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Abstract 
[Note: This technical report is my unchanged thesis proposal document. It is published as a technical report so 
that it can be more easily referenced.] 

ALVINN is a simulated neural network for road following. In its most basic form. it is trained to take a sub- 
sampled. preprocessed video image as input, and produce a steering wheel position as output. ALVI" has 
demonstrated robust performance in a wide variety of situations, but is limited due to its lack of geometric 
models. Grafting geomebic reasoning onto a non-geometric base would be difficult and would create a system 
with diluted capabilities. A much better approach is to leave the basic neural network intact, preserving its 
real-time performance and generalization capabilities, and to apply geometric transformations to the input 
image and the output steering vector. These transformations form a new set of tools and techniques called Vir- 
tual Active Vision. The thesis for this work is: 

Virtual Active Vision tools will improve the capabilities of neural network based autonomous driving systems. 
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1. Introduction 

ALVI” is a simulated neural network for road following. In its most basic form, it is trained to 
take a subsampled, preprocessed video image as input, and produce a steering wheel position as 
output. ALVINN has demonstrated robust performance in a wide variety of situations, but is lim- 
ited due to its lack of geometric models. Grafting geometric reasoning onto a non-geometric base 
would be difficult and would create a system with diluted capabilities. A much better approach is 
to leave the basic neural network intact, preserving its real-time performance and generalization 
capabilities, and to apply geometric transformations to the input image and the output steering 
vector. These transformations form a new set of tools and techniques called Virtual Active 
Vision. My thesis is: 

Virtual Active Vision tools will improve the capabilities of neural network 
based autonomous driving systems. 

I will demonstrate several new capabilities, using virtual active vision tools and ALVWN, and the 
CMU Navlab vehicles. These capabilities will include intersection detection and traversal, lane 
changing, and a variety of confidence measures. 

1.1 Autonomous Driving Overview 

Autonomous driving has matured to the point where there are many competent systems which can 
perform small parts of the problem very robustly and reliably. Systems have been developed using 
a wide variety of techniques which can drive autonomous vehicles on roads [Z] [5] [lo] [13], 
avoid obstacles [4] [6], plan safe paths for the vehicle to follow [l], and allow the vehicle to 
exhibit intelligent, goal directed behavior [9]. There have been attempts to connect these compo- 
nent modules into a robust, comprehensive autonomous driving system. Although many of these 
attempts have produced good results, there is much work to do in creating a competent, general 
purpose, autonomous driving system. 

The foundation of any complete driving system is a robust road follower. The earliest road follow- 
ers were strongly model based - they incorporated a priori knowledge of some important road fea- 
ture (color, lane markings, etc.) and attempted to use this feature to locate the road. These systems 
performed well in situations where their built-in knowledge accurately characterized the road, but 
in cases where the feature they key on was not present or did not correctly define how to drive, 
failure was inevitable. In many cases the domain of operation was restricted so that the potential 
failure modes were never encountered. Although model based systems were not as robust as was 
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Figure 1. ALVINN network arrhitecture. 

desired, some of their characteristics, such as knowledge of where they thought the road was actu- 
ally located, were ideas which were useful in merging these systems with higher level modules. 

A major drawback of model based road following systems is that they are inherently tailored to 
finding one (or a few) features(s) which indicate(s) a road is present in an image. This problem 
was a factor which led to the development of neural network based road followers. The basis for 
using a neural system is that it can presumably learn the correct road model for any type of road. 
This gives the system the ability to drive on many road types instead of only ones which fit the 
model incorporated by the programmer into the system. Arguably the most successful neural net- 
work based road following system is ALVINN [ IO]. 

1.2 ALVINN Overview 

ALVINN (Autonomous Land Vehicle In A Neural Network) has shown that neural techniques 
hold much promise for the field of autonomous road following. Using simple color image prepro- 
cessing to create a grayscale input image and a 3 layer neural network architecture consisting of 
960 input units, 4 hidden units, and 100 output units, ALVINN can quickly learn, using back- 
propagation, the correct mapping from input image to output steering direction. See Figure 1. 
This steering direction can then be used to control our testbed vehicles, the Navlab and a con- 
verted U.S. Army HMMWV called the Navlab 11. 

ALVI" has many characteristics which make it desirable as a robust, general purpose road fol- 
lower. They include: 

ALVI" learns the features that are required for driving on the particular road type for which 

ALVI" is computationally simple. - ALVI" learns features that are intuitively plausible when viewed by a human. 

ALVINN has been shown to work in a variety of situations. 

it is trained. 
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ALVINN can learn to drive on lined city streets, jeep trails, and interstate highways and has suc- 
cessfully driven the Navlab I1 for over 90 miles at speeds exceeding 50 miles per hour. Because it 
has proven to be reliable over a wide range of road types and because it uses very basic input to 
produce its output, it is a natural choice on which to build more elaborate and comprehensive 
autonomous driving systems. 

2. Towards a Comprehensive System 

Previously, ALVI" aided high level modules in determining appropriate vehicle action in a very 
minimal way. Its primary function, besides staying on the road, was to change networks when the 
high level module requested. Some other high level module was in charge of determining when 
intersections and other road transitions occurred, figuring out which ALVLh" network was 
required for the new road type, and relaying this information to ALVI". ALVINN provided lit- 
tle [ 101 or no [ 121 feedback to the high level module about where it thought the transition was or 
how it was performing. This should not be the case. Knowledge from high level modules should be 
used to guide, rather than force, lower level modules in their search for information relevant to 
satisfactory completion of high level goals. Additionally, lower level modules should play an 
important role in updating temporal and spatial information associated with appropriate vehicle 
action, The research proposed in this document is strongly based on these two tenets. 

To facilitate this work, a new sensor called a virtual camera is used. Developing more robust 
autonomous road following systems and improving driving performance is possible using virtual 
cameras. Virtual cameras are the fundamental tool upon which all other virtual active vision tools 
and techniques presented in this proposal are based. These tools create a natural link to high level 
modules and the important information that they contain as well as provide a mechanism for 
determining the appropriateness of vehicle actions. Finally, virtual cameras do not compromise 
the robust driving performance of the original ALVINN system. 

All of the tools developed in this proposal lie in a field we call Virtual Active Vision. Virtual 
because all the methods use artificially created sensors which can be robustly manipulated to suit 
our needs and Active because the techniques move sensors to locations where the images they 
create will enhance system performance. 

In order to more tightly integrate virtual cameras into a high performance driving system, one sig- 
nificant change to the basic ALVINN system is needed. This change is moving away from a sys- 
tem that produces a steering arc to one which produces the location of the center of the road or 
driving lane at a pre-specified distance in front of the vehicle. In effect, the new system will pro- 
duce a point to drive over rather than an arc to drive. By using this point-based approach, 
ALVINN and other high level modules will have a common reference frame in which to commu- 
nicate. 

3. The Virtual Camera 

A virtual camera is simply a camera which can be placed at any location and orientation in the 
world reference frame. It creates images using actual pixels imaged by a real camera that have 
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been projected onto some world model. By knowing the location of both the actual and virtual 
camera, and by assuming a flat world model, accurate image reconstructions can be created from 
the virtual camera location. A flat world model has been chosen as a first approximation of the 
actual world because in most road following scenarios, it accurately represents the world near the 
vehicle. Virtual camera views from many orientations have been created using images from three 
different actual cameras. The images produced by these views have proven to be both accurate 
and usable by the ALVI" system to navigate successfully. Figure 2 shows some typical virtual 
camera scenes. 

Ori i n a l h a  e m 
Figure 2. 'Qpical virtual camera scenes. 
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An interesting issue that is a general theme of this proposal is showing that virtual cameras are 
well suited for merging neural systems with symbolic ones. A partial answer, and one which will 
be extensively explored, is that virtual cameras impose a model on the neural system. In our case, 
the model is not a feature in an image, but rather a canonical image viewpoint which ALVI“  
can interpret. This idea can be better understood by looking at a virtual camera from the point of 
view of both the high level module and of ALVI“. 

From the standpoint of the high level system, a virtual camera isn’t a camera, or even a sensing 
device, but instead an abstract object that ALVJ” uses to get its job done. The single most 
important thing about a virtual camera to the high level module is that it can be placed at an arbi- 
trary location in the real world. Location is a concrete concept which many high level systems use 
as an integral part of their operation. Location can be relative (‘‘past the grocery store”) as well as 
absolute (“sail to 10 latitude and 5 longitude”), and need not necessarily be specified by a number 
(“at the grocery store”). These kinds of ideas are all ones which high level systems handle well. 

To ALVINN, the virtual camera is a sensing device. It is ALVINN’s only link to the world in 
which it operates. ALVI” doesn’t care where the virtual camera is located, only that it is pro- 
ducing images which can be used to locate the mad. This interpretation may seem to trivialize 
ALVIhWs functionality, but in reality, finding the road is what ALVI”  is designed to do best. 
The virtual camera, guided by high level modules, insures that ALVI“ gets images which will 
let it do its job to the best of its ability. 

So in essence, the virtual camera imposes a model on the neural system without the neural system 
knowing, or even caring, about it. The model helps both the high level system as well as the neu- 
ral system do their respective jobs better and allows them to seamlessly cooperate to exhibit goal 
directed, intelligent behavior. 

4. System Overview and Comparison 

A graphical comparison between the current ALVI” system and the system proposed in this 
document is shown in Figure 3. The main differences that should be noted are: 

ALVI” is insulated from the outside world in the new system by virtual active vision tools. 

There is more information flow from ALVI” to high level modules in the new system. 

These differences and the reasons for them are described in the next paragraphs. 

4.1 The Current ALVI” System 

The current ALVI“ system can be described as a tightly closed system. ALVI” directly 
senses the world and sends steering commands to the vehicle controller. This closed l w p  is neces- 
sary to achieve real-time performance but makes interacting with ALVINN especially difficult. As 
a consequence, providing ALVINN with information that allows it to exhibit intelligent, goal 
directed behavior has been done in a somewhat ad-hoc manner. Interpreting information from 
ALVINN has been even harder. New ideas about integration with other systems and improving 
performance tend to be tacked onto the sense-react cycle instead of integrated with it. Addition- 
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Current ALVINN System New ALVINN System 

High Level Module 4 - 4  
Vehicle I ALVINN Controller I 

t 
The World 

High Level Module m 
Vision Tools 

The World 

Figure 3. System Diagram. Arrows indicate direction of data flow. Armw stem width indicates amount 
of data flow. 

ally, this tightly closed sense-react processing loop makes it hard to determine how ALVINN is 
performing in manner that will not jeopardize real-time performance. 

4.2 The New ALVINN System 

In the ALVINN system proposed in this document, the tightly closed sense-react loop is main- 
tained, but isolated from the world and high level systems by virtual active vision tools. These 
tools allow ALVI" and other systems to work in a common language - location. Data interpre- 
tation problems associated with heterogeneous (subsymbolic and symbolic) systems are over- 
come using this language. Virtual active vision took still allow ALVINN to perform in real-time, 
but serve as a useful, bidirectional gateway to high level systems and the knowledge they contain. 
They allow ALVI" to 'focus its attention' on the tasks which are critical for achieving goal 
directed behavior while still maintaining the robust performance of the original ALVI" system. 
Using virtual active vision tools, ALVINN can overcome the problems which have hampered it in 
previous attempts at exhibiting goal directed behavior [ 121 [3] [lo]. 

5. Other Similar Systems 

An early attempt to use an artificial viewpoint to more easily interface low level robot control 
with high level functionality was reported by Wallace [14]. This work used a local flat world 
assumption to create a bird's-eye view (looking straight down) of the area in front of a mobile 
robot. From this viewpoint, the actual road structure became explicit, and when road edges were 
extracted, they could be easily matched to an actual map of the area. 

Todd M. lochem November 22.1993 6 



More recently, Meng and Kak [8] have presented work on a system for an indoor mobile robot 
that couples low level, neural network based navigation systems with higher level, semantically 
based planning. Their system uses neural networks to identify when landmarks such as hallway 
junctions and deadends are reached, as well as to navigate correctly down the center of the corri- 
dor. They use parts of a Hough transform created from an edge image of the current scene as a 
training signal for each of the networks. The part of the Hough transform which each network 
sees is determined a priori by the researchers and corresponds to where relevant features in the 
Hough space a likely to appear. Each of their landmark detecting networks is trained to create a 
“near,” “far,” or “at” output. These outputs are then directly fed to the planner so that the robot 
can localize itself and replan if necessary. An interesting point about this work is that absolute 
position is never used; only relative, semantic positioning (“near the junction”). The claim is that 
humans use only relative positioning to navigate, but by giving up absolute locational informa- 
tion, many important task that we are attempting to address in this proposal, such as latency com- 
pensation and reliability estimation, become extremely difficult, if not impossible. While such a 
scheme may work for indoor mobile robots, it is insufficient for the road following task. 

Work done by Lotufo [7] uses a bird’s-eye view to simplify processing which must be done to 
detect road edges. In this work, an input image of a road is transformed onto the ground plane 
where specialized vertical edge detectors are applied. Because the road edges in the transformed 
image appear to be parallel, vertical lines, the edge detector can quickly and accurately find them. 

6. Research Agenda 

The research proposed in this document falls in the following areas: 

Improving Driving Performance. 

Improving Reliability Estimation. 

Merging Neural and Symbolic data. 

Active Vision and Sensor Fusion. 

The general goal of the research proposed in this document is to develop methods that will allow 
autonomous vehicles to exhibit reliable and robust performance in complex, real world driving 
scenarios. The necessity of more robust performance in each of the above areas will become clear 
and potential research topics for achieving this end will be outlined. Each item can benefit from 
what is learned by exploring the others, but none depend solely on the development of another for 
individual success. As stated earlier, all of these topics fall into what we call Virtual Active Vision 
and use an already developed sensor called a virtual camera. 

7. Improving Driving Performance 

7.1 Optimal Camera Placement 

One way that virtual cameras can improve ALVINN’s driving performance is that they will allow 
ALVINN’s neural network to be trained on a camera view from which it can learn the image to 
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road location mapping most quickly and accurately. Consider the case when the actual camera is 
oriented in such a way that the horizon line is in the image. Parts of the image which would ide- 
ally contain useful information about the road, now contain data which is not necessary for road 
following, such as trees and power lines. This extra, and often contradictory, information makes it 
more difficult for ALVINN to learn the correct mapping. By using a virtual camera, it is possible 
to create a view which contains only information that is useful for driving. 

It is possible to find the optimal virtual camera view by training several networks using images 
created by virtual views in which the parameters which identify the pose of the virtual camera are 
changed. Virtual camera pose parameters which can be tested are the lateral offset from the center 
line of the vehicle (x), the virtual camera’s height (z), the offset from the front of the vehicle (y), 
the virtual camera’s tilt (pitch), and the virtual camera’s yaw. Once each network has been trained, 
the mean error can be computed by comparing human driving performance with the output of the 
network. The virtual camera view which has the lowest mean error is judged as optimal for driv- 
ing on the current road type. It cannot be judged as optimal for all road types because the location 
of important features for driving may change as road types change. For example, on an unlined 
bike path, it is reasonable to assume that the optimal camera offset is zero (i.e. centered) because 
both edges of the road are important for driving. But for driving on a lined city street, it may be 
more important to keep the yellow center line in the field of view at all times while sacrificing 
some of the outside road edge. 

Additionally, selecting an optimal camera view is closely related to eliminating the need for add- 
ing structured noise to images during ALVI” training. [ 111 (Structured noise refers to a spatially 
coherent features in the image which should not be, but often are, mistaken for the real featms 
which are required for driving.) Adding structured noise is required for driving in situations where 
transitory features could be mistaken for the actual features required for c o m t  driving. For 
example, suppose a network is trained to drive on a typical four lane highway, having broad 
shoulders and a grassy median. During testing, it is observed that the network becomes confused 
when driving over a bridge that has concrete jersey barriers at the road side. Even though the lines 
marking the lanes (the real features required for correct driving) do not change, system perfor- 
mance degrades. To prevent this degradation, structured noise is added during training to the areas 
of the image where this type of transitory feature is likely to be encountered. By adding noise in 
these areas, the network will learn to only key off the important features required for driving. An 
alternative solution to this problem using virtual cameras is to pick a virtual camera view which 
does not include the area where transitory features occur. 

7.2 Latency Compensation 

Another potential advantage of using virtual cameras in ALVI” is for latency compensation. 
Latency compensation refers to modelling and correcting for the delay between when an image is 
digitized and when the steering command ALVINN‘s neural network produces in response to that 
image is executed. On the Navlab Il this latency time is approximately 400 msec. This delay in 
response can result in control instability and oscillations, particularly when driving at high speeds. 
By correcting for this delay, better driving performance can be achieved. 

Currently, to compensate for latency in ALVI“, modification of the training and driving pro- 
cesses is needed. Using a virtual camera positioned at the latency distance in front of the vehicle 
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and by training the neural network to produce the center of the road at its output rather than a 
steering arc, ALVTNN’s output can be directly used by a point tracking module to drive the vehi- 
cle. Additionally, virtual cameras provide a very simple way to adjust the latency distance dynam- 
ically, based on current vehicle speed. See Figure 4. 

Latency Compensated View 
Figure 4. Latency Compensation. 

8. Improving Reliability Estimation 

A major factor that has thus far prevented wholehearted acceptance of A ‘t”, as well as o ier 
neural network based applications, is the inability to precisely understand what the network is 
learning and how it will react to new situations. In model based road following systems, it is easy 
to understand that when a particular feature is not present in the road image, the system will not 
function properly. The system designer accepts this because he created the system to look for that 
feature - thus he knows why and when it will fail. In ALVINN, it is much more difficult to deter- 
mine when the system will fail and almost impossible to tell precisely why it fails. This is because 
it learns different features for different road types and because it usually encodes what it learns in 
a way that is hard to accurately interpret. These factors make analyzing neural network systems 
especially hard. 

One method that attempts to provide a quantitative measure of the accuracy and reliability of 
ALVI” is called Input Reconstruction Reliability Estimation (IRRE). In the IRRE method, the 
network is trained to not only produce the desired steering direction but also to reproduce the 
input image at its output. By comparing this reconstructed image with the actual image presented 
to the network it is possible to compute a confidence measure. The reasoning behind this method 
is straightfonvard: If the network can accurately reproduce the input image, it has most likely 
been trained on similar images and it is reasonable to assume that the output steering direction is 
also accurate. Although this technique works well and will form a basis for the techniques 
described later, i t  can only predict what the vehicle will do at this instant and assumes that a sin- 
gle, accurate reconstruction can always be related to a correct action. There is no way to deter- 
mine the future consequences of the current action. Because the confidence value is computed 
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from just one image, there is a chance that the network will accurately reconstruct a random 
image, leading to belief in the output road position - and a potentially catastrophic situation. 

A Virtual Active Vision method called Consequence Based Reliability Estimation (CBRE) pro- 
vides a way to make quantitative measurements of network confidence and reconcile the vehicle's 
current actions with their future consequences. Virtual Active Vision techniques also provide a 
way to merge the meaning of output activations from many virtual views and to create a spatially 
relevant measure of network reliability which relies on the consistency of the IRRE measure of 
the network when presented with images from known, multiple virtual cameras. (This type of reli- 
ability estimation is known as Output Consistency Reliability Estimation or OCRE.) These meth- 
ods, both grounded by action in the physical world, are discussed in greater detail in the next two 
sections. 

8.1 Consequence Based Reliability Estimation 

Consequence Based Reliability Estimation is an iterative method in which the action resulting 
from ALVI"'s output is simulated and used to develop a confidence measure. The method is a 
four step process which involves: 

Imaging the scene at the current vehicle position. 

Producing an output and IRRE measure based on this scene. 

Compounding this IRRE measure with any previous ones. 

Updating the current vehicle position based on the network output. 

This technique uses ALVI"'s output to predict where the vehicle will be at some point in the 
future and moves the virtual camera view to that location, computing a confidence measure along 
the way. 

The first step in CBRE is to place a virtual camera view immediately in front of the vehicle. The 
image produced by this view will be passed through ALVINN's neural network and will create 
some output activation. Because this output actually specifies a point on the ground plane some 
distance in front of the vehicle, it is possible to simulate moving the vehicle to this location and to 
re-image the same scene with another virtual camera view. This 'image and move' process is 
repeated for several iterations. See Figure 5. 

The intuitive reasoning behind CBRE is that if the network produces an accurate output, not only 
will IRRE confidence be high, but also the new position computed using this output will be on the 
road. When a scene is imaged from this new location, and if the previous output did actually place 
the vehicle on the road, IRRE confidence will again be high. If the output was inaccurate, the 
imaged scene will not be on the road and IRRE confidence will be low. Combining a series of 
these measurements will yield a confidence measure that is grounded in vehicle action. 

Used alone, I R E  suffers from the drawbacks mentioned earlier, but by incorporating several 
measures, each derived from an action predicted by the trained network, better reliability estima- 
tions can potentially be developed. Figure 6 and Figure 7 shows how the virtual images might 
look for two different road types. 
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Figure 5. Consequence Based Reliabiiitg Estimation. 
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Figure 6. Simulated CBRE images on an unlined, straight, paved path. 
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Figure 7. Simulated CBRE images on a lined, curving, city stmet. 
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8.2 Output Consistency Reliability Estimation 

Output Consistency Reliability Estimation is based on the agreement of the output of ALVINN’s 
network across several input images. The specific output produced by each image is not and 
should not be identical, but rather should specify the same point in front of the vehicle. If several 
virtual cameras are created at the same distance in front of the vehicle, but at different offsets 
from the vehicle’s center line as shown in Figure 8, all of their outputs should specify the same 
point. The degree to which they do so can be thought of as a measure of the reliability of the sys- 
tem. Also, because multiple driving point are available, they can be combined into one point using 
their respective IRRE measure as a kind of weighting factor. 

The basic OCRE method could work as follows. Suppose the network is given images taken at 
each of the virtual camera locations. For each of these images, it produces a road position along 
with an IRRE measure. The IRRE measure acts as weighting factors for combining this output 
displacement with others to create a new output. Intuitively, this means that virtual views which 
produce a high IRRE measure are weighted more than ones which produce a low measure. 

A potential way to obtain a confidence measure of this new output is to examine the sum of the 
RRE measures. A large sum value would indicate high confidence while a small value would 
indicate low confidence. A method such as this has the advantage that if one virtual camera views 
caused the network to produce an incorrectly high IRRE measure, the other views will not likely 
suffer the same error and low confidence will be correctly reflected in the final, combined confi- 
dence measure. Figure 9 shows how virtual images used in OCRE might look. 

Another interesting offshoot of this idea is not only using different virtual camera views but also 
using different networks, trained from different views, to produce a road position. Using networks 
trained with images from different camera poses, perhaps some focusing entirely on particular 
features in the image like the center line or the road edge, a more accurate road position could be 
derived. An approach such as this, in which the location of important features is determined a pri- 
ori, has a definite model based flavor, but it is an interesting way to incorporate some of the 
strengths of the model based approaches into the neural paradigm. 
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Figure 9. Simulated ORCE images on a straight road. 

Finally, the OCFE method is especially well suited for the task of merging the output of networks 
which use different sensing modalities into a single road position. The combination of infrared 
and video data for day and night driving is one such example. 
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9. Merging Neural and Symbolic Data 

Virtual cameras provide a way to link &VI” with other, mostly symbolic, autonomous naviga- 
tion systems that provide information such as local planning and global positioning. The informa- 
tion contained in these other systems was previously difficult to use because there was no real 
common ground between them and ALVI”. Instructions were issued and ALVINN was 
assumed to have responded properly. Feedback was almost non-existent. Below are three exam- 
ples of real situations which require high level knowledge. A potential solution to each using vir- 
tual cameras is outlined. 

9.1 Exit Ramp Detection 

Suppose a mapping and path planning module tells ALVINN that in order to reach some final goal 
point, an exit ramp off the interstate needs to be taken. This module could supply ALVINN with 
general information about where the exit ramp is located along with other relevant information 
that could aid in its detection. ALVI” might then use this information to create virtual camera 
views that are positioned in such that they will image areas to the right of the interstate (where 
exit ramps usually occur.) At the same time, another virtual camera could keep the vehicle on the 
road until the exit ramp is found. See Figure 10. With an approach such as this, ALVINN can 

Searching for exit ramp. Exit ramp found. 

Figure 10. Detecting exit ramps 

simultaneously follow the road as well as carry out goal directed behavior requested by high level 
systems. Once the exit ramp has been found, possibly by applying the reliability estimation tech- 
niques mentioned earlier, its location can be refined in the high level module’s map. Figure 11 
shows how this scenario might look in on a real highway. 

9.2 Intersection Detection and Traversal 

Another example where virtual cameras can be used to merge high level, symbolic data, with 
ALVIhW is that of detecting and moving through city intersections. Suppose a high level map- 
ping module tells ALVINN to “turn left at the next four way intersection.” Ideally, you would like 
ALVINN to take this instruction, find and go through the intersection, and inform the high level 
module that the request had been successfully completed. By placing virtual cameras in the man- 
ner shown in Figure 12, this task can be completed. Used in this manner, virtual cameras can pro- 
vide a way to navigate through intersections without having to rely solely on blind, dead 
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Overhead View 

Figure 11. Offramp and lane detection wing victunl 

reckoning techniques. Because it is unlikely that a single camera will be able to sufficiently image 
the entire intersection, the need for integrating more traditional active vision techniques is high- 
lighted. Some of these techniques, such as panning the actual camera and combining multiple 
actual camera views, are discussed in Section 10. 

9.3 Plan Improvement Through Observation 

The reuse of information acquired in previous runs is a problem which has typically been hard to 
address when using reactive systems such as ALVINN. Although high level modules usually con- 
tain such information, merging it with the current output of low level systems has typically been 
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Figure 12. Intersection navigation. 

difficult because of issues related to data representation. Since ALVINN will now produce points 
rather than arcs, new areas of information reuse can be explored. An initial area that can be 
explored is that of merging locational information about where the vehicle drove on previous trips 
on the current road with new, sensor derived data. Since it is feasible to assume that ALVIMV can 
supply a high level module with every point over which it expects to drive, knowledge can be 
readily stored for reuse. In later trips over the same road, this information can be recalled and 
merged with the current road estimation. Over several trips, an accurate representation of the cor- 
rect path can be constructed. 

10. Active Vision and Sensor Fusion 

Traditional Active Vision and Sensor Fusion are two areas which can also be explored using Vir- 
tual Active Vision techniques. Several potential items that relate to these areas which would bene- 
fit an autonomous road following system are discussed below. It is not yet clear which of these 
items will be most useful for the problems that I propose to explore, but dealing with at least the 
cursory issues of all the topics will likely be required. 

Optimal sensor placement for varying navigation tasks. Because pixel values in a virtual 
camera's field of view, which are not in the actual camera's, must be inferred, it is desirable to 
maximize the overlap of virtual and active camera fields of view. In the exit ramp example, the 
view required for finding the ramp could very well be out of the actual camera's field of view if 
the actual camera was oriented for road following. It would be better to have the actual camera 
pose be one which overlapped maximally with the road following and exit ramp virtual views. 

Using more than one camera to produce virtual views. Another solution to the maximal 
overlap problem mentioned above is to use more than one actual camera whose views overlap. 
Pixels in a virtual view which fall outside of the field of view of one actual camera may fall 
inside the field of view of the other. A method such as this would be desirable when movable 
cameras are not available and when it is necessary to image a large area quickly, such as in the 
case of intersection detection. 

~ 
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Using 3D elevation instead of the fiat world assumption to map image data. By using real 
elevation data instead of the flat world model to map image data to the ground plane, a more 
accurate world model can be produced. However, it is not yet clear whether this is a better or 
necessary model for use with an ALVINN based autonomous driving system. 
Sensor Registration. As new sensing modalities become available, the ability to correctly reg- 
ister them with each other becomes more important. Virtual cameras provide a way to image 
different data, like color video and forward looking infra-red (FLIR), using identical image for- 
mation models. This ability, coupled with the new sensing modalities like FLIR, provides 
intriguing opportunities in areas such as day-night driving. 

11. Contributions 

The goal of this work is to develop methods that will allow reliable and robust performance on 
complex, real world driving tasks. Such tasks inherently require information from high level, goal 
directed modules as well as stable performance from low level, reactive control systems. These 
tasks provide truly difficult requirements which must be sufficiently satisfied for acceptable 
results. 

To accomplish this goal, significant progress must be made in evaluating ALVINN’s performance 
in terms of both safety and with respect to landmark detection. (i.e. Finding offramps, intersec- 
tions, and lane changes.) And to accomplish any of this, new ways to bidirectionally link 
ALVINN to higher level modules must be found. It is in these areas that important contributions 
will be made. 

This work will provide significant advances in both the neural network control and the autono- 
mous mobile robot communities.The research will explore and provide methods for estimating 
the reliability of artificial neural networks using extrinsic metrics (CBRE and OCRE) rather than 
the traditional, intrinsic metrics (IRRE). Knowledge in this area will perhaps lead to more wide- 
spread acceptance of the neural paradigm for control problems and perhaps provide a partial 
answer to the question, “Yes, but how do you KNOW it works?” 

Additionally, it will provide a systematic method for merging high level knowledge sources with 
low level, reactive modules. This merger will be bidirectional, with &VI” providing feedback 
to high level modules about how it is currently performing and how it expects to perform in the 
near future. Information contained in high level modules that is required for goal directed behav- 
ior will become easily accessible to ALVI”. Because of this, autonomous operation in new 
domains will become feasible and overall system performance and reliability will significantly 
improve. 
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12. Time Table 

Start End 
7/1/93 9/30/93 
10/1/93 10/3 1/93 

Research Agenda 
Develop and test basic virtual camera code. 
Write thesis urouosal. 

11/1/93 
3/1//94 
4/1/94 
8/1/94 
9/1\94 
2/1/94 
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2/28/94 
3/3 1/94 Document results. 
7/31/94 
813 1/94 Document results. 
113 1/95 
4/30/95 

Best camera view, latency compensation, CBRE and OCRE. 

Merge with high level mapping module. 

Active vision and sensor fusion experiments. 
Comulete thesis document and defend. 
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