
Using VLIW Softcore Processors for Image

Processing Applications
Joost Hoozemans, Stephan Wong, Zaid Al-Ars

Delft University of Technology

Mekelweg 4, 2628 CD Delft, The Netherlands

Abstract—The ever-increasing complexity of advanced high-
resolution image processing applications requires innovative solu-
tions to ensure addressing this issue efficiently and cost effectively.
This paper discusses the utilization of reconfigurable general-
purpose softcore processors in image processing applications
such that hardware resources are efficiently utilized and at
the same time ensure high image processing performance for
the targeted application. Results show that the rVEX softcore
processor can achieve remarkably better performance compared
to the industry-standard Xilinx MicroBlaze (up to a factor of 3.2
times faster) on image processing applications.

I. INTRODUCTION

Whenever image/video processing is an integral function of

the end user product, the stringent performance and power con-

sumption requirements (that are hard to meet in software) are

often fulfilled by embedding the imaging/video functionality

as hardware accelerators implemented in FPGAs or as ASICs.

The main advantages of embedded accelerator implementa-

tions of image/video processing functions lie in computation

speed, high energy and area efficiency, etc. However, the

transition from pure software prototypes towards production-

grade FPGA or ASIC-based systems is associated with high

engineering and manufacturing cost. Moreover, hardware de-

velopment requires expensive toolsets and dedicated know-

how, which usually results in a relatively high per-unit cost

due to smaller production quantities and higher customization

overhead. As a result, the development cycles of hardware

approaches increasingly lag behind the demands of the fast-

paced markets.

In recent years, however, software-based approaches on

commodity hardware, notably on embedded graphics proces-

sors (GPUs) and multi-core CPUs, have increasingly gained

attention. Although GPUs seem like the most logical choice

to accelerate imaging applications [1], they have a number

of characteristics that cause them to fail requirements in

some cases. In these cases, FPGAs may be preferred. Firstly,

they draw considerable amounts of power. Secondly, some

product areas such as medical imaging systems (e.g., X-ray)

require the availability of system components over an extended

period of time (up to 15 years). However, in these areas

there are conflicting requirements such as a high degree of

maintainability, that are normally not compatible with FPGA

acceleration (changes to the software could lead to required

changes in the acceleration fabric which is tedious). Therefore,

it is highly desirable to have an acceleration fabric that is

more easily programmable than the reconfigurable logic itself.

Putnam et al. [2] shows the viability of using application-

tailored softcores to speed up datacenter applications. [3]

presents a softcore specifically designed to perform fast fourier

transforms at efficiency levels comparable to that of dedicated

FPGA circuits. A softcore-based environment benefits from

standardized hardware design and a pre-existing development

platform and toolchain that allows it to be programmed using

common programming languages. A single softcore will not

be able to achieve performance levels similar to dedicated

accelerators written in VHDL (or synthesized using high-level

synthesis). However, the total system performance for data-

intensive applications (such as image processing) will often be

bound by the available memory bandwidth (as is true for any

multicore system [4]). Moreover, the parallel nature of image

processing provides a high level of scalability for multicore

systems. This means that if the number of softcores that can

be placed on the FPGA is sufficiently high as to achieve “wire-

speed performance” (i.e., fully utilize the available bandwidth

to the FPGA), the application speedup of the softcore-based

system will be equal to an implementation that uses dedicated

FPGA accelerators but with reduced development effort and

increased maintainability.

In this paper, we propose to use the rVEX softcore based

on the VEX ISA for image processing applications (which

is one of the main application domains for this architecture)

considering the aforementioned scenario. Our rVEX softcore

implementation is design-time reconfigurable and run-time

parametrizable which allows it to adapt to varying require-

ments of applications. This has the promise of providing low

development cost and good maintainability as well as effi-

cient resource utilization to achieve efficient image processing

power. In this paper, we will show that the rVEX exhibits

good performance in the application domain compared to an

industry standard softcore (the Xilinx MicroBlaze).

The paper is organized as follows. Section II discusses

related work. Section III presents the rVEX platform including

the ISA, the toolchain and the softcore design. Section IV

discusses the applications used in the evaluation. Section

V presents the test setup and the measurement results, and

Section VI concludes the paper and discussed possible future

directions for research.

II. RELATED WORK

Spyder [5] appeared as the first softcore VLIW processor.

The provided toolchain was not complete and the processor

978-1-4673-7311-1/15/$31.00 ©2015 IEEE 1

was not run-time reconfigurable. An FPGA-based design of

a softcore VLIW processor based on the ISA of the Altera

NIOS-II soft processor is presented in [6]. The compilation

scheme consists of a Trimaran [7] as the frontend and the

extended NIOS-II as the back-end. Due to the licensed Altera

NIOS-II, this VLIW design is not very flexible and not open-

source. Additionally, the design is not run-time reconfigurable.

In [8], a modular design of a VLIW processor is reported.

Certain parameters of the processor architecture could be

altered in a modular fashion. In [9], the architecture and

micro-architecture of a customizable softcore VLIW processor

are presented. Additionally, tools are discussed to customize,

generate, and program this processor. The limitation is the

absence of a compiler. A VLIW processor with reconfigurable

instruction set is presented in [10]. In this case, a reconfig-

urable unit is coupled to a VLIW processor. The co-processor

can be configurable for any custom instruction. The rVEX is

different from this design in the sense that it does not couple a

reconfigurable co-processor. We can add a custom unit to the

data paths of our processor at design time and reconfigure the

issue slots at run-time. In [11], we present the rationale and the

design and implementation of an open-source softcore VLIW

processor. This processor is design-time parametrized and can

be configured to make its issue-width adjustable during run-

time [12][13].

III. THE rVEX PLATFORM

A. The VEX system: ISA and toolchain

The VEX stands for VLIW Example [14]. The VEX is

developed by Hewlett-Packard (HP) and STMicroelectronics.

The VEX instruction set architecture (ISA) is a 32-bit clustered

VLIW ISA that is scalable and customizable to individual

application domains. The VEX ISA is loosely modeled on

the ISA of HP/ST Lx (ST200) family of VLIW embedded

cores [14]. Based on trace scheduling, the VEX C compiler is

a parameterized ISO/C89 compiler. A flexible programmable

machine model determines the target architecture, which is

provided as input to the compiler. A VEX software toolchain

including the VEX C compiler and the VEX simulator is made

freely available by the Hewlett-Packard Laboratories [15].

B. The rVEX VLIW processor

The rVEX is a configurable (design-time) open-source

VLIW softcore processor [12]. The ISA is based on the VEX

ISA [15]. Different parameters of the rVEX processor, such

as the number and type of functional units (FUs), number of

multiported registers (size of register file), number and type

of accessible FUs per syllable, width of memory buses, and

different latencies can be changed at design time.

Figure 1 depicts the organization of a 32-bit, 4-issue rVEX

VLIW processor. The rVEX processor consists of fetch,

decode, execute, and writeback stages/units. Operations take

place in either the parallel Arithmetic logic unit (A) and

multiplier (M) units, or the branch (CTRL) or load/store

(MEM) units. All jump and branch operations are handled by

the CTRL unit, and all data memory load and store operations

are handled by the MEM unit. The different write targets could

Fig. 1: Design overview of a 4-issue instance of the rVEX

VLIW softcore processor.

be the general register (GR) file, branch register (BR) file, or

data memory. All operations normally have a delay of one

cycle, except for MEM and MUL operations which need an

extra cycle. The core contains forwarding logic to minimize

pipeline stalls. Additionally, the rVEX processor supports

reconfigurable operations, as the VEX compiler supports the

use of custom instructions via pragmas within an application

code. The instruction and data caches for the processor are

implemented with BRAMs (Block RAM resources on the

FPGA). The GRLIB SoC library [16] is used to connect the

processor core to off-chip DDR memory and peripherals via

an AMBA bus system. This setup allows us to use any IP

that is compatible with this bus, and to use existing tools to

connect to the board in order to load applications, start/stop

the core, etc. The GRLIB library also contains the framebuffer

used to visually inspect the result images.

The rVEX core can be configured at design time to be

dynamically (run-time) reconfigurable or not. When config-

ured to be dynamic, it can couple or decouple its datapaths

to either run in a single-core mode with a large issue-width,

or in a multi-core mode with smaller processors that can run

separate tasks or threads. Dynamic reconfigurability will result

in the flexibility to balance instruction-level parallelism (ILP)

for high performance on a single thread with thread-level

parallelism (TLP) for applications with low ILP but that can

benefit from utilizing multiple threads. This comes at a cost

of increased FPGA resource utilization. Partial reconfiguration

is not needed for this concept to work; the principle is

applicable also for ASIC implementation. This paper focuses

on the architecture and not the dynamic reconfigurability. The

applications used in this paper for evaluation do not exhibit

dynamic behavior (see IV) and as such are not suitable to study

these properties. Therefore, the processor core used in this

paper is a static (not run-time reconfigurable), 4-issue VLIW.

Using a higher issue width and/or dynamic reconfigurability

will result in increased resource utilization and possibly lower

operating frequency.

IV. IMAGE PROCESSING APPLICATIONS

To evaluate the suitability of our architecture for imag-

ing applications, we implemented two basic algorithms that

2

−1 −1 −1

−1 8 −1

−1 −1 −1

Fig. 2: Example of a convolution kernel that performs edge

detection [17].

are commonly found in the application domain: a greyscale

converter and a convolution filter with adaptable filter size.

Both applications can be used for varying image sizes and the

convolution filter can be configured to use different kernels,

each performing a different operation on the image. The

execution time is independent of the values used in the kernel.

The images are represented in memory as an array containing

a 32-bit word per pixel. This representation allows it to be

displayed directly using a framebuffer device on the FPGA to

facilitate visual inspection of the resulting images.

The greyscale converter is essentially a single loop per-

forming a single operation on every pixel. The convolution

filter performs a number of operations per pixel, depending

on the size of the kernel. Both applications are representative

for image processing steps in a medical imaging system. The

greyscale converter represents the step of assigning a color

value to the output of the sensor, depending on the precision of

its output (which is often higher than 8 bits). The convolution

filter can be used for a range of operations such as edge

detection and image sharpening.

Care has been taken to ensure that the measurements contain

as little overhead as possible. The programs do not contain

input/output inside the measured parts of the program. The

programs run without operating system and there are no

interrupts enabled in the system.

V. RESULTS AND DISCUSSION

We use the Xilinx ML605 board as evaluation platform. The

rVEX is synthesized at 75 MHz and the MicroBlaze was syn-

thesized using the platform studio base system wizard included

in the Xilinx ISE 13.4 toolset. The MicroBlaze was created

using the “maximum performance” setting of the wizard. The

system contains a core that is clocked at 150 MHz and an

AXI bus at 75 MHz (as are the default maximum settings).

The MicroBlaze contains a multiplication unit but no division

or floating point unit. Both cores contain 32 KiB of instruction

memory and 1 KiB of data memory. In both cases, the .text

section of the programs is small enough to fit in the instruction

cache. Using data cache sizes of more than 1 KiB did not result

in any performance increase for either processors. However, a

larger cache prevents the MicroBlaze from meeting its timing

at 150 MHz, which necessitates lower clock frequencies,

further reducing the MicroBlaze performance. Since the rVEX

runs at a lower frequency of 75 MHz, cache sizes can be

increased without further lowering the frequency. The 150

TABLE I: Synthesis results

MicroBlaze rVEX
% # %

Registers 17,477 5% 10,927 3%

LUTs 15,099 10% 18,900 12%

Slices 7376 19% 7506 19%

Fig. 3: Execution time for the greyscale conversion algorithm.

MHz frequency and 1 KiB data cache size were chosen to

keep the comparison between the two processors as fair as

possible. Both platforms use the off-chip DDR RAM to store

the program and data. Synthesis results can be seen in Table

I. The resource utilization of both platforms is comparable,

with the rVEX utilizing slightly more lookup tables (LUTs)

and the MicroBlaze utilizing more registers.

The same code is compiled for both cores, with pre-

processor macros selecting the timer and print functions, and

the memory locations of the image in/output according to

the location of the DDR RAM in each platform’s memory

map. For the rVEX, our VEX port of the Open64 compiler

is used with full optimization (-O). For the MicroBlaze, the

default GCC-based compiler is used that is included with

the Xilinx toolset. Full optimization was also enabled, but

for convolution it appeared that optimizing for size (-Os)

resulted in significantly better performance. Therefore, size

optimization was used when compiling the convolution code

for the MicroBlaze.

The resolutions used in these experiments include two

industry standards (VGA 640x480 and HD 1080p) as well

as 1024x1024, a resolution taken from the requirements of an

actual medical imaging system.

The execution of the rVEX is measured by resetting the exe-

cution cycle counter that is included in the platform before the

program enters the calculation section (thereby removing the

overhead of initialization code and printing startup messages

to the UART) and reading the number of cycles again when

execution has finished. The execution time of the MicroBlaze

is measured by starting a timer unit attached to the AXI bus

running at 75 MHz, reading its value before and after running

the calculations and printing the difference to the UART.

The results can be seen in Figures 3 - 5. For convolution,

the rVEX is 80% faster compared to the MicroBlaze for the

smallest input size and a factor 3.2 times faster for the largest

input size. For greyscale conversion, the rVEX is faster with

3

Fig. 4: Execution time for convolution of a 3x3 kernel.

factors of 2.3 to 3 times.

With the rVEX being a 4-issue processor at 75 MHz and the

MicroBlaze a single-issue processor at 150 MHz, the expected

difference in performance between the cores is a factor of

2. However, inspection of the assembly code shows that the

compiler uses loop unrolling to decrease branching delays and,

more importantly, fill the issue slots so the VLIW can fully

utilize all of its resources. As the processor is calculating

values for multiple adjacent pixels at the same time, it is able

to keep more input pixel values in registers and/or make use

of better cache locality compared to the MicroBlaze that needs

to reload input pixel values for every inner loop iteration. This

effect will continue to have impact as long as the number of

available registers is sufficient, as is shown by the growing

performance difference between the cores as the problem size

increases.

VI. CONCLUSIONS

In this paper, we have shown that the rVEX softcore pro-

cessor can achieve remarkably better performance compared

to the industry-standard Xilinx MicroBlaze (up to a factor of

3.2 times faster) on image processing applications. In order to

be able to use the rVEX as a competitive platform capable of

accelerating industrial grade image processing applications, a

number of improvements can be implemented. These improve-

ments are needed in the following of areas:

• How to efficiently stream data to and from the FPGA

• Designing a fast memory hierarchy on the FPGA or a

means to efficiently stream data between different cores

(each core might perform a certain step in the image

processing pipeline, or each core will have a certain part

of the image assigned and will perform all the steps)

• Investigating instruction-set extensions that can perform

or speed up common image processing operations

VII. ACKNOWLEDGMENT

This work was supported by the European Commission

in the context of the ARTEMIS project ALMARVI (project

#621439).

Fig. 5: Execution time for convolution of a 5x5 kernel.

REFERENCES

[1] L. Russo, E. Pedrino, E. Kato, and V. Roda, “Image convolution
processing: A GPU versus FPGA comparison,” in Programmable Logic

(SPL), 2012 VIII Southern Conference on, March 2012, pp. 1–6.
[2] A. Putnam, A. Caulfield, E. Chung, D. Chiou, K. Constantinides,

J. Demme, H. Esmaeilzadeh, J. Fowers, G. Gopal, J. Gray, M. Haselman,
S. Hauck, S. Heil, A. Hormati, J.-Y. Kim, S. Lanka, J. Larus, E. Peterson,
S. Pope, A. Smith, J. Thong, P. Xiao, and D. Burger, “A reconfigurable
fabric for accelerating large-scale datacenter services,” in Computer

Architecture (ISCA), 2014 ACM/IEEE 41st International Symposium on,
June 2014, pp. 13–24.

[3] P. Wang, J. McAllister, and Y. Wu, “Soft-core stream processing on
FPGA: An FFT case study,” in Acoustics, Speech and Signal Processing

(ICASSP), 2013 IEEE International Conference on, May 2013, pp.
2756–2760.

[4] S. Williams, A. Waterman, and D. Patterson, “Roofline: an insightful
visual performance model for multicore architectures,” Communications

of the ACM, vol. 52, no. 4, pp. 65–76, 2009.
[5] C. Iseli and E. Sanchez, “Spyder: A reconfigurable VLIW processor

using FPGAs,” in FPGAs for Custom Computing Machines, 1993.

Proceedings. IEEE Workshop on. IEEE, 1993, pp. 17–24.
[6] A. K. Jones, R. Hoare, D. Kusic, J. Fazekas, and J. Foster, “An

FPGA-based VLIW processor with custom hardware execution,” in
Proceedings of the 2005 ACM/SIGDA 13th international symposium on

Field-programmable gate arrays. ACM, 2005, pp. 107–117.
[7] http://www.trimaran.org.
[8] V. Brost, F. Yang, and M. Paindavoine, “A modular VLIW processor,” in

Circuits and Systems, 2007. ISCAS 2007. IEEE International Symposium

on. IEEE, 2007, pp. 3968–3971.
[9] M. A. Saghir, M. El-Majzoub, and P. Akl, “Customizing the datapath

and ISA of soft VLIW processors,” in High Performance Embedded

Architectures and Compilers. Springer, 2007, pp. 276–290.
[10] A. Lodi, M. Toma, F. Campi, A. Cappelli, R. Canegallo, and R. Guerri-

eri, “A VLIW processor with reconfigurable instruction set for embedded
applications,” Solid-State Circuits, IEEE Journal of, vol. 38, no. 11, pp.
1876–1886, 2003.

[11] S. Wong, T. van As, and G. Brown, “ρ-VEX: A Reconfigurable and
Extensible Softcore VLIW Processor,” in International Conference on

Field-Programmable Technology (ICFPT), December 2008.
[12] F. Anjam, M. Nadeem, and S. Wong, “Targeting code diversity with

run-time adjustable issue-slots in a chip multiprocessor,” in Design,

Automation Test in Europe Conference Exhibition (DATE), 2011, March
2011, pp. 1–6.

[13] ——, “A VLIW softcore processor with dynamically adjustable issue-
slots,” in Field-Programmable Technology (FPT), 2010 International

Conference on. IEEE, 2010, pp. 393–398.
[14] J. A. Fisher, P. Faraboschi, and C. Young, Embedded Computing: A

VLIW Approach to Architecture, Compilers, and Tools. 500 Sansome
Street, Suite 400, San Francisco, CA 94111: Morgan Kaufmann Pub-
lishers, 2005.

[15] The HP VEX toolchain, http://www.hpl.hp.com/downloads/vex/.
[16] http://www.gaisler.com/index.php/products/ipcores/soclibrary.
[17] Images created by Michael Plotke, licensed CC BY-SA 3.0.

For more information see https://en.wikipedia.org/w/index.php?title=
Kernel %28image processing%29&oldid=663700413.

4

http://www.trimaran.org
http://www.hpl.hp.com/downloads/vex/
http://www.gaisler.com/index.php/products/ipcores/soclibrary
https://en.wikipedia.org/w/index.php?title=Kernel_%28image_processing%29&oldid=663700413
https://en.wikipedia.org/w/index.php?title=Kernel_%28image_processing%29&oldid=663700413

	Introduction
	Related work
	The rVEX platform
	The VEX system: ISA and toolchain
	The rVEX VLIW processor

	Image processing applications
	Results and discussion
	Conclusions
	Acknowledgment
	References

