes are replaced with the
gene of interest, bracketed by ITRs and (2) a non-
rescuable AAV helper plasmid encoding AAV capsid
proteins. The production of recombinant AAV vectors
also requires a helper virus (adenovirus or HSV)
which allows viral replication, and density gradient
centrifugation is typically used to separate recombi-
nant AAV vectors from the adenoviral or HSV helper.

The inclusion of ITRs in rAAV vector systems
prevents integration into chromosome 19, and current
rAAV vectors persist primarily as extrachromosomal
elements (Afione et al. 1996; Schnepp et al. 2005). In
addition, the small size of these vectors limits the
insertion of gene expression cassettes, and gene
expression is generally of slow onset due to the
required conversion of the single-stranded AAV DNA
into double-stranded DNA. Such limitations have
been overcome by the generation of minimal expres-
sion cassettes and self-complementary AAV2 vectors,
respectively. The latter enable the rate-limiting
second-strand DNA synthesis to be bypassed, en-
hancing transduction of some organs and tissues such
as liver (McCarty et al. 2001), muscle (Wang et al.
2003), brain (Fu et al. 2003) and retina (Yang et al.
2002). As a result, rAAV-based gene transfer vectors
still represent one of the most promising gene therapy
systems and gain increasing popularity. rAAV2
vectors have been tested in preclinical studies for a
variety of diseases such as haemophilia, alpha1 anti-
trypsin deficiency, cystic fibrosis, Duchenne muscular
dystrophy, rheumatoid arthritis, age-related macular
degeneration (Buch et al. 2008) and others. The
studies so far have shown that AAV-based vectors,
particularly the AAV2 serotype, are safe and efficient
tools for gene transfer (further information on AAV
vectors was given by Professor Michael Linden during
this meeting and is also published in this special
edition of Journal of Cell biology and Toxicology).

Adenoviral vectors

Adenoviruses (Ads) have been isolated from a large
number of species and tissue types, and in humans,
they cause mild respiratory illnesses and gastroenter-
itis. Wild-type adenoviruses have a double-stranded,
linear DNA genome of approximately 36 kb in length.
Extensive splicing of the genome results in the
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production of over 50 viral proteins, 11 of which are
structural virion proteins that produce the characteristic
non-enveloped icosahedral protein capsid (Stewart et
al. 1993). The capsid consists of three main proteins:
hexon, penton base and knobbed fibre proteins (which
extend from the penton base). The fibre proteins differ
in length depending on the serotype. There are over
100 adenoviral serotypes identified that can infect and
replicate in a wide range of organs (Verma and
Weitzman 2005). This includes 51 human serotypes
(HAd) that are classified into six distinct subgroups
(A–F) based on their hemagglutination properties,
oncogenic potential, genomic organisation and DNA
homology (Arnberg 2009; Sharma et al. 2009). These
subgroups exhibit distinct tissue tropism and clinical
manifestations (Segerman et al. 2003a; Wadell et al.
1980). The majority of gene transfer studies utilising
adenoviral vectors are derived from human Ad
serotype 5 (HAd5), although Ad vectors have been
generated from other serotypes (including human
Ad2, Ad7 and Ad4 as well as non-human viruses).

Infection of host cells by wild-type Ads is mediated
via cell surface receptors. The efficiency of Ad binding
and entry to particular cell types is directly related to the
distribution of specific receptors on the cell membrane
(Mentel et al. 1997; Russell 2000) and the affinity of
the different Ad subgroups to its primary receptor. For
the majority of Ad serotypes (HAd2, HAd5, subgroups
A, D, E and F but not of subgroup B, as well as
serotypes from non-human species), the major cell
surface receptor is the Coxsackie adenovirus receptor
(CAR; Bergelson et al. 1997; Roelvink et al. 1998).
The carboxy-terminal knob domain of the fibre protein
(that projects from the adenovirus capsid) binds the
CAR with high affinity (Nemerow 2000). Binding
between a critical RGD recognition motif in the virus
penton base (Stewart et al. 1997) and with the
secondary cellular integrin receptors, αvβ3, αvβ5

(Wickham et al. 1993), αvβ1 (Li et al. 2001), α3β1

(Salone et al. 2003) and α5β1 (Davison et al. 2001) has
also been shown to occur. Following this binding, viral
internalisation proceeds via clathrin-mediated endocy-
tosis (Wang et al. 1998).

Recent studies are now elucidating additional
receptors for various HAd serotypes, especially
subgroup B. One main receptor is CD46, a ubiqui-
tously expressed type I transmembrane glycoprotein
that is a known receptor for a number of other human
pathogen (Cattaneo 2004). CD46 has been identified

as a cellular receptor for the majority of subgroup B
HAds, including HAd3, HAd7, HAd16, HAd21,
HAd50 (subspecies B1), HAd11, HAd14, HAd34
and HAd35 (subspecies B2) (Fleischli et al. 2007;
Segerman et al. 2003a, b; Sharma et al. 2009),
although CD46 usage by HAd3 and HAd7 remains
controversial (Marttila et al. 2005; Tuve et al. 2006).
In addition, subgroup D HAds (e.g. HAd37 and
HAd49) has also been suggested to use CD46 as an
attachment receptor (Lemckert et al. 2006; Wu et al.
2004). Additional cell surface molecules that act
directly as attachment or internalisation receptors or
indirectly (assisting CAR accessibility to the Ad fibre)
have also been identified (Arnberg 2009). These
include CD80, CD86, sialic acid, proteoglycans,
major histocompatibility complex class I and vascular
cell adhesion molecule I. In some cases (e.g. sialic
acid), these molecules act as cellular receptors for
other viruses, including influenza virus, rotavirus,
cornavirus and polyomavirus (Dormitzer et al. 2002;
Stehle and Harrison 1997; Weis et al. 1988), whereas
the interaction with CD80 and CD86 appears to be
specific to certain adenoviral subgroups, e.g. sub-
group B. Cells of hematopoietic origin and neoplastic
are readily transduced by subgroup B due to high
levels of CD80/86 expression (Knaan-Shanzer et al.
2001; Rea et al. 2001; Short et al. 2004). Such
research has prompted the proposal of an alternative
classification of subgroup B HAds based on their
receptor usage (Tuve et al. 2006), and it is hoped that
further understanding of subgroup B HAd internal-
isation will advance the design of novel Ad vectors
for gene delivery. Such understanding also has
implications for the usage of research models. For
example, the low CD46 expression on rodent cells
and low homology between human and rodent CD46
means that rodents do not serve as an ideal model for
subgroup B HAds. However, CD46 transgenic mouse
models that have CD46 expression profile similar to
monkeys and humans have been produced to serve as
a suitable preclinical model for CD46-binding Ad
vectors (Sakurai et al. 2006; Tatsis et al. 2007).

Once inside the cell, the virus-encoded protease
assists in the gradual disruption of the virus capsid by
proteolysis of viral structural proteins (Greber et al.
1997). This allows the partially disrupted virus to be
transported to the nuclear membrane via the partici-
pation of dynein and microtubules (Leopold et al.
2000). The viral particle, consisting of viral DNA and
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numerous other viral-encoded proteins, is then
imported through the nuclear pore into the nucleus
where viral-encoded proteins form a complex with the
cellular nuclear matrix to facilitate initiation of the
primary transcription events. The viral DNA does not
under normal circumstances integrate into the host cell
genome, but remains episomal within the nucleus. The
Ad genome is transcribed and replicated at discrete
replication centres in the nucleus of the infected cell. Ad
transcription can be defined as a two-phase event, early
(E) and late (L), occurring before and after DNA
replication, respectively (Fig. 1). Transcription of the
four early genes, E1, E2, E3 and E4, is accompanied
by numerous splicing events to generate proteins
required for transactivating other viral regions or for
modifying the host cellular or immunological environ-
ment. Following transport into the host cell nucleus,
transcription from the viral E1 gene is initiated,
producing E1a and E1b proteins. E1a proteins alter
cellular metabolism and activate transcription of the
other E genes (Russell 2000), whereas the E1b protein
prevents apoptosis of the host cell, promoting onco-
genesis and transformation. Together, E1a and E1b
also inhibit inflammation caused by Ad infection
(Schaack et al. 2004). The E2 gene products interact
with a number of cellular factors to enable replication
of viral DNA and transcription of the L genes. In
contrast, E3 gene products are non-secreted proteins

that control various host immune responses by inter-
fering with host defence mechanisms (Horwitz 2004).
As a result, they are not required for viral replication in
culture (Russell 2000) and are often deleted from Ad
gene therapy vectors. The E4 gene products modulate
viral gene expression and replication through interac-
tion with host cell systems. They facilitate virus
messenger RNA metabolism, provide functions to
inhibit host protein synthesis and promote virus DNA
replication (Leppard 1997). In addition, wild-type
adenoviruses also transcribe a set of untranslated
RNAs (the VA RNAs) that combat cellular defence
mechanisms by blocking activation of the interferon
response (Mathews and Shenk 1991). Following viral
DNA replication, the major late promoter in the viral
genome becomes fully activated (Nevins 1981), initi-
ating transcription and splicing of the major late
transcription unit (MLTU) that produces five different
transcripts (L1 to L5) that supply the viral capsid
proteins (Farley et al. 2004) and aid maturation of virus
particles in the nucleus.

Initial studies using Ad vectors focused on the
respiratory tract (the natural target tissue of this virus).
Subsequent studies demonstrated that Ads can infect a
great variety of post-mitotic cells, even those associ-
ated with highly differentiated tissues such as skeletal
muscle, lung, brain and heart. In 1993, Ad vector
systems were first demonstrated to be a viable means

E1A E1B VA-RNA E3

E2 E4

Protein of interest

Promoter of choice

Major late transcription unit

Fig. 1 Production of first-generation Ad vectors from wild-
type adenovirus genome. Wild-type adenoviruses have a
double-stranded, linear DNA genome of approximately 36 kb
in length. It is divided into early (E) and late (L) gene
transcripts. Transcription of the viral genome begins with the
E1 gene, producing E1a and E1b proteins. E1a proteins alter
cellular metabolism and activate transcription of the other E
genes, whereas the E1b protein prevents apoptosis of the host
cell, promoting oncogenesis and transformation. The E2 gene
products interact with a number of cellular factors to enable
replication of viral DNA and transcription of the L genes. E3
gene products control various host immune responses, and the

E4 gene products modulate viral gene expression and replica-
tion. In addition, wild-type adenoviruses also transcribe a set of
untranslated RNAs (the VA RNAs) that combat cellular defence
mechanisms by blocking activation of the interferon response
and a MLTU that produces the viral capsid proteins. The
creation of first-generation replication-deficient Ad vectors
involved the removal of the E1 genes. In addition, E3 genes
were also removed, as they are not required for viral replication
in culture. This enabled up to 8-kbp foreign DNA, encoding
promoters and foreign transgenes, to be incorporated into the
genome. Figure adapted from Horwood et al. Arthritis
Research, 2002
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of gene transfer to the nervous system (Akli et al.
1993; Davidson et al. 1993). Wild-type Ads can only
incorporate an additional 2 kb of foreign DNA
without significant effects upon the stability of
infectivity (Russell 2000). Removal of viral-encoded
genes allows the incorporation of larger genetic
sequences. First-generation Ad vectors were produced
by removing the E1 and E3 viral cassettes, making
way for approximately 8 kb of foreign DNA (Bett et
al. 1994; Verma and Weitzman 2005). The removal of
the E1 gene renders the virus extremely attenuated in
its ability to replicate, and it is therefore necessary to
propagate these viruses in a helper cell line that
supplies the E1 gene in trans, such as the human
embryonic kidney 293 (HEK293) cell line (Graham et
al. 1977). The most commonly used methods to
produce first-generation recombinant Ads rely on
either homologous recombination in mammalian cells
(Bett et al. 1994), homologous recombination in
bacteria (He et al. 1998) or in vitro ligation
(Mizuguchi and Kay 1998). Following homologous
recombination in HEK293 cells, viral particles are
screened for those expressing the inserted transgene
by plaque purification. Further modifications to this
method, including alterations made to the packaging
cell lines, have reduced the need for this step and
increased the efficiency of adenoviral production
protocols (Davidson et al. 2000). Viral particles are
released from HEK293 cells by sonication, separated
by a CsCl gradient spin and purified by dialysis
before storage. The high transduction efficiency of Ad
vectors combined with their relative ease of prepara-
tion and purification has led to their extensive use as
gene transfer vectors (Hermens and Verhaagen 1998;
Verma and Weitzman 2005).

Initial in vivo studies conducted with first-generation
Ad vectors revealed several limitations, including the
initiation of significant systemic immune and inflamma-
tory responses. This reduced the duration of transgene
expression and limited safety and efficacy when used in
vivo (Byrnes et al. 1995; Muruve 2004; Wilson 1996).
Furthermore, under certain circumstances, cellular
factors can transactivate viral genes that have E1A-
responsive promoters and facilitate low-level DNA
replication and the production of late structural anti-
gens. Such problems are highly apparent when first-
generation Ad vectors are injected into peripheral
organs (Spergel et al. 1992; Spergel and Chen-Kiang
1991). Transgene expression is generally undetectable

after 14 days due to activation of CD8+ T cells that
subsequently eliminate the infected cell and induce a
humoral response against antigens contained in the viral
capsid (Yang et al. 1994a, 1995). In addition, significant
toxicity, both in vitro and in vivo, has been reported
when first-generation Ad vectors are used to infect cells
at higher doses (or multiplicities of infection).

To overcome such problems, extensive develop-
ments in Ad vector biology and expression cassette
design have been made. Second-generation vectors
were developed to address the problems of immune
recognition, containing deletions in the E2a and E2b
genes that encode viral DNA binding protein and DNA
polymerase, respectively (Engelhardt et al. 1994;
Morral et al. 1997; Yang et al. 1994b). Ad vectors
deleted of E4 genes have also been investigated
(Dedieu et al. 1997). The resulting recombinant viral
vectors can incorporate larger transgenes (up to 10 kbp),
are less cytotoxic and systemically immunogenic, but
are unable to produce high viral titres or mediate stable
transgene expression. A significant advance in Ad
vector technology has been the development of helper-
dependent (Hd) or ‘gutless’ Ad vectors that are deleted
of all Ad gene sequences except those required (in cis)
for replication and packaging (Palmer and Ng 2005). A
replication incompetent (helper) virus is therefore
required to supply all of the necessary Ad functions
in trans and is later separated from the recombinant
virus (Parks et al. 1996). Consequently, the production
of Hd-Ads is more complicated than earlier genera-
tions, with problems in the longevity and levels of
expression (Schiedner et al. 2002) as well as helper
virus contamination (Alba et al. 2005). Due to the large
amount of viral DNA removed, the cloning capacity of
the vector is increased and the host adaptive response
is minimised. This improves the efficacy and duration
of gene transfer in vivo (Muruve 2004; Parks et al.
1996), and long-term expression in immunocompetent
animals, including efficient delivery to the CNS (Cregan
et al. 2000; Zou et al. 2000), has been demonstrated
using these vectors (Schiedner et al. 1998).

Retrovirus

Retroviruses are RNA viruses that replicate through a
DNA intermediate (Kay et al. 2001). They were
among the first viruses to be developed for gene
therapy and have subsequently become the most
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commonly used RNA virus vectors. This large family
of enveloped RNA viruses is found in all vertebrates,
and they can be classified into oncoretroviruses,
lentiviruses and spumaviruses (Verma and Weitzman
2005). All retroviruses consist of a lipid-enveloped
virus particle (virion) that surrounds an inner core,
known as the nucleocapsid. This contains two
identical copies of the viral RNA genome, reverse
transcriptase, integrase and protease. The nucleocap-
sid is surrounded by a protein shell formed by capsid
proteins enclosed by a layer of matrix proteins that
interact with the lipid envelope (Fig. 2).

The viral RNA forms a homodimer of linear,
positive-sense, single-stranded RNA genomes con-
taining three essential genes, gag, pol and env, that are
flanked by long terminal repeat (LTR) sequences.
These LTRs act in cis with neighbouring sequences
during viral gene expression and packaging, retro-
transcription and integration of the genome (Kay et al.
2001). The gag gene encodes for the core proteins,
capsid matrix and nucleocapsid, which are generated
by proteolytic cleavage of the gag precursor protein
(Verma and Weitzman 2005). The pol gene encodes
for the viral enzymes protease, reverse transcriptase
and integrase. These are usually derived from the
gag-pol precursor. Finally, the env gene encodes for
the envelope glycoproteins, which mediate virus entry

(Verma and Weitzman 2005). An additional gene, the
pro gene, encodes for the protease activity, responsi-
ble for gag and gag-pol cleavage and the maturation
of the viral particles during or after budding.

Oncoretroviruses are simple viruses encoding only
these three essential genes, whereas lentiviruses and
spumaviruses are more complex and encode for
additional viral proteins. However, all retroviruses infect
cells by an interaction between specific host cell surface
receptors (entry receptors) and co-receptors with viral
envelope glycoproteins. The viral particle is then
internalised through virus–cell membrane fusion, and
the virus core is released into the cytoplasm (Verma and
Weitzman 2005). The viral RNA genome is reverse-
transcribed into linear double-stranded pro-viral DNA
by the viral enzyme reverse transcriptase. The proviral
DNA associates with viral proteins (including nucleo-
capsid, reverse transcriptase and integrase) to form a
pre-integration complex that is rapidly transported to
the host cell nucleus. Virally encoded integrase
mediates the integration of the provirus into the host
cell genome, which is subsequently transcribed into
RNA from the viral promoter contained in the 5′ LTR.
This process is initiated by host cell transcription
factors, and once transcribed, the viral RNA is trans-
ported to the cytoplasm where it is translated into viral
proteins. The required viral structural proteins and
replication enzymes (i.e. gag-pol and gag precursors)
assemble with two copies of the viral RNA to form
new virion cores at the plasma membrane (Verma and
Weitzman 2005).

The first retroviral vectors to be developed and used
in a gene therapy trial were based on the ‘simple’
moloneymurine leukaemia virus (MMLV, an oncovirus;
Blaese et al. 1995). Since their initial use, retroviruses
have been used for stable gene transfer into mammalian
cells for over 20 years (Barquinero et al. 2004). They
are often the method of choice as they provide lifelong
expression of the introduced gene due to integration
into the host cell genome. However, simple retroviruses
such as MMLV require the disruption of the nuclear
membrane at mitosis to grant the pre-integration
complex access to the chromatin and subsequently
integrate into the host cell genome (Roe et al. 1993).
Consequently, simple retroviral vectors are of limited
use for gene transfer to post-mitotic neurons. Neverthe-
less, MMLV has been used to deliver genes to the brain
in an ex vivo manner. For example, MMLV-mediated
transfer of the tyrosine hydroxylase gene to fibroblast

RNA genome (two copies)

Receptor-binding
protein 

Transmembrane
protein 

Protease 

Nucleocapsid (gag)

Integrase 

Gag proteins 

Lipid 
envelope 

Reverse  
transcriptase-RNaseH 

Fig. 2 Schematic of retrovirus. Retroviruses are RNA viruses
that consist of a lipid envelope, depicted by the outer ring,
which interacts with transmembrane matrix proteins and
projecting receptor binding proteins. Host cell interactions are
governed by these receptor binding proteins and can be altered
by pseudotyping with other viral envelope proteins. The inner
portion of the virion, known as the nucleocapsid, contains two
identical copies of the viral genome and the viral reverse
transcriptase, integrase and protease
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and astrocyte cells in culture has been demonstrated, and
subsequent transplantation of these cells results in
partial behavioural recovery in the 6-OHDA model of
Parkinson’s disease (Wolff et al. 1989).

Lentivirus

Lentiviruses are a subgroup of the retrovirus family.
Their genomes are slightly more complicated, contain-
ing accessory genes that regulate viral gene expression,
control the assembly of infectious particles, modulate
viral replication in infected cells and contribute to the
persistence of infection (Kay et al. 2001). For example,
human immunodefiency virus-1 (HIV-1), a commonly
used lentiviral vector, encodes six additional proteins
(tat, rev, vif, vpr, nef and vpu; Frankel and Young 1998;
Verma and Weitzman 2005). These proteins are
involved with budding, maturation and integration
steps of the viral life cycle, enhancing the rate of
transcription and nuclear export of the viral RNA as
well as assisting in the assembly of the virion (Blesch
2004). In addition, lentiviral vectors do not require the
breakdown of the nuclear membrane in order to
integrate (Lewis and Emerman 1994). The lentivirus-
encoded gag matrix protein, integrase enzyme (Gallay
et al. 1997) and vpr protein (Heinzinger et al. 1994)
interact with the nuclear import machinery of the target

cell and facilitate active transport of the pre-integration
complex through the nucleopore. This enables trans-
fection of non-dividing cells, and as a result, such
‘complex retroviruses’ have shown promise as gene
transfer vectors, especially for post-mitotic cells such
as neurons (Blomer et al. 1996; Naldini et al. 1996;
Vigna and Naldini 2000).

Lentiviral vectors were developed by the removal
of all viral genes, except those required (in cis) in
order to complete a single round of replication. All
other components are supplied in trans from either
transient transfection or stable cell lines. HEK293T
cells, a derivative of HEK293 cells that contain the
SV40 large T-antigen, are often used for lentiviral
production. In addition, the viral rev protein is
provided in trans, as are gag and pol, achieved by
co-transfection of helper cell lines (Pacchia et al.
2001; Fig. 3). Following co-transfection of helper
plasmids with the shuttle plasmid, expressing the
foreign transgene of choice, the viral vector particles
are produced and released into the media by the
budding process. The resulting lentiviral vectors are
then purified and concentrated by ultracentrifugation.
Further advances in lentiviral vector design involving
the deletion of further non-essential pathogenic genes
reduced the HIV-derived packaging component of
second-generation vectors to the gag, pol, tat and rev

RRE 

CMV/LTR 

polyA 

polyA rev 

Packaging Constructs 

gag 

pol 
polyA Δψ

CMV 

ψ 

Concentration of 
viral pellet  

 
 

CMV/LTR RRE cPPT CMV Transgene LTR WPRE 

Cotransfection into HEK293T cells 

Supernatant Harvest and Centrifugation 
 

 

CMV 

RSV 

VSVG 

Fig. 3 Production of lentiviral vectors. Lentiviral vectors are
produced by co-transfection of packaging constructs containing
viral elements needed for one round of replication, together
with the shuttle vector containing the transgene into a
packaging cell line, e.g. HEK293T cells. The newly formed

viral particles are released into the supernatant by the budding
process and can be collected (harvested) and concentrated by
centrifugation. Addition of viral components such as the cPPT,
RRE and WPRE can enhance the production and subsequent
transgene expression
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genes of HIV-1 (Delenda 2004; Kim et al. 1998;
Zufferey et al. 1997). Third-generation lentiviral
vectors see the replacement of the tat gene with
powerful constitutive promoters, such as the immedi-
ate early cytomegaly virus (CMV) promoter (Dull et
al. 1998; Kim et al. 1998), increasing the bio-safety of
these vectors. These minimal vector systems have the
essential viral components segregated onto three or
four separate plasmids with minimal sequence over-
lap. An additional safety concern of using lentiviral-
based vector systems is the possibility of insertional
activation of an oncogene following random integra-
tion of the vector provirus into the host genome. This
problem has been addressed by the development of
self-inactivating lentiviral vectors (Miyoshi et al.
1998; Xu et al. 2001). These vectors contain deletions
in the U3 region of the 3′ LTR, which is transferred to
the promoter in the 5′ LTR after reverse transcription
and eliminates transcriptional activation of surround-
ing host genes (Logan et al. 2004). Thus, recombinant
lentiviral vectors are now constructed using only three
HIV-1 genes: gag, pol and rev. The cloning vectors,
into which genes of interest are placed, are devoid of
all viral sequences apart from essential cis-acting
sequences, including the LTRs and the packaging
signal. The rev responsive element (RRE) is also
included to ensure efficient nuclear export of the full-
length viral RNA genome.

Despite advances addressing safety concerns of
using lentiviral vectors, there are still problems
regarding limited transgene capacity, difficulties in
constructing stable producer cell lines due to viral
gene toxicity, and thus the inability to produce high-
titre stocks. The reintroduction of other viral sequen-
ces, such as the central polypurine tract (cPPT) and
the central termination sequence from the HIV pol
gene, improves gene expression (Barry et al. 2001;
De Rijck et al. 2005; Logan et al. 2004). These
sequences (regardless of their position within the viral
vector; De Rijck et al. 2005) improve translocation of
the pre-integration complex, resulting in increased
nuclear transduction efficiency and production of
higher viral titres. Incorporation of a posttranscrip-
tional regulatory element into lentiviral vectors
increases nuclear RNA export, stabilises the viral
vector mRNA and hence increases translation and
transgene expression (Zufferey et al. 1999).

The majority of lentiviral vector development has
focused on primate lentivirus-based systems, such as

HIV-1. However, other gene transfer systems based
on non-primate lentiviruses, such as the feline
immunodeficiency virus (FIV; Curran et al. 2000;
Poeschla et al. 1998) and the equine infectious
anaemia virus (EIAV; Olsen 1998), have also been
developed. Since their initial development, these
systems have been optimised, producing minimal
cassettes that include additional regulatory elements
(similar to those used in HIV-1-based systems;
Johnston et al. 1999; Saenz and Poeschla 2004) and
have been pseudotyped with alternative envelope
glycoproteins (Mazarakis et al. 2001; Sinn et al.
2005; Song et al. 2003;Wong et al. 2004). These non-
primate-based systems can successfully transduce
dividing and non-dividing cells (Mitrophanous et al.
1999) and can mediate neuronal gene expression in
vivo (Azzouz et al. 2004; Azzouz and Mazarakis
2004; Wong et al. 2005). Such systems are thought to
be inherently safer, as humans are not the host of the
wild-type virus, although early EIAV systems were
limited by the instability of vector-derived RNA
transcripts and silencing of the EIAV over time
(O’Rourke et al. 2002). Development of these
systems has eliminated such problems, and many
studies show that EIAV vectors can now transduce
human cells with similar efficiency to HIV-1.

Gene therapy trials have highlighted concerns
regarding the propensity for lentiviral vectors (includ-
ing HIV-1) to integrate within transcriptionally active
regions known as euchromatin. Genomic integration
of lentiviral vector genome facilitates long-term
expression as the viral sequence is replicated during
mitosis. This desirable trait can also be a problem,
especially when the insertion site is in close proximity
to a proto-oncogene (Somia and Verma 2000). In
recent clinical gene therapy trials for X-linked severe
combined immunodeficiency, five children developed
leukaemia as a direct consequence of insertional
mutagenesis (Staal et al. 2008). In two cases,
retrovirus integration was in proximity to the LMO2
proto-oncogene promoter, leading to aberrant
transcription and expression of LMO2 (Hacein-Bey-
Abina et al. 2003). The development of non-
integrating lentiviral vectors, where the viral genome
remains episomal, may address such problems.
Although such vectors offer a limited expression
window in mitotic cells, good expression is produced
in post-mitotic cells, such as neurons (Yanez-Munoz
et al. 2006). Initial studies using non-integrating
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lentiviral vectors have indicated that they are able to
efficiently replicate and express the transgene (Fig. 4).

Targeted gene transfer and regulatable expression

Various modifications have been employed in an
effort to improve the targeting of viral vectors to
specific cells and regulate transgene expression.
Improved targeting has primarily been achieved by
pseudotyping, altering the uptake of viral particles
into specific cells by altering viral surface proteins/
envelope proteins to that of another viral subtype.
Such retargeting of Ad vectors away from its primary
receptor (CAR) to a tissue- or cell-specific receptors
has been achieved by utilising different serotypes of
adenovirus (Havenga et al. 2002). In addition, some
rare HAd serotypes (Stone and Lieber 2006) and non-
human Ads (Bangari and Mittal 2006) are now also
being developed and investigated as alternate vectors
for gene delivery. In addition to pseudotyping,
targeting can be altered by specifically altering the
viral capsid proteins by mutations, genetically mod-
ifying the fibre and knob fibre proteins (Bakker et al.
2001; Nicklin et al. 2001). Such modifications can (1)
increase the tropism of Ad vectors, making cells
normally refractory to transduction (due to low CAR
expression) accessible targets; (2) restrict transduction
to the organ of interest enabling a lower dose to be
used and (3) limit transgene transcription to certain
cell types. Various studies have now demonstrated

that the incorporation of additional RGD motifs on
Ad fibre knobs can enhance the Ad transduction to a
wide variety of cells (including endothelial cells,
smooth muscle, fibroblasts, numerous tumour cell
types and dendritic cells) that express low levels of
CAR but high levels of integrins (Okada et al. 2001;
Staba et al. 2000; Wickham et al. 1997). In addition,
manipulation of such motifs may minimise the innate
immune response by limiting vector interaction with
the reticuloendothelial system, potentially avoiding
the effects of an anti-adenoviral neutralising antibody
response, and reduce the enhanced tropism for
hepatocytes often displayed by Ad vectors. The latter
is due to binding of coagulation factor IX, comple-
ment component C4-binding protein and vitamin K-
dependent blood coagulation factors (FVII, FIX, FX
and protein C) to the Ad fibre knob or hexon protein
which then acts as a link for virus uptake by
hepatocytes through heparan sulfate proteoglycan or
LDL receptor-related protein (Arnberg 2009; Parker
et al. 2006; Waddington et al. 2008). Such retargeting
will ultimately reduce systemic toxicity, especially
following peripheral administration of Ad vectors.

The targeting of lentiviral vectors has been modified
in a similar way, utilising the envelope proteins of
various retroviruses to enhance targeting to a
particular cell type (Bouard et al. 2009 for review).
Early versions of recombinant HIV vectors were of
limited use due to their strict host cell tropism (CD4+

targets; Poznansky et al. 1991; Shimada et al. 1991).
Pseudotyping with the vesicular stomatitis virus G

Fig. 4 Non-integrating lentiviral vectors. Modification of
lentiviral plasmids to contain an integrase negative helper
plasmid have enabled the development of non-integrating
lentiviral vectors. The viral genome does not integrate into the

host genome but remains episomal. Transduction with EGFP-
expressing virus demonstrates the efficiency of these vectors: a
Integrating lenti-CMV-EGFP, b non-integrating CMV-EGFP
and c non-integrating synapsin-EGFP
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(VSV-G) envelope protein substantially reduces the
potential to form wild-type virus (Kafri et al. 1999;
Naldini et al. 1996), increases viral stability and
increases the host cell tropism, enabling transfection
of both dividing and non-dividing cells in vitro (Kafri
et al. 1999; Naldini et al. 1996; Reiser et al. 1996) and
neurons following direct injection in the brain
(Naldini et al. 1996). VSV-G psuedotyping is now
widely used, and such vectors recently gained FDA
clearance and have entered clinical application (Lu et
al. 2004; Manilla et al. 2005). However, VSV-G can
be inactivated by serum complement (DePolo et al.
2000) and has been shown to be toxic following long-
term infection. Recent studies have therefore investi-
gated pseudotyping with alternative glycoproteins
(GPs) derived from other viruses, each with specific
advantages and disadvantages (Cronin et al. 2005).
Examples include pseudotyping with rabies, Ebola
Zaire (EboZ), lymphocytic choriomeningitis virus
(LCMV), alpha viruses, Sindbis virus and Hantavirus
glycoproteins. Both HIV-1 lentiviral and EIAV vec-
tors have been successfully pseudotyped with various
rabies virus glycoproteins (Conzelmann et al. 1990;
Mebatsion et al. 1995; Mitrophanous et al. 1999;
Mochizuki et al. 1998). These glycoproteins enable
retrograde transport of transgene expression along
nerve tracts and into distal brain areas (Wong et al.
2004). MLV-based retroviral vectors pseudotyped
with the LCMV GP have been shown to efficiently
transduce fibroblasts, epithelial cells, hematopoietic
cells, as well as hepatoma, neuroblastoma and glioma
cell lines (Miletic et al. 1999). FIV LCMV-WE
pseudotypes are potentially useful for targeting neural
stem/progenitor cells in vivo. Several reports describ-
ing successful pseudotyping of lentiviral vectors with
GP from alpha viruses (river virus (RRV), Semliki
forest virus and Sindbis virus) have also been
described. RRV-pseudotyped FIV vectors (RRV/FIV)
predominantly transduced the liver of recipient mice
with a 20-fold higher transduction efficiency than that
achieved with a VSV-G pseudotype that caused less
cytotoxicity. Non-hepatocytes (mainly Kupffer cells)
were also transduced, and following injection into the
brain, RRV/FIV preferentially transduced neuroglial
cells (astrocytes and oligodendrocytes; Kang et al.
2002). Intravenous injection of oncoretroviruses and
lentiviruses pseudotyped with a modified chimeric
Sindbis virus shows high targeting specificity and low
nonspecific infectivity in liver and spleen (Morizono

et al. 2001). Successful pseudotyping of HIV-1
vectors using Marburg virus and EboZ virus-derived
virion GPs has also been described. Such vectors
were more efficient in transducing myocytes, and
EboZ pseudotyped vectors injected into muscle in
utero were found to transduce muscle satellite or stem
cells and lead to transgene expression in newly
regenerated muscle after injury (MacKenzie et al.
2005). Direct brain injection of EboZ/HIV pseudo-
types in adult mice failed to transduce cells in the
brain (Watson et al. 2002). This may be due to the lack
of the proper receptor in the CNS. However, EboZ
pseudotypes were able to efficiently transduce the
apical surface of airway epithelia after apical applica-
tion (Kobinger et al. 2001), and therefore, these
vectors are now being employed for cystic fibrosis
studies (Sanders 2004). Modified lentiviral vector
pseudotyped with a strain of Hantavirus (HTNV) has
also been used to improve the transduction efficiency
into vascular smooth muscle and endothelial cells in
vitro and in vivo (Qian et al. 2006).

The physical targeting of viral vectors can also be
modified by coating the virus surface with polymers
such as polyethylene glycol, poly-[N-(2-hydroxy-
propyl) methacrylamide] or biodegradable alginate
microparticles (Croyle et al. 2000; Kreppel and
Kochanek 2008; Sailaja et al. 2002). Such modifica-
tions ablate the native tropism of the vector and shield it
from the host immune response whilst allowing selec-
tive targeting by the attachment of a variety of targeting
ligands (peptides, proteins or antibodies) to these
polymers (Kreppel and Kochanek 2008; Morrison et
al. 2008). As mentioned previously, physical targeting
of Ad vectors has been altered by the use of bispecific
adaptor molecules (including bispecific antibodies or
fusion proteins; Dmitriev et al. 2000; Parrott et al. 2003;
Reynolds et al. 2001). In this strategy, however, the
two-component nature of bispecific molecules adds
complications in manufacturing and in maintaining
batch-to-batch homogeneity. Furthermore, these mod-
ifications would not be inherited by progeny virions,
and therefore, genetic modification of the capsid
proteins is a more favoured option at this time.

In addition to these viral particle targeting methods,
tissue-specific promoters or tissue-specific regulatory
elements (Nettelbeck 2008) have been used to limit
transgene expression to the tissue of interest. Some
tissue-specific promoters investigated are glial fibrillary
acidic protein (GFAP), synapsin, muscle creatine
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kinase (MCK), phosphoglycerate kinase and neuronal-
specific enolase (NSE). Muscle-specific expression has
been achieved using the MCK promoter in both
adenoviral and lentiviral systems (Ferrari et al. 1995;
Larochelle et al. 1997). AAV9 vectors containing the
Desmin promoter have also been used to produce gene
expression in cardiac and skeletal muscle following
systemic vector administration (Pacak et al. 2008).
Bone-specific expression has been achieved using the
murine leukaemia virus long terminal repeat promoter
(RhMLV; Phillips et al. 2007) or the human osteogenic
promoter osteocalcin (Kofron and Laurencin 2006).
One major field of research has focused on brain-
specific expression. Several promoters have been tested
for targeting to the CNS using AAV vectors (Terzi and
Zachariou 2008). These include CMV, NSE, platelet-
derived growth factor-b and CMV-chicken β-actin
(Shevtsova et al. 2005). Similar studies have been
performed using Ad and lentiviral vectors (Jakobsson
et al. 2003; Virta et al. 2006). Cell specificity achieved
by particular promoters can vary between different
CNS regions (Peel et al. 1997). GFAP promoter has
been shown to drive exclusive transduction in spinal
cord, hippocampal and striatal neurons. The synapsin
promoter has also been utilised in Ad, lentiviral and
AAV vectors systems to drive neuron-specific expres-
sion (Glover et al. 2003; Nathanson et al. 2009; Peel et
al. 1997; Sims et al. 2008; Fig. 5).

Viral vector utility has also been improved by the
incorporation of regulatable expression systems, such
as tetracycline (Harding et al. 1998) and RU486
(Burcin et al. 1999) inducible systems. Tetracycline
inducible systems have produced highly regulatable

Ad vectors (Harding et al. 1997, 1998), allowing
transgene expression to be switched on and off in
vivo by the simple addition of doxycycline (a
tetracycline analog) in drinking water. Such systems
can enable the production of vectors that contain toxic
inserts, acting specifically and at high levels in the
“On” state, and show dose-responsive expression
allowing varied levels of gene expression. Subsequent
studies have combined this system with cell-specific
promoters to drive neuron-specific and glial-specific
regulatable transgene expression (Glover et al. 2002,
2003; Lee et al. 2005; Ralph et al. 2000). The well-
characterised tetracycline-based regulatable systems
have also been utilised in lentiviral vector design
(Kafri et al. 2000) and AAV-based studies (Stieger et al.
2009). Such lentiviral systems have already been used
to mediate regulated delivery of genes thought to
alleviate symptoms of Parkinson’s disease (Georgievska
et al. 2004; Vogel et al. 2004).

A range of viral vectors are therefore available to aid
research, each suited for different purposes/applications
due to their individual characteristics. Ad vectors have
been greatly utilised for in vitro studies, transferring
genetic material into many cell lines and cultured cell
systems. Within our laboratory, they have been utilised
to generate in vitro models of polyglutamine diseases in
both a mouse neuroblastoma cell line and primary
neurons (Fig. 6). Viral-mediated gene transfer enables
the production of dose-dependant models where the
level of disease protein expression (and therefore the
severity of the disease state) can be modified by viral
dose as well as the length of the CAG repeat tract within
the expressed transgene. Expression within primary

Fig. 5 Neuron-specific expression using the synapsin promoter.
Modification of adenoviral vectors using tissue-specific pro-
moters to produce specific expression in embryonic rat organo-

typic brain cultures: a Ad-CMV-EGFP results in ubiquitous
expression. b Ad-Syn-EGFP vectors, containing the human
synapsin promoter, produces neuron-specific expression

12 Cell Biol Toxicol (2010) 26:1–20



neurons has been achieved using the neuron-specific
synapsin promoter to drive neuronal-enriched expres-
sion of polyQ proteins (Howarth et al. 2009). Lentiviral
vectors have subsequently been used to create an in
vivo model of polyQ disease in rat striatum (Howarth
et al. 2007). The initial enthusiasm behind viral vector
technologies is therefore still founded, especially in the
laboratory setting where they provide a useful tool to
enable the genetic manipulation of cells in vitro
without the need for traditional transfection methods.
The advent of lentiviral vectors has enabled the
creation of ‘stable’ cell lines as well as an in vivo
expression system with true longevity. In terms of gene
therapy, many lessons have been learnt from clinical
trials where problems of immune response and

insertional mutagenesis have been highlighted (Staal
et al. 2008). Such difficulties are slowly being
addressed, and further developments involving im-
proved targeting, production, transgene expression and
limitations of longevity are frequently occurring in
each system. In addition, new technologies, including
that of cell-based delivery of Ad vectors (Power and
Bell 2007), are also driving the field forward, and
certain vector systems are proving instrumental in
clinical breakthroughs. Of particular note are the
advances in glioma therapy utilising HSV vectors
(Markert et al. 2006; Todo 2008) and the development
in AAV vectors (Buning et al. 2008; Monahan and
Samulski 2000), including clinical trials for retinal
therapy (Buch et al. 2008).

Fig. 6 Utilising viral vectors to create models of polyglutamine
disease. a SBMA model in mouse neuroblastoma cell line.
Transduction of mouse neuroblastoma cells, N2a’s, with
adenoviral vectors expressing the androgen receptor construct
that contains an expanded polyglutamine (CAG) repeat tract,
leads to the development of protein aggregates within the
cytoplasm upon testosterone addition. b Adenoviral vectors are
used to create a model of polyglutamine in dissociated primary

cortical neurons. These viruses express polyQ construct tagged
with EGFP, driven by the synapsin promoter to enhance
neuron-specific expression. c A similar model is also produced
following the transduction of dissociated primary cortical
neurons with adenoviral vectors expressing huntingtin with
103 PolyQ repeats fused to EGFP. d Lentiviral vectors
expressing the polyQ-EGFP constructs are injected into rat
striatum to create an in vivo model of polyglutamine disease
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