
Using Visualization to Support

Data Mining of Large Existing Databases

Daniel A. Keim, Hans-Peter Kriegel

Institute for Computer Science, University of Munich

Leopoldstr. 11B, D-80802 Munich, Germany

{ keim. kriegel} @informatik.uni-muenchen.de

Abstract. In this paper, we present ideas how visualization technology can be used

to improve the difficult process of querying very large databases. With our VisDB

system, we try to provide visual support not only for the query specification pro-

cess. but also for evaluating query results and. thereafter, refining the query accord-

inky. The main idea of our system is to represent as many data items as possible

by the pixels of the display device. By arran~ng and coloring the pixels according

to the relevance for the query, the user gets a visual impression of the resulting data

set and of its relevance for the query.. Using an interactive query interface, the user

may change the query dynamically and receives immediate feedback by the visual

representation of the resulting data set. By using multiple windows for different

parts of the query, the user gets visual feedback for each part of the query and,

therefore, may easier understand the overall result. To support complex queries,

we introduce the notion of 'approximate joins' which allow the user to find dam

items that only approximately fulfill join conditions. We also present ideas how

our technique may be extended to support the interoperation of heterogeneous da-

tabases. Finally, we discuss the performance problems that are caused by interfac-

ing to existing database systems and present ideas to solve these problems by using

data structures supporting a multidimensional search of the database.

Ke.vwords: Visualizing Large Data Sets. Visualizing Multidimensional Multi-

variate Data, Data Mining, Visual Query Systems. Visual Relevance

Feedback. Interfaces to Database Systems

1. Introduction

The need for database system support visualization systems has been widely recog-

nized and has been a main focus of two previous workshops which were held in con-

junction with the SIGGRAPH '90 and Visualization '91 conferences. The main

question that has been dealt with is how database technology can adequately support

visualization systems. In this context, researchers are working on extending current

object-oriented database management systems, designing adequate database schemas

and formats that allow storing and accessing the large amounts of data which are

needed by visualization systems. The question of database support for visualization,

First publ. in: Database issues for data visualization : proceedings / IEEE
Visualization '93 Workshop, San Jose, California, USA, October 26, 1993. - Berlin

[u.a.] : Springer, 1994. - pp. 210-229. - (Lecture Notes in Computer Science ; 871). -
ISBN 3-540-58519-2

Konstanzer Online-Publikations-System (KOPS)
URN: http://nbn-resolving.de/urn:nbn:de:bsz:352-173235

http://www.springer.com/computer/lncs?SGWID=0-164-0-0-0
http://nbn-resolving.de/urn:nbn:de:bsz:352-173235

211

however, is only one side of the coin; the other side is visual support for databases. In

this paper, we take up the question, how to visually support database users in accessing,

analyzing and understanding the growing amount of data that is stored in the computer.

The progress made in hardware technology allows today's computer systems to store

very Im'gc amounts of data. The available storage space is easily filled with data that is

often automatically recorded via sensors and monitoring systems. Today, even simple

transactions of every day life, such as paying by credit card or using the telephone, arc

typically recorded by using computers. Even larger amounts of data are generated by

automated test seres in physics, chemistry or medicine and satellite observation systems

are expected to collect one tcrabytc of data every, day in the near future [FPM 91]. The

data of all areas mentioned so far is collected because people believe that it is a potential

source of valuable information providing a competitive advantage (at some point). Quc-

rying and analyzing the databases to uncover the valuable information hidden in them,

however, is a difficult task. Traditional database query, languages such as SQL [ISO 92]

allow people to query the databases, but finding the data a person is interested in is often

a problem. Even experienced database users may have difficulties to find the interesting

hot spots. Since, in general, the user does not exactly know the data and its distribution,

many queries may be needed to find the interesting data sets. The result for most queries

will contain either less data than expected, sometimes even no answers, so-called

'NULL' results, or more data than the user is able to deal with. With today's database sys-

tems and their query tools, it is only possible to view quite small portions of the data. If

the data is displayed textually, the amount of data that can be displayed is in the range of

some one hundred data items but this is like a drop in the ocean when dealing with mil-

lions of data items. Having no possibility to adequately query and view the large amounts

of data that have been collected because of their potential usefulness, the data becomes

useless and the database becomes a data 'dump'.

The need for supporting the process of querying and analyzing databases has been

widely recognized and was even ranked one of the most important topics of database

research for the 90s [SSU 90]. The US government, for example, sponsors large

projects, such as the Sequoia 2000 project, to develop advanced data analysis tech-

niques for very large databases. Many companies also recogmzed the potential of ana-

lyzing their databases. Banks and retail stores, for example, analyze their transaction

records to understand customer habits better and thus, tailor their marketing promo-

tions accordingly. Banks also analyze loan and credit history to improve their loan

approval policies. Over the last several years, many tools and algorithms for data anal-

ysis have been developed. It seems, however, that advanced techniques for data analy-

sis are not yet mature - at least for the flood of data we are facing today. Since, on the

other hand, the technology for generating, collecting and storing data is available, the

gap between the amount of data that has to be analyzed and the amount of data that can

be analyzed is growing.

VisuaLization technology seems to provide important potentials to improve the pro-

cess of querying, analyzing and understanding the data. With visualization techniques,

212

larger amounts of data can be presented at the same time on the screen, colors allow the

user to instantly recognize similarities or differences of thousands of data items, the

data items may be arranged to express some specific relationships and so on. To our

knowledge, up to this point visualization techniques are only used in databases in the

rare cases where the data has some inherent two- or three-dimensional semantics. In

geographic databases, for example, 2D visualizations are used to adequately support

spatial queries and basically all Geographic Information Systems (GIS) provide such

visual representations of the data. In most application areas, however, the data does not

lend itself to an easy visualization and, therefore, in most cases no visual support for

querying the database is provided. We believe that in dealing with very. large amounts

of data, visual support allowing database users to profit from the progress made in visu-

alization hard- and software, is essential to support the process of exploring the data.

Most of the data collected in the past is stored in relational database management

systems. In particular, large (unstructured) data sets are usually stored in relational sys-

tems. However, for visualization purposes relational systems are not well suited, and

often there is no other way to access the data than to completely extract the whole data-

base. There are many reasons for using relational systems instead of better suited sys-

tems such as object-oriented database management systems. One of them is the

proliferation of relational systems. Another reason is, as recent studies show. that

object-oriented database technology is not yet mature for really large amounts of data.

In the context of this paper, we focus on available databases and therefore, we mainly

refer to the relational data model. However, most of the ideas that will be presented in

this paper also work in conjunction with object-oriented or other database systems.

The rest of the paper is organized as follows: Section 2 elaborates on the tasks that

are important to querying large databases. The term 'data mining' is introduced and

discussed with respect to related areas of research. Section 3 ~ves an overview of our

ideas to visually support the querying of large databases and describes the query, spec-

ification and visualization interface of the VisDB system. In section 4. some of the

problems in interfacing with (traditional) database systems are described and potential

solutions are discussed. Section 5 summarizes our approach and points out some of the

open problems for future work.

2. Data Mining

The process of searching and analyzing large amounts of data is also called 'data min-

ing'. The large collections of data are the potential lodes of valuable information but.

like in real mining, the search and extraction can be a difficult and exhaustive process.

Therefore, for the mining to he successful, adequate and efficient mining tools are essen-

tial. In some sense, data mining is like the work of radiologists. It is like scanning the

database to identify phenomena that need to be looked at, showing the regular structure

of the data but also helping to find anomalies. Before we describe the differences of data

mining to related research areas, we will first try to define the term 'data mining'.

213

2.1 Def'mifion of Data Mining

'Data Mining' can be defined as the (non-trivial) process of searching and analyzing

m

data, in particular to find implicit but potentially useful information. Let D = k.) D i

i = l

with D i = {d 1 dni } be the data set to be analyzed. Note that the D i do not need to be

stored in the same database management system. The process of data mining can be

described as the process of finding a subset D' of D and hypotheses H U (D', C) about

D' that a user U considers useful in an application context C. The hypothesis may

describe properties of the data set D', it may identify relationships between subsets of

D' or it may be a combination of both. Our definition can be further formalized, e.g. by

defining a hypothesis description language, a context description formalism and so on.

The user and his/her notion of 'usefulness', however, can hardly be formalized since

'usefulness' not only depends on the chan__oLng knowledge of the user and the applica-

tion domain, but it also includes some notion of creativity, and users may not be able to

define their usefulness criteria. On the other hand. if a data mining tool helps the user

to find useful D' and to find and verify, hypotheses, then it may not be important to

have the hypothesis, the context and so on formally specified. All these aspects are

present in the mind of the user who will also be able to express and communicate his/

her ideas towards other humans.

2.2 Related Research Areas

Our definition of data mining is a quite broad definition and relates to a wide range of

other research areas including statistics (data analysis, cluster analysis), artificial intel-

ligence (knowledge discovery, machine learning), database interfaces (data browsing,

cooperative database interfaces) and information retrieval. In the following, we give a

brief overview of these areas.

Simple statistical parameters such as average, variance or correlation coefficients

only allow special kinds of hypotheses, namely those with D' = D or D' = D i in the

case where D is partitioned into relations D 1 D m. More complex statistical meth-

ods such as multidimensional cluster analysis and mathematical taxonomy [DE 82] try

to find hypotheses about real subsets of the database (D' c D with ID'! ,< IDI and

ID'I sufficiently large). An exhaustive cluster analysis of multidimensional data would

require checking of relationships between all combinations of dimensions for all sub-

sets of data items which is computationally intractable for large data sets. Therefore,

most cluster analysis algorithms use some kind of heuristics to reduce the search space

(e.g. [Hub 85, GSSK 87, GPP 90]). Still. for really large databases with millions of

data items, cluster analysis is not feasible without human guidance. AdditionaUy, sta-

tistical methods are not suited for nominal and structured data and often lead to results

that are difficult to interpret. Furthermore, statistical methods do not help to find single

exceptional data, so-called hot spots. In our context, we talk about hot spots if

D' c D and tD'I = 1 or sufficiently small when compared to IDI.

214

In artificial intelligence, researchers are working in related fields of knowledge dis-

covery and machine learning which can also be considered to be data mining. Among

the AI techniques used in data mining are inverted expert system approaches, probabi-

listic theories, bayesian statistics, neural networks and genetic algorithms. In contrast

to our approach, in knowledge discovery the hypotheses are usually rules or facts

which are formally specified in some high-level language [FPM 91]. In some cases, the

knowledge is even not made available to the user to support hypothesis finding since it

is extracted from samples, either unsupervised or supervised by experts and directly

used for decision making in similar cases (well-known examples are [Qui 86. RM 86,

HHNT 86]).

Another area related to data mining is database query interfaces. The ability, to

extract data satisfying a common condition is like data mining in its ability to produce

interesting and useful hypotheses. Traditional query interfaces, however, do not help

the user in fnding interesting data. The usefulness of the results largely depends on the

user's a priori knowledge and intuition. In many cases, however, it is like the search of

a needle in a haystack. Many approaches have been made to improve the database

query interface. One approach is graphical database interfaces that allow the user to

browse the data (e.g. FLEX [Mot 90] or BAROQUE [Mot 86]). Another approach is

cooperative database interfaces [Kap 82, ABN 92] that try to give 'approximate

answers' in cases where the query does not provide a satisfactory answer. Such sys-

tems use techniques like query generalization [Cha 90], that is, dropping or relaxing a

selection predicate in cases where the original query fails, and statistical approxima-

tion or intensional responses instead of full enumeration in the cases of large results

(key ideas are already presented in [JKL 77] for the first time).

In the area of information retrieval, a lot of research has been done to improve

recall and precision in querying databases of unstructured data such as (full) text. The

search is usually supported by some kind of 'descriptor' that may be extracted auto-

matically or assigned by the user. In this context, distance functions for text, strings or

descriptors [I-ID 80], ranking functions [NMK 81, FM 91] and weighted queries

[SB 88] have been examined. To improve the effectiveness of information retrieval

systems, the notion of relevance feedback (using relevance assessments provided by

the user) and approximate matching algorithms have been proposed [Sad 88. FS 91].

Although the work in information retrieval mainly focuses on (full) text databases, we

believe that it is an essential prerequisite of our research.

2.3 The Tasks Involved in Data Mining

For querying and analyzing a database, first a query needs to be specified. In most

database applications, query specification is restricted to predefined, possibly parame-

terized queries which have been designed and implemented by the database designer.

If the user wants to issue other queries than the predefined ones, usually an interactive

interface for ad hoc queries is available. The queries, however, have to be expressed in

specific database query languages such as SQL which represents a quasi-standard. The

215

SQL query language with its linear syntax was developed two decades ago and has not

changed substantially since then. Major problems are that queries need to be issued in

a one-by-one fashion providing no possibilities to slightly change a query, to express

uncertain or vague queries and to intuitively specify complex queries. As we will show

in the next section, visualization technology may help to improve the query specifica-

tion process considerably.

After issuing the query, the user gets the resulting data set fulfilling the ~ven query

conditions. However, as already explained in the introduction, in many cases the result

does not provide adequate feedback helping the user to find interesting hypotheses or

to refine the query. This is true for very. large data sets consisting of multiple attributes

with a fiat structure, e.g. data generated by automated test series (physics), periodical

observations (weather) or statistical recordings (credit card payments). For large struc-

tured data sets, it is even more difficult to find interesting hypotheses. In the relational

data model, for example, related data is usually stored in multiple relations which need

to be joined in order to find relationships between the data. In cases, where relations

are joined using (foreign) keys which are specially designed for connecting multiple

relations, the join can be executed efficiently providing exactly the desired tuple. In

data mining, the goal is to find new relationships and, therefore, (foreign) keys do not

provide any help. Often, such relationships are vague and thus, possibilities to express

vague or approximate joins are needed. Additionally, it would be helpful, if the results

of such joins provide feedback on the closeness in fulfilling the approximate join con-

dition, which is also not provided by current database systems. In the next section, we

will present our ideas to use visualization technology to provide better feedback for

querying large flat (c.f section 3.2) as well as structured data sets (c.f section 3.3).

If the data is stored in multiple independent databases, the task of finding interest-

ing hypotheses about the data is even harder to solve. In addition to the problem of

having different data models, query languages, database management systems and so

on, the problems of incompatible structures, incompatible instances, inconsistencies,

etc. have to be solved. Again, as we will describe in section 3.4, our visualization tech-

nique may be helpful to solve some of the problems in dealing with multiple databases.

At this point, we want to draw the reader's attention to a problem arising in per-

forming data mining on large existing databases, namely the poor support by existing

database management systems which are used to store the data. This problem is espe-

ciaUy relevant when trying to visualize large amounts of multidimensional data. Cur-

rent database management systems support neither incrementally changing nor

uncertain queries. Furthermore, they do not adequately support range conditions on

multiple attributes which require a fast multidimensional search of the database. We

believe that existing database systems need to be extended to better support the

requirements of data mining and visualization systems. In section 4, we will describe

the mentioned problems in more detail and discuss potential solutions.

216

2.4 Key Characteristics of Data Mining Tools for Large Databases

Before we describe our ideas to support data mining, in this subsection we briefly men-

tion the characteristics of data mining tools that we consider to be the most important

ones: interactiveness and efficiency.

For data mining of really large databases to be successful in the near future, we

believe that it is essential to make the human being part of the data analysis process. It

will be important to combine the best features of humans and computers. The

unmatchable intelligence, creativity and perceptual abilities of humans need to be sup-

ported by computers, which are best suited to do searching and number crunching. A

major research challenge is to find human-oriented forms of representing large

amounts of information. In today's systems, the perceptual abilities of humans are only

used to a very limited extent. Only a few systems use vision and sound to help the user

in data analysis (see [SBG 90] for an example). In the future, data mining tools need to

be built in a human-centered way supporting an effective interaction between the user

and the system.

A second important characteristic of data mining tools is efficiency. Efficiency is

important for the algorithms to scale up well enough when dealing with very large data

volumes. Although there is no universally affeed definition of 'efficient', it has been

stated that algorithms whose computational requirements are of the same order as sort-

ing [O(n logn)] or better can be considered eff• [FPM 91]. Given that hardware

improvements will continue at the same rate as in the past. it is unlikely that algorithms

with a complexity that is substantially h i~er than O(n logn) will be useful in dealing

with data volumes in the range of terabytes.

3. Visual Support in Querying Databases

The basic idea of our query and visualization interface is to present as many data items

as possible at the same time on the screen with the number of data items being only

limited by the number of pixels of the display. Our goal is to visualize the data in a way

that the user gets visual feedback on the query and thus can easily explore the data-

base, understand the influence of various query components and find out why slightly

different queries have completely different results. In the following, we will give a

brief overview of our VisDB system: query specification component (subsection 3.1),

visualization of large flat data (subsection 3.2), visualization of complex data (subsec-

tion 3.3) and ideas for extending the system to partially solve the problems that arise in

dealing with multiple independent databases (subsection 3.4).

3.1 Query Specification

In exploring very large databases, an easy-to-use query interface for 'ad hoe' queries is

important. Most of the currently available 'ad hoe' query interfaces, such as SQL, are

not user friendly and, in particular, not suitable for data mining. Most of them only pro-

vide line-driven, textual interfaces allowing queries to be issued in a one-by-one fashion

217

only. Furthermore, they do not allow interactively modifying queries nor do they ade-

quately support the specification of complex queries. Our idea to solve these problems

is to visually support the query specification process allowing even inexperienced users

to retrieve data from the database without knowing a specific query language. In con-

trast to most of today's database management systems where the user is forced to think

in terms of the data model and the query language, with our system the user can interac-

tively construct the query and, using the visual representation of the query provided by

the system, the user can understand and modify the query more easily.

The main ideas of our visual database query interface have been presented in

[KL 92]. Although the visual query interface has been developed in the context of a

multimedia database management system, it is generally useful for specifying SQL-

like queries. Note, that the query specification interface is largely independent from the

rest of the VisDB system. For the purpose of query specification, the user may also use

traditional query languages such as SQL or other ~aphical user interfaces such as

QBE [Zlo 77], Visual SQL [TC 90] or Iconic Query [PC 93] instead of our visual

query specification interface. However, as we will see in subsection 3.3, our query.

specification interface is especially useful in conjunction with our technique for visual-

izing complex query results since it allows direct access to all parts of complex que-

ries.

To briefly explain the query specification process, let us go through an example that

will be used in subsection 3.3 to demonstrate the visual feedback in case of complex

queries. Assume a user of an environmental database with local weather parameters

(temperature, humidity., direction and speed of the wind, solar radiation, precipitation,

etc.) and air pollution values (CO, SO 2, NO 2, ozone, etc.) wants to find a correlation

between temperature, solar radiation and humidity, on one hand and the ozone level on

the other hand. According to his/her assumption that there is a correlation between the

parameters with a time delay of two hours, the user may specify, the following query:

'Select the temperature, solar radiation, humidit?.' and ozone level if

at the same location the temperature is higher than 15~ or the solar

radiation is higher than 600 wart/m 2 or the humidio' is lower than

60% and between recording temperature and ozone there is a time

difference of two hours.'

In specifying this query, the user starts by selecting the tables needed for the query

from the Tables window, namely Weather and Air-Pollution. As a result, all attributes

of the Weather and the Air-Pollution table are displayed in separate windows. To spec-

ify the projection, the user may then move the attributes Temperature, Solar-Radiation,

Humidit3.' and Ozone into the Result List window. The next step is to specify the condi-

tion. Assume, the user wants to start with the at-same-location part. By clicking to

Cond in the Tool Box, s/he gets an empty condition box in the Query Representation

window and by clicking to the connection 'Air-Pollution at-same-location Weather'

the desired join condition may be specified. 'Connections' are joins which are defined

and named by the database designer (or the user) prior to their actual use. Next, the

218

user may want to specify the 'OR'-part of the condition. For each of the three attributes

Temperature, Solar-Radiation and Humidirs. ; the user selects Cond from the Tool Box,

the attribute from the Weather table, the desired comparison operator and finally, s/he

types in the corresponding value of the limit. Then, all three parts are selected and by

clicking to 'OR' in the Tool Box, the boxes get 'OR'-connected. The last part that

needs to be specified is the time related join condition. Since a join with the intended

meaning is already predefined, the join may easily be specified by selecting Cond from

Tool Box, 'Air-Pollution with-time-diff(rnin) Weather' from the Connections window

and typing in the desired time value of 120 minutes. The last step is to combine the

conditions into the final result. This is done by selecting all separate parts and by click-

ing to the logical operator 'AND' from the Tool Box. The final result of the query spec-

ification is shown in figure 1. The details of the query, specification interface are

beyond the scope of this paper and are given in [KL 92].

3.2 Visual Feedback in Querying Large Flat Data Sets

As indicated by our definition, we view data mining as an interactive hypotheses-gen-

eration process. Our goal is to get the data to ask questions, rather than asking ques-

tions to the data. In contrast to most other approaches to data mining (c.f. section 2.2),

our idea is to use the phenomenal abilities of the human vision system which is able to

analyze compact, to midsize amounts of data very efficiently and immediately recog-

nizes patterns in images which would be very difficult (in some cases even impossible)

and at least very time-consuming if done by the computer. The research challenge is to

find adequate ways of visually presenting multidimensional data to support the user in

analyzing and interpreting the data.

Visualization of data which have some inherent two- or three-dimensional semantics

has been done even before computers could be used for visualization, and since comput-

ers have been used for this purpose, a lot of interesting and efficient visualization tech-

niques have been developed by researchers working in the graphics field. Visualization of

large amounts of arbitrary multidimensional data. however, is a relatively new research

area. Researchers in the graphics/visualization area are currently exploring techniques in

different application domains [Bed 90, FB 90, ID 90, LWW 90, MGTS 90, MZ 92]. In

most of the approaches proposed so far, the number of data items that can be visualized

on the screen at the same time is quite limited (in the range of 100 to 1,000 data items), but

it is a declared goal of the visualization community, to push this limit [Tre 92], In dealing

with databases consisting of tens of thousands to millions of data items, our goal is to

visualize as many data items as possible at the same time to give the user some kind of

feedback on the query. The obvious limit for any kind of visualization is the resolution of

current displays which is in the order of one to three million pixels, e.g. in case of our 19

inch displays with a resolution of 1,024 x 1,280 pixels it is about 1.3 million pixels. Our

idea is to use each pixel of the screen to give the user a visual feedback on the query allow-

ing him/her to easily focus on the desired data, understand the influence of various query

components and find out why slightly different queries have completely different results.

219

The basic idea of our visualization technique for large fiat data scLs is described in

[KKS 93]. In our approach, as a result for a query the user does not only get the data

items fulfilling the query but also a number of data items that approximately fulfill the

query. The approximate results are determined using distance functions for cach of the

selection predicates which arc combined into the relevance factor. The distance func-

tions are datatype- and application-dependent and must bc provided by the application.

Examples of distance functions arc numerical difference (for metric types), distance

matrices (for ordinal and nominal types), Icxicographical. character-wise, substring or

phonetic difference (for strings) and so on. Having calculated the distances for each of

the selection prcdicatcs, the distanccs arc combined into the rclcvancc factor. Impor-

tant aspects such as normalizing and weighting thc diffcrcnt selection prcdicatcs, the

formulas we use to calculate the relevance factors and thc heuristics used to reduce the

number of data items that arc displayed arc dcscribcd in [K.KS 93]. The relevance fac-

tors are then sortcd resulting in a one-dimensional distribution ranking the approxi-

mate responses according to thcir relevance. The basic idea for visualizing the

relevance factors is to map them to colors and represent each data item by several pix-

cls colored according to the relevance of thc data item. The colored relevance factors

arc displayed on the screcn with the highcst relevance factors (yellow) centcrcd in the

middle of the window and the approximate answers with colors ran~ng from ~ecn

over bluc and red to almost black rectangular spiral-shaped around this region

(c.f. figures 2-5). To relate the visualization of the overall result to visualizations of the

different sclcction predicates, we generate a separate window for each selection prcdi-

catc of thc query. In these separate windows, we place thc pixcls for each data itcm at

the same rclativc position as thc overall rcsult for thc data item in thc overall result

window. The scparatc windows for each of thc selection predicates provide important

additional feedback to thc user, e.g. on thc rcstrictivcncss of cach of the selcction prcd-

icatcs and also on single exceptional data itcms. Aftcr having the visual feedback, the

user may intcractively changc the query according to thc imprcssion from the visual-

izcd results. Using highlighting of corresponding pixels in different windows or a pro-

jcction of the visual rcpresentation to specific color ranges, the user may further

cxplorc thc data helping him/her to relate the rclevance factors in the different win-

dows. By bcing ablc to get thc attribute values corresponding to some specific color,

thc user may bcttcr understand and interpret the visualizauons. According to the dis-

coverics made during this process, the user may then incrementally change the query

using sliders provided for each of the selcction attributes (c.f. figurcs 2-3).

As already indicated in the previous section, our approach to data mining largely

differs from the techniques used in statistics, artificial intclligence, database interfaces

and information reu'icval. The most obvious differcncc is that wc are using visualiza-

tion and coloration to support the data mining process. In our approach, wc try to ade-

quately support thc excellent vision capabilities of humans whom wc believe to be the

most'important factor in data mining. Additionally, our tcchniquc is fast enough to be

uscd in very large databases. For simple queries and standard distance functions the

220

complexity, is O(n logn) with n being the number of data items. Obviously, query pro-

cessing time is dominated by the time needed for sorting. Furthermore, our technique

is completely application-independent, and. in contrast to most other approaches to

data mining, with our approach it is possible to find single exceptional values which

are difficult, maybe even impossible, to find with traditional cluster analysis or knowl-

edge discovery methods.

3.3 Visual Support in Querying Large Structured Data Sets

Up to this point, we have only considered the simplest types of queries, namely queries

on flat data sets with all selection predicates being connected by the same Boolean oper-

ator. In this subsection, we briefly describe how complex queries, i.e. queries with the

selection predicates being arbitrarily connected (nested '.~u'q'D's and 'OR's), multiple

table queries and some types of nested queries may be supported visually in our system.

In dealing with complex conditions that consist of arbitrary Boolean expressions of

selection predicates, in the first step the user gets only the visualization of the top level

of selection predicates. In terms of the graphical representation of the query in the

query representation window, it is the leftmost logical operator with the corresponding

selection predicates. If one of the selection predicates itself consists of a Boolean

expression, then the user may not understand how the visualization of that part is gen-

erated since only one visualization with the overall result for that part is displayed. To

be able to explore the impact of any query part, in the VlsDB system the user may get

visualization and query modification windows for arbitrary, subparts at any level of the

Boolean expression by simply double clicking the corresponding Boolean operator in

the query, representation window. The query representation window is available to the

user during the whole process of data mining to provide an overview of the actual

query, reflecting all changes made by direct modifications and to allow access to all

parts of the query. In general, the arrangement of data items in the upper left part of the

visualization representing the overall result of the corresponding query part is the same

arrangement as for the overall result of the whole query. However, the user may also

examine the query part independendy and use an option to get the data items arranged

according to the relevance factors calculated for the query, part only. In our example

query (c.f. subsection 3,1), in the first step the visualization consists of four parts: one

for the overall result of the query and three for the three parts connected by 'AND' (see

figure 2). If the user wants to see visualizations for each of the selection predicates

connected by 'OR', s/he might double click on the "OR'-box in the query representa-

tion window and, as a result, s/he will get another query visualization and modification

window for this subpart (see figure 3).

Another type of complex queries are multi-table queries which, in general, involve

some kind of join. The totality of data items that need to be considered in this case is

the cross product of all tables involved. Our idea for visually suppor.ing multi-table

queries is to consider all data items of the cross product that approximately fulfill the

join condition. As for all other selection predicates, the user gets a separate window

221

with the data items of the cross product that fulfill the join condition being yellow and

the others being colored according to their distance. In some cases, e.g. if the tables are

connected by foreign keys which are designed to connect related data items, this may

not be helpful since the distances on foreign keys may not have any semantics. In such

cases, only those data items that fulfill the join condition should be considered and no

visualization for the join condition needs to be generated. In most other cases, how-

ever, it is quite helpful to consider data items that approximately fulfill join conditions.

In our example from environmental science, for example, we have a time- and a loca-

tion-related join condition both of which may well be considered as vague ones. Such

approximative joins may even be crucial to find the desired results if, for example, the

time interval for measuring the weather and air pollution parameters is different or if

the weather and the air pollution measurement station are not at the same but at close-

by locations. In these cases, join conditions requiring time or location equality, would

provide only very few or even no results though they would be quite helpful. Again,

the distance functions used to determine the distance of the join tuples are user and

application dependent (c.f. section 3.2). For joins on numerical attributes, for example,

the numerical difference between the considered data items from the two relations

might be used as an approximation of the join condition to be fulfilled. In a similar

way, the distance functions for non-equijoins (al < a2) or parametrized (non-

equi)joins (al - a2 < c) may be determined. Special joins, e.g. to relate geog-raphical

locations (c.f. example query), require more complex distance functions. In a different

context, other distance functions may be helpful, e.g. if the user is only interested in

one relation and in the number of join partners that each data item of this relation has

with another relation, the user might use the inverse of that number as the distance.

In the last part of this subsection, we briefly describe how our visualization tech-

nique may support the user in dealing with nested queries. As an example, we describe

the case of nested queries where the subquery is connected by using 'exists' or 'in'. In

dealing with such types of queries, the user may choose the outer relation(s) to be the

basis for displaying the relevance factors of the results. Again, the user will get a sepa-

rate visualization part for each of the (top level) selection predicates. In the visualiza-

tion part corresponding to the overall result of the subquery, the user gets yellow in

case the subquery condition is fulfilled and otherwise the color corresponding to the

distance of the data item most closely fulfilling the subquery condition. The data item

most closely fulfilling the subquery condition can be determined by the minimum dis-

tance in performing an approximate join of the inner and the outer relation(s). Using

this single value to be displayed for the whole subquery, the user gets no feedback on

the distribution of distances for the approximative join and on the other selection pred-

icates that may be involved in the subquery. For this reason, we provide the possibility

to select one single data item in the visualization window and to get the complete sub-

query with all its selection predicates including the join of inner and outer relation(s)

presented in a separate visualization and modification window. This way, the user is

viewing the impact of the subquery in the context of a single data item from the outer

222

relation(s). If the user is more interested in the connections between inner and outer

relation(s), s/he might use the cross product of inner and outer relation(s) as a basis for

displaying the relevance factors. In this case, the user gets a better feedback on the

amount and distribution of distances for d_am_ items that only approximately fulfill the

join of inner and outer relation(s). However. since we are dealing with the cross prod-

uct, the totality of data items that are considered is much larger and the percentage that

can be displayed is correspondingly lower.

Note, that in most cases where negations are used (negated conditions, NOT IN,

NOT EXISTS etc.), no distance values may be obtained and hence no coloring is pos-

sible. Exceptions are negated comparison operators [not (al op a2) with op ~ { >, <, >_.,

<}] where the comparison operator may be inverted. The problem of not having distin-

guishable values in case of negations is similar to the problem of negations in logic

programming.

3.4 Visual Support for Interoperating Multiple Independent Databases

In this section, we will ~ve a brief overview of some ideas to use our visualization

technique to perform data mining on data that is stored in multiple independent data-

bases. Many of the problems arising in this context are related to schema enrichment,

transformation and resolution as well as query, decomposition, translation and optimi-

zation. In our papers [KKM 93a-b, KKM 94], we propose algorithms to solve part of

these problems for relational and object-oriented databases. Our algorithms and most

other algorithms proposed in this context only use techniques that work at the schema

or query level but do not consider the data instances. Many problems, however, such as

finding corresponding or conflicting data items, can only be solved by comparing the

data instances of the different databases and we believe that our visualization tech-

nique may be helpful to solve such problems. In addition to using our visualization

technique for joining relations from multiple independent databases which can be per-

formed in the same way as multiple table joins within one database (c.f. section 3.3),

our technique may be used to identify similar or related data, to discover relationships

between tables from multiple databases, to find relations representing the same data

items, to find conflicting or incorrect data (typing errors, wrong data entries, lost

updates) and so on. Similar patterns in the visualizations, for example, which may eas-

ily be identified provide hints for relating sets of data items or even whole relations.

Special distance functions may be defined to find related data items in multiple data-

bases (e.g. by mapping the keys of different databases). Approximate joins between

relations from different databases may help to find out whether the relations contain

similar or related data. Specific differences in the visualizations of two relationsmay

provide hints for conflicting data, and single exceptional data items may help to find

incorrect data instances. Up to this point, we did not have a change to extend the

VisDB system to be able to evaluate the mentioned ideas but we believe that visualiza-

tion technology in general and our visualization technique in particular will be of great

223

help in querying, analyzing and comparing large amounts of data as it is required in

interoperating multiple independent databases.

4. Extending Existing Database Systems

Our query and visualization interface is designed to work on top of commercially

available relational database systems. We are focusing on the relational data model

since it is widely used especially to handle large amounts of flat data. A similar query

interface, however, may be built to query databases with different data models and

query languages. In the following, we describe the problems in interfacing with rela-

tional database systems and present ideas on how to realize an on-line interface that is

fast enough to directly work on the data stored in the database system.

4.1 Problems in Interfacing with Relational Database Systems

The most important drawback of currently available relational systems is that they do

not provide the performance needed to support a query and visualization interface like

ours. Most systems are optimized to support high transaction rates but do not ade-

quately support the retrieval and transfer of large continuous ranges of data items. In

particular, queries with range conditions on multiple attributes require a fast multidi-

mensional search which is not adequately supported in current systems. Another prob-

lem is the poor support for queries that are changed incrementally by the user. In

current systems, each query is processed separately and, for a sequence of similar que-

ries having only minor differences, there is no way to incrementally retrieve the

changes of the resulting data. For our query and visualization interface, however, an

adequate support of incremental queries is crucial to allow interactive querying of the

database guided by visual feedback.

One additional problem in accessing the database with complex queries is that we

need an independent result for each selection predicate or subquery. This is necessary

to display the separate windows corresponding to the different parts of the query. To

get the necessary information, we either have to issue one query for each window or

get the necessary information automatically while the database system is processing

the query. For performance reasons, the first alternative is out of the question since it

requires multiple scans of the data; the second alternative is not supported by today's

database systems.

4.2 Improving the Performance in Interfacing with the Database System

Since the performance of retrieving data from relational systems is by far too poor to

be useful for our system, the current prototype used to evaluate our ideas does not

interface directly to a database system. We think that currently the only way to achieve

a dynamic visualization of the results that is fast enough for interactively changing

queries is to keep the relevant part of the database or at least their distance values in

main memory. Keeping data in main memory without re-querying the database means

working with a possibly non-actual version of the database. This however implies that

224

after slightly changing the query, the visualization may not be completely correct

because some data items in the database might have changed after retrieving the data

from the database. For most applications, this is not a problem since we are dealing

with very large databases that are changing only gradually and, since we are not pre-

senting the data items themselves but only their relevance factors, minor changes of the

data have almost no impact on the visualization.

Another important restriction of keeping the data in main memory is the limitation of

the amount of data that can be handled. This is a serious restriction since we are dealing

with very large databases with millions of data items. Even for simple datatypes with

only 4 bytes per data item about 5 megabytes of main memory, are needed to store the

about 1.3 million data items that may be displayed on the screen at one moment. If we

think of the database as being at least 100 times the amount of data that is retrieved as the

result for a query, we would need about 500 megabytes to keep the data in main memory.

For dataty, pes such as strings that require more bytes per data item, there is no possibility

to keep the data in main memory. Therefore. for large databases it will be necessary, to

directly interface to the secondary storage based database system that additionally guar-

antees consistency, intem-ity and recoverability in a multi-user environment.

Our idea to make interactive query modification possible, is to retrieve more data

than necessary in the beginning and to get only the additional data needed for the mod-

ified query later on. It will be important to find adequate heuristics that determine the

superset of the data which is retrieved in the beginning. Since a modification of the dif-

ferent selection predicates as well as the weighting factors may cause major changes of

the resulting data set, in general it cannot be avoided that additional data must be

retrieved from the database. In this case. our idea is to generate 'delta'-queries that

only retrieve the additionally needed data which, in most cases, can be done quickly.

Additionally, to support a fast (real time) access to the database, data structures that

support range queries on multiple attributes may be used. Multidimensional data struc-

tures such as R*-Tree [BKSS 90] or Buddy-Tree [SK 90] are important to find the data

fulfilling the query criteria without searching the whole database. With these ideas, we

support some limited kind of an incremental query processing strategy with one longer

processing time in the beginning and shorter processing times later on (when interac-

tiveness is important), hopefully providing access to the database that is fast enough to

allow interactive modifications of the queries.

5. Conclusions

Data mining in very large databases is one of the big challenges that researchers in the

database area are currently facing. The task is to efficiently find interesting data sets,

i.e. hot spots, clusters of similar data or correlations between different parameters. Our

approach to support the data mining process combines traditional database querying

and information retrieval techniques with new techniques of visualizing the data. Our

'VisDB' system can visually represent the largest amount of data that can be displayed

225

at one point of time on current display technology, providing valuable feedback in que-

rying the database and allowing the user to find results which, otherwise, would remain

hidden in the database. The interactivity of the system supports focusing on interesting

data providing a promising way to efficiently explore the database. Our approach is

independent from arty specific application area and requires no knowledge of the appli-

cation other than the distance and weighting functions. In contrast to traditional cluster

analysis or knowledge discovery algorithms, no complete analysis of the data resulting

in facts or rules in a high-level language is done by the system. The user with his/her

perceptual capabilities and general knowledge is responsible for doing the analysis and

interpretation. As a result, the performance of our approach is better than in most other

approaches to data mining, making it fast enough to be used for very large amounts of

data.

The visualizations presented in figures 2 - 5 are generated by a prototy, pe of our

'VisDB' system. The prototype has been implemented to evaluate the concepts and

design of our query and visualization interface. The implementation of some parts of

the interface, especially the interactive modification of queries and the visualization in

case of nested queries, is not yet completed. Furthermore, we are working on improv-

ing the performance in interfacing to traditional database systems. The ideas presented

in section 4 are our starting point, but additional ideas will be necessary to allow the

VisDB system to work fast enough even for midsize to large amounts of data.

In this paper, we have shown that for exploring large data sets the principle of

incremental query refinement guided by visual feedback can be very helpful for the

user to discover interesting data sets and to derive and verify hypotheses about them.

Our VisDB system, being built around this principle, provides a simple and elegant but

remarkably powerful way of supporting data mining in very. large databases.

References

[ABN 92]

[Bed 90]

[BKSS 90]

[Cha 90]

[DE 821

[FB 901

Anwar T. M., Beck H. W., Navathe S. B.: 'Knowledge Mining by Imprecise Que-

rying: A Classification-Based Approach', Proc. 8th Int. Conf. on Data Engineer-

ing, Tempe, AZ, 1992, pp. 622-630.

Beddow J.: 'Shape Coding of Multidimensional Data on a Mircocomputer Dis-

play', Visualization'90, San Francisco, CA. 1990, pp. 238-246.

Beckmarm N., Kriegel H.-P., Schneider R.. Seeger B.: 'The R *-Tree: An Efficient

and Robust Access Method for Points and Rectangles ', Proc. ACM SIGMOD Int.

Conf. on Management of Data, Atlantic City, NJ, 1990. pp. 322-331.

Chaudhuri S.: 'Generalization and a Framework for Query Modification ', Proc.

6th Int. Conf. on Data Engineering, Los Angeles, CA, 1990, pp. 138-145.

Dunn G., Everitt B.: 'An Introduction to Mathematical Taxonomy', Cambridge

University Press, Cambridge, MA, 1982.

Feiner S., Beshers C.: 'Visualizing n-Dimensional Virtual Worlds with n-Vision',

Computer Graphics, Vol. 24, No. 2. 1990, pp. 37-38.

226

[FM 91] Frei H. E, Meienberg S.: 'Evaluating Weighted Search Terms as Boolean Que-

ries', Proc. GI/GMD-Workshop, Darmstadt 1991, in: Informatik-Fachberichte,

Vol. 289, 1991, pp. 11-22.

[FPM 91] Frawley W. J., Piatetsky-Shapiro G., Matheus C. J.: 'Knowledge DiscoveD' in

Databases: An Overview', in: Knowledge Discovery in Databases, AAAI Press,

Menlo Park, CA, 1991.

[FS 91] Frei H. P., Sch~iuble E: 'Determining the Effectiveness of RetrievalAlgorithms',

Information Processing & Management, Vol. 27, No. 2, 1991.

[GPP 90] Geiger D., Paz A., Pearl J.: 'Learning Causal Trees from Dependence Informa-

tion', Proc. 8th National Conf. on Artificial Intelligence, 1990. pp: 771-776.

[GSSK 87] Glymour C., Scheines R., Spirtes E, KeLly K.: 'Discovering Causal Structure',

Academic Press, San Diego, CA, 1987.

[I-K) 80] Hall E A., Dowling G. R.: 'Approximate String Matching ', Proc. 6th Annual Int.

SIGIR Conf., in: SIGIR, Vol. 17. No. 4, 1983. pp. 130.

[HHNT 86]HoUand J. H., Holyoak K. J.. Nisbett R. E., Thagard E R.: 'Induction: Processes

of Inference, Learning, and Discover), ', ~ Press, Cambridge, MA, 1986.

[Hub 85] Huber E J.: 'Projection Pursuit'. The Annals of Statistics, Vol. 13, No. 2. 1985,

pp. 435-474.

lID 90] Inselberg A., Dimsdale B.: 'Parallel Coordinates: A Tool for Visualizing Multi-

Dimensional Geometry', Visualization'90. San Francisco, CA. 1990,

pp. 361-370.

[ISO 92] ISOfIEC: 'Database Language SQL', ISO/IEC 9075:1992 (German Standard-

ization: DIN 66315).

[JKL 77] Joshi A. K., Kaplan S. J., Lee R. M.: 'Approximate Responses from a Data Base

Query System: Applications of lnferencing in Natural Language', Proc. 5th Int.

Joint Conf. on Artificial Intetli gence (IJCA1], Boston, MA, 1977, pp. 21 I-212.

[Kap 82] Kaplan S. J.: 'Cooperative Responses from a Portable Natural Language Query.

System', Artificial Intelligence. Vol. 19, 1982. pp. 165-187.

[KKM 93a] Keim D. A., Kriegel H.-E, Miethsam A.: 'Integration of Relational Databases in

a Multidatabase System based on Schema Enrichment', Proc. 3rd Int. Workshop

on Interoperability in Multidatabase Systems (RIDE-IMS), Vienna. Austria~

1993, pp. 96-104.

[KK.M 93b]Keim D. A., K.riegel H.-P., Miethsam A.: 'Object-Oriented Querying of Existing

Relational Databases', Proc. 4th Int. Conf. on Database and Expert Systems

Applications (DEXA), Prague. Czech Republic, 1993, in: Lecture Notes in Com-

puter Science, Vol. 720, Springer, 1993, pp. 325-336.

[KKM 94] Keim D. A., Kriegel H.-P., Mietlasam A.: 'Quer)' Translation Supporting the

Migration of Legacy Databases into Cooperative Information Systems', Proc.

Int. Conf. on Cooperative Information Systems, Toronto, Canada, 1994.

[KKS 93] Keim D. A, K.,-iegel H.-P., Seidl T.: 'Visual Feedback in Querying Large Data-

bases', Proc. Visualization'93, San Jose, CA, 1993, pp. 158-165.

[KL 92] Keim D. A., Lure V.: 'Visual Que~. Specification in a Multimedia Database Sys-

tem', Proc. Visualization'92, Boston. MA. 1993, pp. 194-201.

227

[LW~V 90] LeBlanc J,, Ward M. O., Wittels N.: 'Exploring N-Dimensional Databases',

Visualization'90, San Francisco. CA. 1990, pp. 230-239.

[MGTS 90] Mihalisin T., Gawlinski E., Timlin J,. Schwendler J.: 'Visualizing Scalar Field on

an N-dimensional Lattice', Visualization'90, San Francisco, CA, 1990,

pp. 255-262.

[Mot 86] Morro A.: 'BAROQUE: A Browser for Relational Databases', ACM Trans. on

Office Information Systems, Voi. 4. No. 2, 1983, pp. 164-181.

[Mot 90] Motro A.: 'FLEX: A Tolerant and Cooperative User Interface to Databases',

IEEE Trans. on Knowledge and Data Engineering, Vol. 2, No. 2, 1990,

pp. 231-246.

[MZ 92] Marchak F., Zulager D.: 'The Effectiveness of Dynamic Graphics in Revealing

Structure in Multivariate Data ', Behavior. Research Methods, Instruments and

Computers, Vol. 24, No. 2, 1992. pp. 253-257.

[NMK 81] Noreault T., McGill M., Koll M. B.: 'A Performance Evaluation of Similarity

Measures, Document Term Weighting Schemes and Representations in a Boolean

Environment', in: Information Retrieval Research. Butterworths, London. 1981.

[PC 93] Parsaye K., ChigneI1 M.: 'Intelligent Database Tools & Applications', John

Wiley & Sons. New York, 1993.

[Qui 86] Quirdan J. R.: 'Induction of Decision Trees', in: Machine Learning, Vol. I, No. I,

1986, pp. 81-106.

[RM 86] Rummelhart D. E., McClelland J. L.: 'Parallel Distributed Processing', MIT

Press, Cambridge. MA. 1986.

[Sal 88] Salton G.: 'A Simple Blueprintfor Automatic Boolean Query Processing ', Infor-

mation Processing & Management. Vol. 24. No. 3. 1988, pp. 269-280.

[SB 88] Salton G., Buckley C.: 'Term-Weighting Approaches in Automatic Text

Retrieval', Information Processing & Management. Vol. 24, No. 5. 1988,

pp. 513-523.

[SBG 90] Smith S., Bergeron D.. Grinstein G.: 'Stereophonic and Surface Sound Genera-

tionfor Exploratory. Data Analysis '. Proc. Conf. Special Interest Group in Com-

puter and Human Interaction (SIGCH13, 1990. pp. 125-131.

[SK 90] Seeger B., Kriegel H.-P.: 'The Buddy Tree: An Efficient and Robust Access

Method for Spatial Databases', Proc. 16th Int. Conf. on Very Large Data Bases,

Brisbane, Australia, 1990, pp. 590-601.

[SSU 90] Silberschatz A., Stonebraker M., Ullman J. D.: 'Database Systems: Achieve-

ments and Opportunities', Technical Report. No. TR-90-22, Dept. of Computer

Sciences, University of Texas at Austin, 1990.

[TC 90] Trimble J. H., Chappell D.: 'A Visual Introduction to SQL', John Wiley & Sons,

New York, 1990.

[Tre 92] Treirtish L. A., Butler D. M., Senay H., Grinstein G. G., Bryson S. T.: 'Grand

Challenge Problems in Visualization Software'. Proc. Visualization'92, Boston,

MA, 1992, pp. 366-371.

[Zlo 77] Zloof M. M. 'Query-By-Example: A Data Base Language', IBM Systems Jour-

nal, Vol. 4, 1977, pp. 324-343.

228

Fig. 1. Query Specification Window

Fig. 2. Query Visualization and Modification Window

229

Fig. 3. Visualization of the 'OR'-Part of the Query

Fig. 4. Query Example 2 Fig. 5. Query Example 3

