
Using XMPP for ad-hoc grid computing - an application example

using parallel ant colony optimisation

Gerhard Weis and Andrew Lewis

Abstract—XMPP (XML Messaging and Presence Protocol),
also known as Jabber, is a popular instant messaging protocol
that uses XML streams for communication. Due to it’s high ex-
tensibility, XMPP is very easy to adapt to other uses than instant
messaging. Furthermore, announcing of presence state makes it
ideal for highly volatile environments. This paper outlines the use
of XMPP for a grid-like computation environment. The biggest
advantage of this setup was that available computing resources,
such as laboratory computers, could be connected easily and
used similarly to a grid. The application example described in
this paper uses Ant Colony System (ACS) optimisation and the
NEC-tool to optimise RFID antennas, involving computing the
efficiency and resonant frequency of a large number of different
antenna structures.

I. INTRODUCTION

XMPP [9], [10] forms a peer to peer (P2P) network, and is
widely used for instant messaging. The architecture of XMPP
requires that each peer connects to a server and each server
hosts a domain. XMPP endpoint addresses are very similar to
email addresses with the addition of a node name. The address
user@example.com/nodename describes a user with the name
user known at the domain example.com and the instance with
which the user is connected to the server is called nodename.
XMPP servers of different domains can be interconnected so
that messages from peers from one domain are routed to users
from different domains connected to other servers. By adding
so called “gateways” to servers, it is even possible to connect
XMPP networks with other P2P networks. Such gateways log
into the foreign network on behalf of the user and translate all
messages between the two, different protocols.

An XMPP server is basically an XML router that routes
small XML-snippets to the addressed endpoint. As XMPP is
optimised to route small XML-snippets (stanzas) from one peer
to another peer, transmitting large data blocks has to be done by
other communication channels like ftp, http, etc. However, two
peers can easily negotiate a suitable out-of-band communication
channel.

Extensibility in XMPP is achieved by using XML-namespaces.
Each ‘sub-protocol’ defines it’s own XML namespace, and
hopefully some document with a detailed description of the
purpose of the ‘sub-protocol’ and the XML elements allowed
for this namespace.

XMPP offers two message transmission patterns. A ‘Re-
quest/Response’ mechanism and a ‘Request/maybe Response’
mechanism. The latter one is used for instant messaging, where
message not necessarily require an answer, or an answer can be
unrelated. However, this communication pattern in XMPP allows
tracking of related messages. The ‘Request/Response’ mechanism
is mostly used for XMPP and P2P management tasks.

Gerhard Weis completed his MICT degree with Griffith University (email:
gerhard.weis@gmx.com). Andrew Lewis is with the Institute for Integrated
and Intelligent Systems, Griffith University, Queensland, Australia (email:
a.lewis@griffith.edu.au).

Fig. 1. Example structure for a meander line RFID antenna

II. THE EXAMPLE APPLICATION

The work described in this paper arose from the practical
necessities inherent in performing computational optimisation
studies of meander line RFID (radio frequency identification)
antennas. Meander line antennas are a subset of particular
interest for RFID as, by their nature, they are compact and tags
may be readily manufactured. These antennas normally have
a planar structure and consist of printed conductive tracks on
thin plastic substrates [4]. Half the antenna is modelled and the
half-antenna element mirrored to form a dipole antenna. Figure
1 shows one possible structure of the meander line antenna.

The automated design of these antennas is relatively new.
Traditionally, design engineers would create these manually
in a time consuming iterative process, as there is no gener-
ally applicable analytic design methodology for meander line
antennas. However, this was only practicable for small and
relatively impractical antennas. Recent work has shown that
heuristic search techniques are capable of producing very good
antenna designs for larger problems [8], [12]. One approach to
design of the general meander line antenna is to confine the
antenna to a Cartesian grid. For a particular grid defining the
meander line, a number of design choices are possible. This
gives rise to a combinatorial optimisation problem similar to the
travelling salesman problem (TSP), and as such, can be solved
by meta-heuristic search strategies. In the work described in this
paper an ant colony optimisation algorithm, adapted for multi-
objective optimisation by using a Pareto-dominance relationship
to determine solution fitness [13], has been used.

When it comes to the practical implementation of the ap-
proach, the problem is that, for the ant colony system (ACS)
algorithm to create a RFID antenna structure, many different
solutions have to be evaluated for efficiency and resonant fre-
quency. Each antenna simulation is rather CPU intensive but, as
the evaluation of the performance of each antenna is independent
from any other, it is possible to perform the antenna evaluation
in parallel to reduce the overall time taken. In addition, this
problem is attractive for a distributed computational framework
because the description of an antenna structure to the simulation
evaluating its performance, and the return of the resulting
performance data, requires the transfer of very little data,
minimising communication overheads.

In the work reported in Weis et al. [12] ACS with local



search heuristics was used to optimise the gain of meander
line RFID antennas. The ACS algorithm constructed a trial
antenna configuration by constructing the path of an antenna
element on a Cartesian grid of points. Antenna performance
was then evaluated using the NEC tool [2], an open source
antenna simulation program that provides a library of functions
to analyse antennas. It takes an input file that describes the
antenna structure and various other simulation parameters and
executes a simulation. As the only values of interest in the study
in question were efficiency at the resonant frequency, the NEC
main program was arranged to perform a binary search for the
resonant frequency within a frequency band of interest. At its
conclusion the simulation returned values of resonant frequency
and the corresponding efficiency to the ACS program, which
proceeded with further iterations.

The ACS algorithm was permitted 2000 iterations with a
population of 10 ants for each of 10 random, initialisation seeds
for each antenna grid size. The local search heuristic was allowed
a variable-depth tree search. Thus, at any single iteration there
might be anything from 300 to 3000 simultaneous requests
for antenna evaluations. To reduce the computational cost a
persistent cache of antenna configurations and corresponding
performance was maintained and inspected before passing the
request to the NEC program. Nevertheless, several thousand
evaluations might be required for each antenna grid size.

III. THE COMPUTATIONAL RESOURCES

The student computer labs at Griffith University are equipped
with desktop computers that are available for use throughout
the day, and sometimes also at night, but often are not used
the whole time. These “free” computing resources are ideal
for use for an ad-hoc grid computing solution. The system
described in this paper was tested on approximately 30 Pentium
4 CPU-based computers and 16 Athlon X64 dual core CPU-
based computers. As 16 of the Pentium 4 computers were located
in an open user room, many of them were occasionally turned
off or rebooted into Microsoft WindowsTMduring the test runs,
temporarily precluding their use for the Linux-based simulations.
The main controller, on which the XMPP server and the ACS
algorithm ran, was a very old, 400MHz Pentium 3 CPU-based
computer with 128MB of RAM. It ran NetBSD 4.0, with jabberd
as the XMPP server. The ACS algorithm and the XMPP monitor
were implemented in Python 2.5. The worker computers mount
a shared “home” directory via NFS which was used to exchange
data between nodes. In particular, the NEC tool and the worker-
XMPP program were installed in this NFS filesystem. Two
versions of the NEC tool were compiled; one optimised for the
P4 machines and one for the Athlon-X64s. All computers allowed
ssh-login with a user id stored in a central, LDAP directory.

As the lab computers are also used for classes, it was desirable
that the NEC tool should not run when another student was using
one of those computers. For this reason the worker program
detected any user login, and stopped accepting computation tasks
until the computer was once more vacated. In XMPP such a node
announces itself with a presence state of ‘Do not disturb’ (DnD).
If a computation request arrives during a DnD-state, the node
returns an error message to let the master know that the request
has to be rescheduled.

IV. IMPLEMENTATION

As the ACS algorithm has a rather short run time compared
to the antenna evaluations, it is not a performance critical part.
For this reason it was decided that Python could be used as
the implementation language, because it is well known for it’s
rapid prototyping qualities (see, for example, Chaves et al. [3].)
The ACS algorithm was also ported to Python, to make it
easier to manipulate various run time options. For the XMPP

communication layer, the simplest, readily available Python
XMPP library, ‘jabber.py’ [1], was used. The persistent antenna
cache used a Berkeley DB [7], [6], to allow more memory-efficient
storage of the large amounts of data accumulated.

The controller (job scheduler) is a simple XMPP-peer. It runs
the ACO algorithm to generate the RFID antenna structures
and sends the generated structure descriptions to the available
computation nodes. The scheduler implemented uses only pres-
ence information from the computing nodes and does simple
round-robin scheduling.

The controller node contains a static list of available computa-
tion nodes and the main program is split into three threads. One
thread continually scans through the list of offline nodes and if
an ssh connection is possible, this thread tries to start the worker
peer program as a user daemon. The second thread runs the ACS
algorithm. This thread places generated antenna structures in a
synchronised queue. The main thread handles all of the XMPP-
related messaging and is also the main loop. The main loop uses
the ‘select’ system call to wait for arriving XMPP messages.
As this blocks the whole main thread, a timeout of 1 second is
used to break out of this waiting state if no incoming XMPP
messages are available, and send out further jobs if possible. On
arrival of presence messages, this thread updates the internal
list of available worker nodes accordingly. If a new structure to
evaluate is in the queue, it will be sent to a worker. The main
program also keeps track of which structure is sent to which
node because, in case of errors or if a node goes offline (fails)
without returning a result, the antenna structure has to be resent
to another node for evaluation. If a result arrives from a worker
node it is placed into a persistent database. The ACS algorithm
can also access this database, so that antenna structures already
calculated do not have to be recalculated. The main loop also
offers a chat bot interface. This interface offers a command
line-like user interface, with which the controller program can be
monitored and managed. A similar chat interface is also available
for the worker programs. The control flow of the job scheduler
is shown in Figure 2.

To transmit a job to a worker a small ‘sub-protocol’ was
designed for the ‘Request/Response’ mechanism offered by
XMPP. The top level element for this was an iq element. An
iq element has the destination address, a type (get, set, error
or result) that defines the semantics of this message, and a
unique id which allows relaying a possible answer to the request.
Some namespace attributes are stored ss child elements in this
iq element. XMPP also requires a query element. This query
element carries information about the actual payload sent with
the “iq”-request, such as XML-namespace. The actual payload
can be found under the query.

The following shows an example request for an 8x8 antenna.

<iq to=’work1@x.y.z/worker’ type=’set’ id=’5’>

<query xmlns = ’my:iq:exec’ >

<vector size=’8’>8 7 15 16 24 23 31 39 38

30 22 14 6 5 4 3 2 1 9 17 25 33 41 49 57 58 59

60 52 51 50 42 34 26 18 10 11 12 13 21 20 19 27

28 29 37 36 35 43 44 45 53 61 62 54 46 47 55 63

64 56 48 40 32</vector>

</query>

</iq>

When a node returns a result, it sends back an ‘iq’-message of
type ‘result’ or ‘error’. The following shows an example response.
It was decided to include all the task information in the response
because the payload itself is very small and it allows the monitor
to double check results.

<iq from=’sentret@x.y.z/worker’ type=’result’

id=’28’ to=’monitor@a.b.c/monitor’>



Main loop

Chat

cmd.
Exec. cmd

Presence

msg.

Update worker queue

and evtl. reschedule

job

Error

received

Reschedule job and

requeue worker

Result

received

Store result and

reschedule worker

Finished

Submit up 10 next jobs

if enough jobs and workers

are available

All results

received

Store collected

statistical data

and reset monitor

No

Yes

Yes

No

No

No

Yes

Yes

Yes

No

No

Yes

Fig. 2. Flow diagram of job scheduler

<query xmlns = ’my:iq:exec’ >

<vector freq="750" eff="750" size=’8’>8 7

15 16 24 32 40 48 56 64 63 55 47 46 54 62 61 53

45 37 29 28 36 35 27 19 20 21 13 12 11 10 18 26

34 42 50 51 43 44 52 60 59 58 57 49 41 33 25 17

9 1 2 3 4 5 6 14 22 30 38 39 31 23</vector>

</query>

</iq>

For this project a complete, new (very simple) ‘sub-protocol’
was implemented to meet the needs of the experiment. However,
there are also generic discovery and command execution ‘sub-
protocols’ defined for XMPP. These protocols tend to be rather
complex, but may be a good solution for more generic tasks.

V. RESULTS

This very simple setup and program provided a useful
platform for the computational experiments required for the
antenna design application. A number of antenna designs, for a
number of grid densities, were optimised using ACS and then
further refined using local search, The 5×5 was quite impressive.
Beginning with a search depth of 5 it took only 3 steps to find
the global optimum as determined by Galehdar et al. [5] using
exhaustive enumeration. The total number of antennas evaluated
was 13. For the 6× 6 grid local search depth was set to 25. Two
near-optimal candidate antenna structures were generated by
the ACS algorithm using different operating parameters. For
the first antenna, the local search algorithm needed to evaluate
270 antennas and improved the antenna efficiency by 1.5%. For
the second structure, there were 395 antennas to evaluate. The
efficiency was improved to by 21.9%, eventually reaching the
same efficiency as the first. It might be inferred from this that
these searches had both reached near-optimal results for this
antenna size, but that the first candidate had a better result
originally.

For the 7× 7 case local refinement produced 891 antennas to
evaluate (for a search depth of 25) and found 7 different equally
efficient antenna structures, with an increase in efficiency of
7.8%. To reduce computation time the search depth for 8 ×

8 grids was reduced to 20. The local search had to evaluate
3193 different antennas and improved the efficiency 7.6%. For
the 9 × 9 grids, the search depth was further reduced to 15,
because larger grids take increasing compute time to evaluate.
For this search depth 1371 antennas had to be evaluated. A
solution was found with efficiency increased by 16.8% compared
to the original structure. For 10 × 10 grid, the search depth
was also reduced to 15 and 1527 new antennas were evaluated.
The efficiency was improved notably, by 42.7%. Comparing the
resulting antennas to the “state-of-the-art”, it is known that for a
simpler, single-objective problem, the approach used was able to
find the globally optimal structure on a 5× 5 grid, by reference
to results from experiments that exhaustively enumerated all
possible solutions [12].

As the computation time for one antenna structure is rather
long, and the data to describe a job is very short, this processing
framework scaled very well.

The data in Table 1 shows the timing data of a recalcula-
tion run. During such a recalculation run, all known antenna
structures are sent out to the computation nodes, to recalculate
their frequency and efficiency properties. This means that no
optimisation was involved during this calculation. This particular
scenario gives a good indication of how well the framework
presented works. Table 1shows specific data for each grid size.
The value for ‘X64 nodes’ and ‘P4 nodes’ indicate how many
of each of those computers have been used, ‘structures’ is the
number of antennas calculated. The row ‘est. X64’ shows the
theoretical time it would have taken to simulate all antennas
on one X64 (dual core) node. The time is based on the average
time it took to simulate one antenna, for the specific grid size,
on this type of computer. The ‘wall clock’ row is the time it
took to simulate all structures with the program presented here,
and ‘speed up’ is the factor between ‘wall clock’ and ‘est. X64’.
The data in ‘overhead’ is a rough estimation of how much time
has been wasted by the monitor program and XMPP protocol. It
compares the maximum time spent purely for antenna simulation
during the whole experiment to the wall clock time.

Figure 3 graphs “speed up” and “overhead” for each grid
size. While a significant speed up was achieved over all grid
sizes, it is clear that the longer the simulation of one antenna
structure takes, the greater the improvement and the less the
overhead. Unfortunately, it is not clear whether it was the



grid size 5 6 7
X64 nodes 7 7 7
P4 nodes 1 2 4
structures 13236 35888 65027
est. X64 53:48 3:12:08 7:17:20

wall clock 16:08 43:24 1:32:55
speed up 3.34 4.43 4.71
overhead 46.23% 35.33% 31.84%

grid size 8 9 10
X64 nodes 7 7 7
P4 nodes 6 5 5
structures 103262 122373 129791
est. X64 13:37:03 21:40:00 39:05:40

wall clock 2:47:04 4:07:59 5:26:08
speed up 4.89 5.24 7.19
overhead 24.96% 19.44% 15.68%

TABLE I
TIMING DATA.

XMPP protocol itself or just an overload of the monitor node
(the old P3) that caused such relatively poor improvement for
smaller grid sizes compared to larger grid sizes. Another possible
reason is that the monitor program is optimised for rapid
development instead of run-time performance, which leads to
a rather awkward implementation of the inner threading and
queuing. Results quoted in other studies [11] suggest that it would
be reasonable to expect the server performance could be scaled
by one or two orders of magnitude. Since there are sufficient
antenna evaluations presented at each iteration, each of which is
completely independent of all others, to scale to a similar degree,
it may be possible the application has significant potential to scale
to problems with larger grid sizes. These problems could also be
expected to have improved ratios of computation to overhead,
and thus improved speedup as suggested by the trend in Figure
3. At some point, however, there will be an absolute limit on the
ability of a particular server to handle the volume of messages.
This perhaps could be addressed through a replicated server
architecture.

Fig. 3. Speed up and overhead over grid size.

VI. CONCLUSION

This paper describes an ad hoc grid framework implemented
to provide processing resources to a practical use of ant colony
optimisation. The advantages of this approach were the minimal

effort to build the system and the ease of deployment, since no
special access rights were required for setup. Additionally, all
programs were built with tools that are available on almost any
standard Linux system installation and the whole installation
footprint is very small. Although the system was built from
scratch, the development time was very short and it is still easily
extensible. Furthermore, the reliance on standard components
provided overall system stability.

Despite various problems with system load and awkward
implementation, this setup has been shown to be efficient enough
to speed up a real-world optimisation application by a factor of
nearly 8 using only a moderate number of desktop computers.
More work is needed to investigate some of the implementation
issues in more detail, to determine if further improvement is
possible. To this end, attempts will be made to optimise the
monitor program and try to run it on a more powerful machine.
In addition, better measurements of the protocol overhead are
planned and further developments will be made to try to achieve
a greater utilisation of the worker nodes. A more sophisticated
scheduler that, for instance, prioritises nodes on the basis of
their demonstrated computation time might also further reduce
overall simulation time.

REFERENCES

[1] M. Allum. jabber.py – A Python Jabber library, Oct 2004.

http://jabberpy.sourceforge.net/, Last checked 12.12.2008.

[2] G. Burke, A. Poggio, J. Logan, and J. Rockway. NEC - Numerical

electromagnetics code for antennas and scattering. Antennas and
Propagation Society International Symposium, 1979, 17:147–150,

June 1979.

[3] J.C. Chaves, J. Nehrbass, B. Guilfoos, J. Gardiner, S. Ahalt,

A. Krishnamurthy, J. Unpingco, A. Chalker, A. Warnock, and

S. Samsi. Octave and python: High-level scripting languages

productivity and performance evaluation. In HPCMP Users Group
Conference, 2006, pages 429–434, 2006.

[4] K. Finkenzeller. RFID Handbook: fundamentals and applications
in contactless smart cards and identification. Wiley, Chichester,

England, 2nd edition, 2003.

[5] A. Galehdar, D. Thiel, and S. O’Keefe. Antenna efficiency calcu-

lations for electrically small, RFID antennas. IEEE Antenna and
Wireless Propagation (in press), 2007.

[6] M.A. Olson, K. Bostic, and M. Seltzer. Berkeley DB. In ATEC
’99: Proceedings of the annual conference on USENIX Annual
Technical Conference, pages 43–43, Berkeley, CA, USA, 1999.

USENIX Association.

[7] Oracle Berkeley DB.

http://freshmeat.net/redir/berkeleydb/694/url homepage/berkeley-

db/, Last checked 12.12.2008.

[8] M. Randall, A. Lewis, A. Galehdar, and D. Thiel. Using ant colony

optimisation to improve the efficiency of small meander line RFID

antennas. In 3rd IEEE International e-Science and Grid Computing
Conference, pages 345–351, Washington, DC, USA, 2007. IEEE

Computer Society.

[9] P. Saint-Andre. Extensible messaging and presence protocol
(XMPP): Core. RFC 3920 (Proposed Standard), October 2004.

[10] P. Saint-Andre. Extensible messaging and presence protocol

(XMPP): Instant messaging and presence. RFC 3921 (Proposed

Standard), October 2004.

[11] S. Schulz, W. Blochinger, and M. Poths. A network substrate

for peer-to-peer grid computing beyond embarrassingly parallel

applications. In International Conference on Communications and
Mobile Computing (CMC 2009), 2008, accepted.

[12] G. Weis, A. Lewis, M. Randall, A. Galehdar, and D. Thiel. Local

search for ant colony system to improve the efficiency of small

meander line RFID antennas. In Proceedings of the IEEE Congress
on Evolutionary Computation (CEC 2008), 2008.

[13] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. Grunert

da Fonseca. Performance Assessment of Multiobjective Optimizers:

An Analysis and Review. IEEE Transactions on Evolutionary
Computation, 7(2):117–132, 2003.


