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Abstract. In this paper, we present ideas how visualization technology can be used 

to improve the difficult process of querying very large databases. With our VisDB 

system, we try to provide visual support not only for the query specification pro- 

cess. but also for evaluating query results and. thereafter, refining the query accord- 

inky. The main idea of our system is to represent as many data items as possible 

by the pixels of the display device. By arran~ng and coloring the pixels according 

to the relevance for the query, the user gets a visual impression of the resulting data 

set and of its relevance for the query.. Using an interactive query interface, the user 

may change the query dynamically and receives immediate feedback by the visual 

representation of the resulting data set. By using multiple windows for different 

parts of the query, the user gets visual feedback for each part of the query and, 

therefore, may easier understand the overall result. To support complex queries, 

we introduce the notion of 'approximate joins' which allow the user to find dam 

items that only approximately fulfill join conditions. We also present ideas how 

our technique may be extended to support the interoperation of heterogeneous da- 

tabases. Finally, we discuss the performance problems that are caused by interfac- 

ing to existing database systems and present ideas to solve these problems by using 

data structures supporting a multidimensional search of the database. 

Ke.vwords: Visualizing Large Data Sets. Visualizing Multidimensional Multi- 

variate Data, Data Mining, Visual Query Systems. Visual Relevance 

Feedback. Interfaces to Database Systems 

1. Introduction 

The need for database system support visualization systems has been widely recog- 

nized and has been a main focus of  two previous workshops which were held in con- 

junction with the SIGGRAPH '90 and Visualization '91 conferences. The main 

question that has been dealt with is how database technology can adequately support 

visualization systems. In this context, researchers are working on extending current 

object-oriented database management systems, designing adequate database schemas 

and formats that allow storing and accessing the large amounts of data which are 

needed by visualization systems. The question of  database support for visualization, 

First publ. in: Database issues for data visualization : proceedings / IEEE 
Visualization '93 Workshop, San Jose, California, USA, October 26, 1993. - Berlin 

[u.a.] : Springer, 1994. - pp. 210-229. - ( Lecture Notes in Computer Science ; 871). - 
ISBN 3-540-58519-2

Konstanzer Online-Publikations-System (KOPS) 
URN: http://nbn-resolving.de/urn:nbn:de:bsz:352-173235

http://www.springer.com/computer/lncs?SGWID=0-164-0-0-0
http://nbn-resolving.de/urn:nbn:de:bsz:352-173235


211 

however, is only one side of the coin; the other side is visual support for databases. In 

this paper, we take up the question, how to visually support database users in accessing, 

analyzing and understanding the growing amount of data that is stored in the computer. 

The progress made in hardware technology allows today's computer systems to store 

very Im'gc amounts of data. The available storage space is easily filled with data that is 

often automatically recorded via sensors and monitoring systems. Today, even simple 

transactions of every day life, such as paying by credit card or using the telephone, arc 

typically recorded by using computers. Even larger amounts of data are generated by 

automated test seres in physics, chemistry or medicine and satellite observation systems 

are expected to collect one tcrabytc of data every, day in the near future [FPM 91 ]. The 

data of all areas mentioned so far is collected because people believe that it is a potential 

source of valuable information providing a competitive advantage (at some point). Quc- 

rying and analyzing the databases to uncover the valuable information hidden in them, 

however, is a difficult task. Traditional database query, languages such as SQL [ISO 92] 

allow people to query the databases, but finding the data a person is interested in is often 

a problem. Even experienced database users may have difficulties to find the interesting 

hot spots. Since, in general, the user does not exactly know the data and its distribution, 

many queries may be needed to find the interesting data sets. The result for most queries 

will contain either less data than expected, sometimes even no answers, so-called 

'NULL' results, or more data than the user is able to deal with. With today's database sys- 

tems and their query tools, it is only possible to view quite small portions of the data. If 

the data is displayed textually, the amount of data that can be displayed is in the range of 

some one hundred data items but this is like a drop in the ocean when dealing with mil- 

lions of data items. Having no possibility to adequately query and view the large amounts 

of data that have been collected because of their potential usefulness, the data becomes 

useless and the database becomes a data 'dump'. 

The need for supporting the process of querying and analyzing databases has been 

widely recognized and was even ranked one of the most important topics of database 

research for the 90s [SSU 90]. The US government, for example, sponsors large 

projects, such as the Sequoia 2000 project, to develop advanced data analysis tech- 

niques for very large databases. Many companies also recogmzed the potential of ana- 

lyzing their databases. Banks and retail stores, for example, analyze their transaction 

records to understand customer habits better and thus, tailor their marketing promo- 

tions accordingly. Banks also analyze loan and credit history to improve their loan 

approval policies. Over the last several years, many tools and algorithms for data anal- 

ysis have been developed. It seems, however, that advanced techniques for data analy- 

sis are not yet mature - at least for the flood of data we are facing today. Since, on the 

other hand, the technology for generating, collecting and storing data is available, the 

gap between the amount of data that has to be analyzed and the amount of data that can 

be analyzed is growing. 

VisuaLization technology seems to provide important potentials to improve the pro- 

cess of querying, analyzing and understanding the data. With visualization techniques, 
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larger amounts of  data can be presented at the same time on the screen, colors allow the 

user to instantly recognize similarities or differences of thousands of data items, the 

data items may be arranged to express some specific relationships and so on. To our 

knowledge, up to this point visualization techniques are only used in databases in the 

rare cases where the data has some inherent two- or three-dimensional semantics. In 

geographic databases, for example, 2D visualizations are used to adequately support 

spatial queries and basically all Geographic Information Systems (GIS) provide such 

visual representations of the data. In most application areas, however, the data does not 

lend itself to an easy visualization and, therefore, in most cases no visual support for 

querying the database is provided. We believe that in dealing with very. large amounts 

of data, visual support allowing database users to profit from the progress made in visu- 

alization hard- and software, is essential to support the process of exploring the data. 

Most of the data collected in the past is stored in relational database management 

systems. In particular, large (unstructured) data sets are usually stored in relational sys- 

tems. However, for visualization purposes relational systems are not well suited, and 

often there is no other way to access the data than to completely extract the whole data- 

base. There are many reasons for using relational systems instead of better suited sys- 

tems such as object-oriented database management systems. One of them is the 

proliferation of relational systems. Another reason is, as recent studies show. that 

object-oriented database technology is not yet mature for really large amounts of data. 

In the context of this paper, we focus on available databases and therefore, we mainly 

refer to the relational data model. However, most of the ideas that will be presented in 

this paper also work in conjunction with object-oriented or other database systems. 

The rest of the paper is organized as follows: Section 2 elaborates on the tasks that 

are important to querying large databases. The term 'data mining' is introduced and 

discussed with respect to related areas of research. Section 3 ~ves an overview of our 

ideas to visually support the querying of large databases and describes the query, spec- 

ification and visualization interface of the VisDB system. In section 4. some of the 

problems in interfacing with (traditional) database systems are described and potential 

solutions are discussed. Section 5 summarizes our approach and points out some of the 

open problems for future work. 

2. Data Mining 

The process of searching and analyzing large amounts of data is also called 'data min- 

ing'. The large collections of data are the potential lodes of valuable information but. 

like in real mining, the search and extraction can be a difficult and exhaustive process. 

Therefore, for the mining to he successful, adequate and efficient mining tools are essen- 

tial. In some sense, data mining is like the work of radiologists. It is like scanning the 

database to identify phenomena that need to be looked at, showing the regular structure 

of the data but also helping to find anomalies. Before we describe the differences of data 

mining to related research areas, we will first try to define the term 'data mining'. 
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2.1 Def'mifion of  Data Mining 

'Data Mining' can be defined as the (non-trivial) process of searching and analyzing 

m 

data, in particular to find implicit but potentially useful information. Let D = k.) D i 

i = l  

with D i = {d 1 ..... dni } be the data set to be analyzed. Note that the D i do not need to be 

stored in the same database management system. The process of data mining can be 

described as the process of finding a subset D' of D and hypotheses H U (D', C) about 

D'  that a user U considers useful in an application context C. The hypothesis may 

describe properties of the data set D',  it may identify relationships between subsets of 

D' or it may be a combination of both. Our definition can be further formalized, e.g. by 

defining a hypothesis description language, a context description formalism and so on. 

The user and his/her notion of 'usefulness', however, can hardly be formalized since 

'usefulness' not only depends on the chan__oLng knowledge of the user and the applica- 

tion domain, but it also includes some notion of creativity, and users may not be able to 

define their usefulness criteria. On the other hand. if a data mining tool helps the user 

to find useful D'  and to find and verify, hypotheses, then it may not be important to 

have the hypothesis, the context and so on formally specified. All these aspects are 

present in the mind of the user who will also be able to express and communicate his/ 

her ideas towards other humans. 

2.2 Related Research Areas 

Our definition of data mining is a quite broad definition and relates to a wide range of 

other research areas including statistics (data analysis, cluster analysis), artificial intel- 

ligence (knowledge discovery, machine learning), database interfaces (data browsing, 

cooperative database interfaces) and information retrieval. In the following, we give a 

brief overview of these areas. 

Simple statistical parameters such as average, variance or correlation coefficients 

only allow special kinds of hypotheses, namely those with D' = D or D' = D i in the 

case where D is partitioned into relations D 1 ..... D m. More complex statistical meth- 

ods such as multidimensional cluster analysis and mathematical taxonomy [DE 82] try 

to find hypotheses about real subsets of the database ( D' c D with ID'! ,< IDI and 

ID'I sufficiently large ). An exhaustive cluster analysis of multidimensional data would 

require checking of relationships between all combinations of dimensions for all sub- 

sets of data items which is computationally intractable for large data sets. Therefore, 

most cluster analysis algorithms use some kind of heuristics to reduce the search space 

(e.g. [Hub 85, GSSK 87, GPP 90]). Still. for really large databases with millions of 

data items, cluster analysis is not feasible without human guidance. AdditionaUy, sta- 

tistical methods are not suited for nominal and structured data and often lead to results 

that are difficult to interpret. Furthermore, statistical methods do not help to find single 

exceptional data, so-called hot spots. In our context, we talk about hot spots if 

D' c D and tD'I = 1 or sufficiently small when compared to IDI. 
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In artificial intelligence, researchers are working in related fields of knowledge dis- 

covery and machine learning which can also be considered to be data mining. Among 

the AI techniques used in data mining are inverted expert system approaches, probabi- 

listic theories, bayesian statistics, neural networks and genetic algorithms. In contrast 

to our approach, in knowledge discovery the hypotheses are usually rules or facts 

which are formally specified in some high-level language [FPM 91 ]. In some cases, the 

knowledge is even not made available to the user to support hypothesis finding since it 

is extracted from samples, either unsupervised or supervised by experts and directly 

used for decision making in similar cases (well-known examples are [Qui 86. RM 86, 

HHNT 86]). 

Another area related to data mining is database query interfaces. The ability, to 

extract data satisfying a common condition is like data mining in its ability to produce 

interesting and useful hypotheses. Traditional query interfaces, however, do not help 

the user in fnding interesting data. The usefulness of the results largely depends on the 

user's a priori knowledge and intuition. In many cases, however, it is like the search of 

a needle in a haystack. Many approaches have been made to improve the database 

query interface. One approach is graphical database interfaces that allow the user to 

browse the data (e.g. FLEX [Mot 90] or BAROQUE [Mot 86]). Another approach is 

cooperative database interfaces [Kap 82, ABN 92] that try to give 'approximate 

answers' in cases where the query does not provide a satisfactory answer. Such sys- 

tems use techniques like query generalization [Cha 90], that is, dropping or relaxing a 

selection predicate in cases where the original query fails, and statistical approxima- 

tion or intensional responses instead of full enumeration in the cases of large results 

(key ideas are already presented in [JKL 77] for the first time). 

In the area of information retrieval, a lot of research has been done to improve 

recall and precision in querying databases of unstructured data such as (full) text. The 

search is usually supported by some kind of 'descriptor' that may be extracted auto- 

matically or assigned by the user. In this context, distance functions for text, strings or 

descriptors [I-ID 80], ranking functions [NMK 81, FM 91] and weighted queries 

[SB 88] have been examined. To improve the effectiveness of information retrieval 

systems, the notion of relevance feedback (using relevance assessments provided by 

the user) and approximate matching algorithms have been proposed [Sad 88. FS 91]. 

Although the work in information retrieval mainly focuses on (full) text databases, we 

believe that it is an essential prerequisite of our research. 

2.3 The Tasks Involved in Data Mining 

For querying and analyzing a database, first a query needs to be specified. In most 

database applications, query specification is restricted to predefined, possibly parame- 

terized queries which have been designed and implemented by the database designer. 

If the user wants to issue other queries than the predefined ones, usually an interactive 

interface for ad hoc queries is available. The queries, however, have to be expressed in 

specific database query languages such as SQL which represents a quasi-standard. The 
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SQL query language with its linear syntax was developed two decades ago and has not 

changed substantially since then. Major problems are that queries need to be issued in 

a one-by-one fashion providing no possibilities to slightly change a query, to express 

uncertain or vague queries and to intuitively specify complex queries. As we will show 

in the next section, visualization technology may help to improve the query specifica- 

tion process considerably. 

After issuing the query, the user gets the resulting data set fulfilling the ~ven query 

conditions. However, as already explained in the introduction, in many cases the result 

does not provide adequate feedback helping the user to find interesting hypotheses or 

to refine the query. This is true for very. large data sets consisting of multiple attributes 

with a fiat structure, e.g. data generated by automated test series (physics), periodical 

observations (weather) or statistical recordings (credit card payments). For large struc- 

tured data sets, it is even more difficult to find interesting hypotheses. In the relational 

data model, for example, related data is usually stored in multiple relations which need 

to be joined in order to find relationships between the data. In cases, where relations 

are joined using (foreign) keys which are specially designed for connecting multiple 

relations, the join can be executed efficiently providing exactly the desired tuple. In 

data mining, the goal is to find new relationships and, therefore, (foreign) keys do not 

provide any help. Often, such relationships are vague and thus, possibilities to express 

vague or approximate joins are needed. Additionally, it would be helpful, if the results 

of such joins provide feedback on the closeness in fulfilling the approximate join con- 

dition, which is also not provided by current database systems. In the next section, we 

will present our ideas to use visualization technology to provide better feedback for 

querying large flat (c.f section 3.2) as well as structured data sets (c.f section 3.3). 

If the data is stored in multiple independent databases, the task of finding interest- 

ing hypotheses about the data is even harder to solve. In addition to the problem of 

having different data models, query languages, database management systems and so 

on, the problems of incompatible structures, incompatible instances, inconsistencies, 

etc. have to be solved. Again, as we will describe in section 3.4, our visualization tech- 

nique may be helpful to solve some of the problems in dealing with multiple databases. 

At this point, we want to draw the reader's attention to a problem arising in per- 

forming data mining on large existing databases, namely the poor support by existing 

database management systems which are used to store the data. This problem is espe- 

ciaUy relevant when trying to visualize large amounts of multidimensional data. Cur- 

rent database management systems support neither incrementally changing nor 

uncertain queries. Furthermore, they do not adequately support range conditions on 

multiple attributes which require a fast multidimensional search of the database. We 

believe that existing database systems need to be extended to better support the 

requirements of data mining and visualization systems. In section 4, we will describe 

the mentioned problems in more detail and discuss potential solutions. 
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2.4 Key Characteristics of Data Mining Tools for Large Databases 

Before we describe our ideas to support data mining, in this subsection we briefly men- 

tion the characteristics of data mining tools that we consider to be the most important 

ones: interactiveness and efficiency. 

For data mining of really large databases to be successful in the near future, we 

believe that it is essential to make the human being part of the data analysis process. It 

will be important to combine the best features of humans and computers. The 

unmatchable intelligence, creativity and perceptual abilities of humans need to be sup- 

ported by computers, which are best suited to do searching and number crunching. A 

major research challenge is to find human-oriented forms of representing large 

amounts of information. In today's systems, the perceptual abilities of humans are only 

used to a very limited extent. Only a few systems use vision and sound to help the user 

in data analysis (see [SBG 90] for an example). In the future, data mining tools need to 

be built in a human-centered way supporting an effective interaction between the user 

and the system. 

A second important characteristic of data mining tools is efficiency. Efficiency is 

important for the algorithms to scale up well enough when dealing with very large data 

volumes. Although there is no universally affeed definition of 'efficient', it has been 

stated that algorithms whose computational requirements are of the same order as sort- 

ing [O(n logn)] or better can be considered eff• [FPM 91]. Given that hardware 

improvements will continue at the same rate as in the past. it is unlikely that algorithms 

with a complexity that is substantially h i~er  than O(n logn) will be useful in dealing 

with data volumes in the range of terabytes. 

3. Visual Support in Querying Databases 

The basic idea of our query and visualization interface is to present as many data items 

as possible at the same time on the screen with the number of data items being only 

limited by the number of pixels of the display. Our goal is to visualize the data in a way 

that the user gets visual feedback on the query and thus can easily explore the data- 

base, understand the influence of various query components and find out why slightly 

different queries have completely different results. In the following, we will give a 

brief overview of our VisDB system: query specification component (subsection 3.1), 

visualization of large flat data (subsection 3.2), visualization of complex data (subsec- 

tion 3.3) and ideas for extending the system to partially solve the problems that arise in 

dealing with multiple independent databases (subsection 3.4). 

3.1 Query Specification 

In exploring very large databases, an easy-to-use query interface for 'ad hoe' queries is 

important. Most of the currently available 'ad hoe' query interfaces, such as SQL, are 

not user friendly and, in particular, not suitable for data mining. Most of them only pro- 

vide line-driven, textual interfaces allowing queries to be issued in a one-by-one fashion 
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only. Furthermore, they do not allow interactively modifying queries nor do they ade- 

quately support the specification of complex queries. Our idea to solve these problems 

is to visually support the query specification process allowing even inexperienced users 

to retrieve data from the database without knowing a specific query language. In con- 

trast to most of today's database management systems where the user is forced to think 

in terms of the data model and the query language, with our system the user can interac- 

tively construct the query and, using the visual representation of the query provided by 

the system, the user can understand and modify the query more easily. 

The main ideas of our visual database query interface have been presented in 

[KL 92]. Although the visual query interface has been developed in the context of a 

multimedia database management system, it is generally useful for specifying SQL- 

like queries. Note, that the query specification interface is largely independent from the 

rest of the VisDB system. For the purpose of query specification, the user may also use 

traditional query languages such as SQL or other ~aphical user interfaces such as 

QBE [Zlo 77], Visual SQL [TC 90] or Iconic Query [PC 93] instead of our visual 

query specification interface. However, as we will see in subsection 3.3, our query. 

specification interface is especially useful in conjunction with our technique for visual- 

izing complex query results since it allows direct access to all parts of complex que- 

ries. 

To briefly explain the query specification process, let us go through an example that 

will be used in subsection 3.3 to demonstrate the visual feedback in case of complex 

queries. Assume a user of an environmental database with local weather parameters 

(temperature, humidity., direction and speed of the wind, solar radiation, precipitation, 

etc.) and air pollution values (CO, SO 2, NO 2, ozone, etc.) wants to find a correlation 

between temperature, solar radiation and humidity, on one hand and the ozone level on 

the other hand. According to his/her assumption that there is a correlation between the 

parameters with a time delay of two hours, the user may specify, the following query: 

'Select the temperature, solar radiation, humidit?.' and ozone level if 

at the same location the temperature is higher than 15~ or the solar 

radiation is higher than 600 wart/m 2 or the humidio' is lower than 

60% and between recording temperature and ozone there is a time 

difference of two hours.' 

In specifying this query, the user starts by selecting the tables needed for the query 

from the Tables window, namely Weather and Air-Pollution. As a result, all attributes 

of the Weather and the Air-Pollution table are displayed in separate windows. To spec- 

ify the projection, the user may then move the attributes Temperature, Solar-Radiation, 

Humidit3.' and Ozone into the Result List window. The next step is to specify the condi- 

tion. Assume, the user wants to start with the at-same-location part. By clicking to 

Cond in the Tool Box, s/he gets an empty condition box in the Query Representation 

window and by clicking to the connection 'Air-Pollution at-same-location Weather' 

the desired join condition may be specified. 'Connections' are joins which are defined 

and named by the database designer (or the user) prior to their actual use. Next, the 
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user may want to specify the 'OR'-part of the condition. For each of the three attributes 

Temperature, Solar-Radiation and Humidirs. ; the user selects Cond from the Tool Box, 

the attribute from the Weather table, the desired comparison operator and finally, s/he 

types in the corresponding value of the limit. Then, all three parts are selected and by 

clicking to 'OR' in the Tool Box, the boxes get 'OR'-connected. The last part that 

needs to be specified is the time related join condition. Since a join with the intended 

meaning is already predefined, the join may easily be specified by selecting Cond from 

Tool Box, 'Air-Pollution with-time-diff(rnin) Weather' from the Connections window 

and typing in the desired time value of 120 minutes. The last step is to combine the 

conditions into the final result. This is done by selecting all separate parts and by click- 

ing to the logical operator 'AND' from the Tool Box. The final result of the query spec- 

ification is shown in figure 1. The details of the query, specification interface are 

beyond the scope of this paper and are given in [KL 92]. 

3.2 Visual Feedback in Querying Large Flat Data Sets 

As indicated by our definition, we view data mining as an interactive hypotheses-gen- 

eration process. Our goal is to get the data to ask questions, rather than asking ques- 

tions to the data. In contrast to most other approaches to data mining (c.f. section 2.2), 

our idea is to use the phenomenal abilities of the human vision system which is able to 

analyze compact, to midsize amounts of data very efficiently and immediately recog- 

nizes patterns in images which would be very difficult (in some cases even impossible) 

and at least very time-consuming if done by the computer. The research challenge is to 

find adequate ways of visually presenting multidimensional data to support the user in 

analyzing and interpreting the data. 

Visualization of data which have some inherent two- or three-dimensional semantics 

has been done even before computers could be used for visualization, and since comput- 

ers have been used for this purpose, a lot of interesting and efficient visualization tech- 

niques have been developed by researchers working in the graphics field. Visualization of 

large amounts of arbitrary multidimensional data. however, is a relatively new research 

area. Researchers in the graphics/visualization area are currently exploring techniques in 

different application domains [Bed 90, FB 90, ID 90, LWW 90, MGTS 90, MZ 92]. In 

most of the approaches proposed so far, the number of data items that can be visualized 

on the screen at the same time is quite limited (in the range of 100 to 1,000 data items), but 

it is a declared goal of the visualization community, to push this limit [Tre 92], In dealing 

with databases consisting of tens of thousands to millions of data items, our goal is to 

visualize as many data items as possible at the same time to give the user some kind of 

feedback on the query. The obvious limit for any kind of visualization is the resolution of 

current displays which is in the order of one to three million pixels, e.g. in case of our 19 

inch displays with a resolution of 1,024 x 1,280 pixels it is about 1.3 million pixels. Our 

idea is to use each pixel of the screen to give the user a visual feedback on the query allow- 

ing him/her to easily focus on the desired data, understand the influence of various query 

components and find out why slightly different queries have completely different results. 
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The basic idea of our visualization technique for large fiat data scLs is described in 

[KKS 93]. In our approach, as a result for a query the user does not only get the data 

items fulfilling the query but also a number of data items that approximately fulfill the 

query. The approximate results are determined using distance functions for cach of the 

selection predicates which arc combined into the relevance factor. The distance func- 

tions are datatype- and application-dependent and must bc provided by the application. 

Examples of distance functions arc numerical difference (for metric types), distance 

matrices (for ordinal and nominal types), Icxicographical. character-wise, substring or 

phonetic difference (for strings) and so on. Having calculated the distances for each of 

the selection prcdicatcs, the distanccs arc combined into the rclcvancc factor. Impor- 

tant aspects such as normalizing and weighting thc diffcrcnt selection prcdicatcs, the 

formulas we use to calculate the relevance factors and thc heuristics used to reduce the 

number of data items that arc displayed arc dcscribcd in [K.KS 93]. The relevance fac- 

tors are then sortcd resulting in a one-dimensional distribution ranking the approxi- 

mate responses according to thcir relevance. The basic idea for visualizing the 

relevance factors is to map them to colors and represent each data item by several pix- 

cls colored according to the relevance of thc data item. The colored relevance factors 

arc displayed on the screcn with the highcst relevance factors (yellow) centcrcd in the 

middle of the window and the approximate answers with colors ran~ng from ~ecn 

over bluc and red to almost black rectangular spiral-shaped around this region 

(c.f. figures 2-5). To relate the visualization of the overall result to visualizations of the 

different sclcction predicates, we generate a separate window for each selection prcdi- 

catc of thc query. In these separate windows, we place thc pixcls for each data itcm at 

the same rclativc position as thc overall rcsult for thc data item in thc overall result 

window. The scparatc windows for each of thc selection predicates provide important 

additional feedback to thc user, e.g. on thc rcstrictivcncss of cach of the selcction prcd- 

icatcs and also on single exceptional data itcms. Aftcr having the visual feedback, the 

user may intcractively changc the query according to thc imprcssion from the visual- 

izcd results. Using highlighting of corresponding pixels in different windows or a pro- 

jcction of the visual rcpresentation to specific color ranges, the user may further 

cxplorc thc data helping him/her to relate the rclevance factors in the different win- 

dows. By bcing ablc to get thc attribute values corresponding to some specific color, 

thc user may bcttcr understand and interpret the visualizauons. According to the dis- 

coverics made during this process, the user may then incrementally change the query 

using sliders provided for each of the selcction attributes (c.f. figurcs 2-3). 

As already indicated in the previous section, our approach to data mining largely 

differs from the techniques used in statistics, artificial intclligence, database interfaces 

and information reu'icval. The most obvious differcncc is that wc are using visualiza- 

tion and coloration to support the data mining process. In our approach, wc try to ade- 

quately support thc excellent vision capabilities of humans whom wc believe to be the 

most'important factor in data mining. Additionally, our tcchniquc is fast enough to be 

uscd in very large databases. For simple queries and standard distance functions the 
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complexity, is O(n logn) with n being the number of data items. Obviously, query pro- 

cessing time is dominated by the time needed for sorting. Furthermore, our technique 

is completely application-independent, and. in contrast to most other approaches to 

data mining, with our approach it is possible to find single exceptional values which 

are difficult, maybe even impossible, to find with traditional cluster analysis or knowl- 

edge discovery methods. 

3.3 Visual Support  in Querying Large Structured Data Sets 

Up to this point, we have only considered the simplest types of queries, namely queries 

on flat data sets with all selection predicates being connected by the same Boolean oper- 

ator. In this subsection, we briefly describe how complex queries, i.e. queries with the 

selection predicates being arbitrarily connected (nested '.~u'q'D's and 'OR's), multiple 

table queries and some types of nested queries may be supported visually in our system. 

In dealing with complex conditions that consist of arbitrary Boolean expressions of 

selection predicates, in the first step the user gets only the visualization of the top level 

of selection predicates. In terms of the graphical representation of the query in the 

query representation window, it is the leftmost logical operator with the corresponding 

selection predicates. If one of the selection predicates itself consists of a Boolean 

expression, then the user may not understand how the visualization of that part is gen- 

erated since only one visualization with the overall result for that part is displayed. To 

be able to explore the impact of any query part, in the VlsDB system the user may get 

visualization and query modification windows for arbitrary, subparts at any level of the 

Boolean expression by simply double clicking the corresponding Boolean operator in 

the query, representation window. The query representation window is available to the 

user during the whole process of data mining to provide an overview of the actual 

query, reflecting all changes made by direct modifications and to allow access to all 

parts of the query. In general, the arrangement of data items in the upper left part of the 

visualization representing the overall result of the corresponding query part is the same 

arrangement as for the overall result of the whole query. However, the user may also 

examine the query part independendy and use an option to get the data items arranged 

according to the relevance factors calculated for the query, part only. In our example 

query (c.f. subsection 3,1), in the first step the visualization consists of four parts: one 

for the overall result of the query and three for the three parts connected by 'AND' (see 

figure 2). If the user wants to see visualizations for each of the selection predicates 

connected by 'OR', s/he might double click on the "OR'-box in the query representa- 

tion window and, as a result, s/he will get another query visualization and modification 

window for this subpart (see figure 3). 

Another type of complex queries are multi-table queries which, in general, involve 

some kind of join. The totality of data items that need to be considered in this case is 

the cross product of all tables involved. Our idea for visually suppor.ing multi-table 

queries is to consider all data items of the cross product that approximately fulfill the 

join condition. As for all other selection predicates, the user gets a separate window 
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with the data items of the cross product that fulfill the join condition being yellow and 

the others being colored according to their distance. In some cases, e.g. if the tables are 

connected by foreign keys which are designed to connect related data items, this may 

not be helpful since the distances on foreign keys may not have any semantics. In such 

cases, only those data items that fulfill the join condition should be considered and no 

visualization for the join condition needs to be generated. In most other cases, how- 

ever, it is quite helpful to consider data items that approximately fulfill join conditions. 

In our example from environmental science, for example, we have a time- and a loca- 

tion-related join condition both of which may well be considered as vague ones. Such 

approximative joins may even be crucial to find the desired results if, for example, the 

time interval for measuring the weather and air pollution parameters is different or if 

the weather and the air pollution measurement station are not at the same but at close- 

by locations. In these cases, join conditions requiring time or location equality, would 

provide only very few or even no results though they would be quite helpful. Again, 

the distance functions used to determine the distance of the join tuples are user and 

application dependent (c.f. section 3.2). For joins on numerical attributes, for example, 

the numerical difference between the considered data items from the two relations 

might be used as an approximation of the join condition to be fulfilled. In a similar 

way, the distance functions for non-equijoins (al < a2) or parametrized (non- 

equi)joins (al - a2 < c) may be determined. Special joins, e.g. to relate geog-raphical 

locations (c.f. example query), require more complex distance functions. In a different 

context, other distance functions may be helpful, e.g. if the user is only interested in 

one relation and in the number of join partners that each data item of this relation has 

with another relation, the user might use the inverse of that number as the distance. 

In the last part of this subsection, we briefly describe how our visualization tech- 

nique may support the user in dealing with nested queries. As an example, we describe 

the case of nested queries where the subquery is connected by using 'exists' or 'in'. In 

dealing with such types of queries, the user may choose the outer relation(s) to be the 

basis for displaying the relevance factors of the results. Again, the user will get a sepa- 

rate visualization part for each of the (top level) selection predicates. In the visualiza- 

tion part corresponding to the overall result of the subquery, the user gets yellow in 

case the subquery condition is fulfilled and otherwise the color corresponding to the 

distance of the data item most closely fulfilling the subquery condition. The data item 

most closely fulfilling the subquery condition can be determined by the minimum dis- 

tance in performing an approximate join of the inner and the outer relation(s). Using 

this single value to be displayed for the whole subquery, the user gets no feedback on 

the distribution of distances for the approximative join and on the other selection pred- 

icates that may be involved in the subquery. For this reason, we provide the possibility 

to select one single data item in the visualization window and to get the complete sub- 

query with all its selection predicates including the join of inner and outer relation(s) 

presented in a separate visualization and modification window. This way, the user is 

viewing the impact of the subquery in the context of a single data item from the outer 
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relation(s). If the user is more interested in the connections between inner and outer 

relation(s), s/he might use the cross product of inner and outer relation(s) as a basis for 

displaying the relevance factors. In this case, the user gets a better feedback on the 

amount and distribution of distances for d_am_ items that only approximately fulfill the 

join of inner and outer relation(s). However. since we are dealing with the cross prod- 

uct, the totality of data items that are considered is much larger and the percentage that 

can be displayed is correspondingly lower. 

Note, that in most cases where negations are used (negated conditions, NOT IN, 

NOT EXISTS etc.), no distance values may be obtained and hence no coloring is pos- 

sible. Exceptions are negated comparison operators [not (al  op a2) with op ~ { >, <, >_., 

<}] where the comparison operator may be inverted. The problem of not having distin- 

guishable values in case of negations is similar to the problem of negations in logic 

programming. 

3.4 Visual Support for Interoperating Multiple Independent Databases 

In this section, we will ~ve  a brief overview of some ideas to use our visualization 

technique to perform data mining on data that is stored in multiple independent data- 

bases. Many of the problems arising in this context are related to schema enrichment, 

transformation and resolution as well as query, decomposition, translation and optimi- 

zation. In our papers [KKM 93a-b, KKM 94], we propose algorithms to solve part of 

these problems for relational and object-oriented databases. Our algorithms and most 

other algorithms proposed in this context only use techniques that work at the schema 

or query level but do not consider the data instances. Many problems, however, such as 

finding corresponding or conflicting data items, can only be solved by comparing the 

data instances of the different databases and we believe that our visualization tech- 

nique may be helpful to solve such problems. In addition to using our visualization 

technique for joining relations from multiple independent databases which can be per- 

formed in the same way as multiple table joins within one database (c.f. section 3.3), 

our technique may be used to identify similar or related data, to discover relationships 

between tables from multiple databases, to find relations representing the same data 

items, to find conflicting or incorrect data (typing errors, wrong data entries, lost 

updates) and so on. Similar patterns in the visualizations, for example, which may eas- 

ily be identified provide hints for relating sets of data items or even whole relations. 

Special distance functions may be defined to find related data items in multiple data- 

bases (e.g. by mapping the keys of different databases). Approximate joins between 

relations from different databases may help to find out whether the relations contain 

similar or related data. Specific differences in the visualizations of two relationsmay 

provide hints for conflicting data, and single exceptional data items may help to find 

incorrect data instances. Up to this point, we did not have a change to extend the 

VisDB system to be able to evaluate the mentioned ideas but we believe that visualiza- 

tion technology in general and our visualization technique in particular will be of great 
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help in querying, analyzing and comparing large amounts of data as it is required in 

interoperating multiple independent databases. 

4. Extending Existing Database Systems 

Our query and visualization interface is designed to work on top of commercially 

available relational database systems. We are focusing on the relational data model 

since it is widely used especially to handle large amounts of flat data. A similar query 

interface, however, may be built to query databases with different data models and 

query languages. In the following, we describe the problems in interfacing with rela- 

tional database systems and present ideas on how to realize an on-line interface that is 

fast enough to directly work on the data stored in the database system. 

4.1 Problems in Interfacing with Relational Database Systems 

The most important drawback of currently available relational systems is that they do 

not provide the performance needed to support a query and visualization interface like 

ours. Most systems are optimized to support high transaction rates but do not ade- 

quately support the retrieval and transfer of large continuous ranges of data items. In 

particular, queries with range conditions on multiple attributes require a fast multidi- 

mensional search which is not adequately supported in current systems. Another prob- 

lem is the poor support for queries that are changed incrementally by the user. In 

current systems, each query is processed separately and, for a sequence of similar que- 

ries having only minor differences, there is no way to incrementally retrieve the 

changes of the resulting data. For our query and visualization interface, however, an 

adequate support of incremental queries is crucial to allow interactive querying of the 

database guided by visual feedback. 

One additional problem in accessing the database with complex queries is that we 

need an independent result for each selection predicate or subquery. This is necessary 

to display the separate windows corresponding to the different parts of the query. To 

get the necessary information, we either have to issue one query for each window or 

get the necessary information automatically while the database system is processing 

the query. For performance reasons, the first alternative is out of the question since it 

requires multiple scans of the data; the second alternative is not supported by today's 

database systems. 

4.2 Improving the Performance in Interfacing with the Database System 

Since the performance of retrieving data from relational systems is by far too poor to 

be useful for our system, the current prototype used to evaluate our ideas does not 

interface directly to a database system. We think that currently the only way to achieve 

a dynamic visualization of the results that is fast enough for interactively changing 

queries is to keep the relevant part of the database or at least their distance values in 

main memory. Keeping data in main memory without re-querying the database means 

working with a possibly non-actual version of the database. This however implies that 
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after slightly changing the query, the visualization may not be completely correct 

because some data items in the database might have changed after retrieving the data 

from the database. For most applications, this is not a problem since we are dealing 

with very large databases that are changing only gradually and, since we are not pre- 

senting the data items themselves but only their relevance factors, minor changes of the 

data have almost no impact on the visualization. 

Another important restriction of keeping the data in main memory is the limitation of 

the amount of data that can be handled. This is a serious restriction since we are dealing 

with very large databases with millions of data items. Even for simple datatypes with 

only 4 bytes per data item about 5 megabytes of main memory, are needed to store the 

about 1.3 million data items that may be displayed on the screen at one moment. If we 

think of the database as being at least 100 times the amount of data that is retrieved as the 

result for a query, we would need about 500 megabytes to keep the data in main memory. 

For dataty, pes such as strings that require more bytes per data item, there is no possibility 

to keep the data in main memory. Therefore. for large databases it will be necessary, to 

directly interface to the secondary storage based database system that additionally guar- 

antees consistency, intem-ity and recoverability in a multi-user environment. 

Our idea to make interactive query modification possible, is to retrieve more data 

than necessary in the beginning and to get only the additional data needed for the mod- 

ified query later on. It will be important to find adequate heuristics that determine the 

superset of the data which is retrieved in the beginning. Since a modification of the dif- 

ferent selection predicates as well as the weighting factors may cause major changes of 

the resulting data set, in general it cannot be avoided that additional data must be 

retrieved from the database. In this case. our idea is to generate 'delta'-queries that 

only retrieve the additionally needed data which, in most cases, can be done quickly. 

Additionally, to support a fast (real time) access to the database, data structures that 

support range queries on multiple attributes may be used. Multidimensional data struc- 

tures such as R*-Tree [BKSS 90] or Buddy-Tree [SK 90] are important to find the data 

fulfilling the query criteria without searching the whole database. With these ideas, we 

support some limited kind of an incremental query processing strategy with one longer 

processing time in the beginning and shorter processing times later on (when interac- 

tiveness is important), hopefully providing access to the database that is fast enough to 

allow interactive modifications of the queries. 

5. Conclusions 

Data mining in very large databases is one of the big challenges that researchers in the 

database area are currently facing. The task is to efficiently find interesting data sets, 

i.e. hot spots, clusters of similar data or correlations between different parameters. Our 

approach to support the data mining process combines traditional database querying 

and information retrieval techniques with new techniques of visualizing the data. Our 

'VisDB' system can visually represent the largest amount of data that can be displayed 
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at one point of time on current display technology, providing valuable feedback in que- 

rying the database and allowing the user to find results which, otherwise, would remain 

hidden in the database. The interactivity of the system supports focusing on interesting 

data providing a promising way to efficiently explore the database. Our approach is 

independent from arty specific application area and requires no knowledge of the appli- 

cation other than the distance and weighting functions. In contrast to traditional cluster 

analysis or knowledge discovery algorithms, no complete analysis of the data resulting 

in facts or rules in a high-level language is done by the system. The user with his/her 

perceptual capabilities and general knowledge is responsible for doing the analysis and 

interpretation. As a result, the performance of our approach is better than in most other 

approaches to data mining, making it fast enough to be used for very large amounts of 

data. 

The visualizations presented in figures 2 - 5 are generated by a prototy, pe of our 

'VisDB' system. The prototype has been implemented to evaluate the concepts and 

design of our query and visualization interface. The implementation of some parts of 

the interface, especially the interactive modification of queries and the visualization in 

case of nested queries, is not yet completed. Furthermore, we are working on improv- 

ing the performance in interfacing to traditional database systems. The ideas presented 

in section 4 are our starting point, but additional ideas will be necessary to allow the 

VisDB system to work fast enough even for midsize to large amounts of data. 

In this paper, we have shown that for exploring large data sets the principle of 

incremental query refinement guided by visual feedback can be very helpful for the 

user to discover interesting data sets and to derive and verify hypotheses about them. 

Our VisDB system, being built around this principle, provides a simple and elegant but 

remarkably powerful way of supporting data mining in very. large databases. 
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Fig. 1. Query Specification Window 

Fig. 2. Query Visualization and Modification Window 
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Fig. 3. Visualization of the 'OR'-Part  of the Query 

Fig. 4. Query Example 2 Fig. 5. Query Example 3 


