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ABSTRACT. 

This paper discusses the use of an arbitrary bit-sequence generating algorithm as the 

cryptographic key for a stream cipher. Emphasis is placed on methods for combining stream 

generators into more complex ones, with and without randomization. Threshold schemes give a 

generalization of many combination techniques. 

1. INTRODUCTION. 

Some years ago Chaitin [Cha66] [Cha69] [Cha75] and Kolmogorov [Ko165] gave a remarkable 

strong definition of a random bit sequence: a random sequence of length n requires an algorithm 

nearly of length n to generate It. Martin-L6f [Mar661 suggested that infinite random sequences should 

withstand all recursively enumerable statistical tests, and then proved that these sequences satisfy the 

Chaitin-Kolmogorov definition. Such a sequence is said to have no succinct representation. In 

general, it is an undecidable problem to find the shortest algorithm that will generate a given sequence, 

and even finding a succinct representation. assuming one exists, is believed to be an intractable 

problem. 

Interesting weaker definitions of pseudo-random sequences have recently been proposed 

pa0821 [Blu84] [KoM], and this is now an active research area. See [Kra84] for a survey. 

In cryptography one wants to generate a long pseudo-random bit sequence from a succinct secret 

key. It is a short step to think of using an arbitrary bit generating algorithm (= succinct representation) as 

a "key" for cryptographic use. This idea goes against the conventional practice that the cryptographic 

algorithm itself should not be secret, only the particular key used by the algorithm. 
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2. ALGORITHMS AS CRYPTOGRAPHIC KEYS. 

We propose a keyspace consisting of allpossible algorithms for generating a bit stream. (By 

definition, the algorithm must not execute indefinitely at some point without producing a bit.) We want 

an arbitrarily long bit stream, so if the algorithm halts, repeat the initial sequence indefinitely. In practice 

we do not want the algorithm to be too long, but we place no upper bound on its length. Similarly. we 

favor algorithms that produce n bits in O(n) time, but there is no such requirement. At the CRYPT0 84 

meeting, in a slightly different context, it was argued that the keyspace was not really infinite, since one 

could always place a bound on the key size. In practice an opponent must choose a bound that is not 

ridiculous, and then he always faces the possibility that the size of the key exceeds this bound. 

We would like to list several advantages of using algorithms as keys. 

Since the key can be an arbitrarily complex algorithm, one can never be certain that a 

given key has been discovered, no matter how much plaintext-ciphertext has been 

matched up using some algorithm. (The actual key might say, "After the 1000OOOOm 

bit, use this other algorithm.') 

There is no bound on the size of the key or on the number of keys -- there are infinitely 

many possible keys. 

This method immediately adapts to the best current technology for generating secure 

bit streams. 

One can adjust the key length and key complexity to the desired level of security. 

This contains every other stream cipher based on xor with a pseudo- random 

sequence as a special case. 

We now come to the practicalities of choosing a key (= algorithm). We do not want to choose a 

"random" algorithm. In fact we do not know any reasonable way to make such a choice. Besides, a 

random choice might be unacceptably inefficient or it might not be at all secure. Note that the opponent 

does not necessarily know what level is "unacceptable." Knuth [KnuBl, p. 41 nicely illustrates the 

dangers of using a "random" algorithm for a pseudo-random number generator. 

In fact it is an undecidable problem to tell whether a candidate for a key is actually an algorithm, 

i.e., whether it does not execute indefinitely at some point without generating any more bits. Notice that 

this is more of a problem for the opponent attempting cryptanalysis than for the person generating the 

key. The opponent cannot with certainty eliminate such candidate algorithms, while the person 

generating the key has no such problem. 

Instead of a random choice, we propose starting with "prime" bit stream generators that seem 

strong (Section 3.1) and propose combining them in ways that seem strong (Sections 3.2 and 3.3). 

Section 3.3 also includes randomization techniques as well as combination methods. It is important 

that the notation allow the speafication of an arbitrary algorithm, so that the opponent cannot rule any 
out. 
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3. CASCADES. 

For high security in conventional cryptography, it is natural to think of combinations of drastically 

different cryptosystems - perhaps a composition of block ciphers, or the exclusive or of stream ciphers, 

or some other combination. We will refer to such combinations as cascades. With one model there is a 

proof that the cascade of two ciphers is at least as hard to break as'either individually [Eve84]. We will 

be focusing on stream ciphers and on ways of combining and enhanang them. 

3.1 BASIC PSEUDO-RANDOM BIT-STREAMS. 

Pseudo-random bit sequences are the "prime parts" from which one might build up strong stream 

ciphers. Two or more such sequences can then be combined in various ways as described in Sections 

3.2 and 3.3 below. 

There has been a great deal of work recently on appropriate definitions of pseudo-random 

sequences and on means for constructing cryptographically secure examples [Blu84] [Sha83] Wao821. 

From our point of view, one should just have a repertory of families of pseudo-random streams -- to be 

augmented as new ones become available. 

3.2 CASCADES WITH NO EXPANSION. 

This section presents methods of combining or enhancing bit-stream ciphers without any 

randomization or expansion. We will use notation for figures similar to that in [Riv83]. In particular R 

stands for a true random sequence, P for a pseudo-random sequence, and 6 for a source bit-stream 

being modified. 

(a) Exclusive or. This is the most common method for producing cascades of bit-stream ciphers. 
(b) Bitwise addition, with carry. 

(c) Pseudo-random deletions. Here the output of one pseudo-random stream is used to delete 

bits from another stream. For example, P = "01010101 ..." would delete every other bit. Even simple 

alternating deletions was mentioned as a possible strong method for preventing cryptanalysis of a 

string given by the expansion of an algebraic number [Kan84]. 

Pseudo-random ahemation between streams. Use the output of one stream to select from n (d) 
streams. (See Figure 1.) 

Selec t  @+=7 
Figure 1. 

As a special case, if n = 2 and P = "01010101 . . . ' I ,  then this just gives alternation between the two bit 

streams P, and P,. If n = 2 and P starts with 10000000 0's followed by all l 's,  this method just 

switches from P, to P, after 10000000 bits. 
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(e) Pseudo-random selection from a buffer. This scheme is similar to the previous one and is 

inspired by [KnuSl, p. 321. 

3.3 CASCADES WITH RANDOMIZATION AND EXPANSION. , 

(a) Pseudo-random interspersing of random bits. This simple randomization method can be 

used at any stage of the encryption process. See Figure 2, and for terminology refer to [Riv83] and the 

beginning of Section 3.2. This will expand the bit stream 5 by about a factor of two. 

Q 
Select o-t_rJ 

Figure 2. 

(b) Random interspersing of random bits . This is a technique from [Riv83], shown in Figure 3. It 

also has an expansion of about two. 

Q Q oc=l Selec t  

Select from queues - Figure 3. 

Here the final selection based on the pseudo-random sequence P is just concatenation in [Riv83]. If P 
is the alternating sequence "01010101 ...", then we would get concatenation by alternating bits. If an 

arbitrary pseudo-random stream is used for P , we expect one of the streams selected to get ahead of 

the other, so buffers will be needed for these streams. On the average, after n bits of a random stream, 

either 0's or 1's will be ahead of the other by a quantity asymptotic to dn, so there is no upper bound on 

the necessary buffer size even in the average case. For this reason we might want to use a stream P in 

which the excess of 0's or 1's is never more than some fixed number which we could use as our buffer 

size. 

(c) Block-oriented randomization in the stream setfing. One can translate the block-oriented 

methods of [Riv83] by replacing a block encryption step with the exclusive or of a pseudo-random bit 

stream, and by replacing concatenation with selection based on a pseudo-random bit stream P . Six of 

the translated schemes in [Riv83] are special cases of Figure 4. 
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Select from queues @-cj 
Figure 4. 

Four of these special cases are obtained by deleting three out of four of the 4 's. One might also use 

two, three, or all four of the Pi 's. All such schemes have an expansion factor of two. 

Suppose an opponent can obtain these individual selected streams. This would be the case for 

example if P4 were missing and P were simple alternation. The opponent could then take the exclusive 

or of the two streams and obtain 8 eP, @P2 CB P3. So we might as well use an xor of the streams with 

no randomization. In the block cipher setting, these techniques do enhance security even with some 

simple form of concatenation. 

The provably secure but impractical Rip Van Winkel cipher [Mas851 is obtained as a very special 

case of Figure 4 by deleting all four of the Pi 'S and by letting P start with an enormous number of l 's, 

followed by alternating 0's and 1's. 

two cryptosystems [Asm81] takes the form of Figure 5. 
(d) Asmuth-Blakley scheme. In the stream setting, the Asmuth-BlaWey scheme for combining 

Q 

S e l e c t  from queues 

O - G -  
Figure 5. 

The output will have an expansion factor of three. The selector stream P is a stream of ternary digits. 

As before, if an opponent can untangle the three selected streams then he can take the exclusive or of 

them to obtain P, @ 8 8 P2. So again one might as well take an xor of the three streams. 
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(e) Threshold schemes. Rivest and Sherman suggested using threshold schemes in 

randomization [Riv83]. The methods discussed as items (c) and (d) above are just special cases of a 

single more general threshold scheme. In what follows we only have a need for the special case of a 

(k ,k )  threshold scheme. Threshold schemes do the opposite of combining several streams into one. 

They allow one to split a stream into several parts and allow laterrecombination and recovery of the 

original stream. 

For example, the one-time pad and example (c) above are both essentially (2,2) threshold 

schemes in which the source bit-stream B is broken into two shadows: R and R @ B, for some 

random stream R . Both shadow streams are required to recover the source, and an opponent who 

learns one stream still has no information about the other. (This threshold scheme prwides Shannon 

perfect security [Blasl].) Most of the methods of (c) involve encrypting one or the other of these 

shadows, or of encrypting the ooncatenation of the two shadows. 

Similarly example (d) above breaks 6 into three shadows: R,, R2, and R, @ 6 @ R2. This is a 

(3,3) threshold scheme in which all three shadow streams are necessary and sufficient to recover the 

source B . (Here again, knowing any hvo of the streams gives no information about the third.) Asmuth 

and Blakley encrypt (in block mode) R, and R2, though it would also make sense to encrypt any two or 

all three of these shadows. 

Now suppose we have a (k ,k )  threshold scheme. An implementation that is a generalization of 

the above examples employs k -1 random streams and the xor of these with the message stream for the 

kth stream. Alternatively one could use another ( k , k )  threshold scheme, such as, for example, Shamih 

Langrange interpolation threshold scheme [Sha79]. With both these methods, any k -1 out of the k 
streams give no information about the source stream, and again one has Shannon perfect security up 

to threshold k . The first has an expansion factor of k and the second somewhat greater. 

We would normally expect to encrypt one or more of these k shadow streams. Even if an 

opponent can decrypt all but one of the encrypted shadows, he would still have no information at all 

about the original stream. Intuitively, this scheme is at least as strong as any of the component 

encryption schemes used. 

There also exist (k.k ) threshold schemes with less data expansion, though without at least k -fold 

expansion we can no longer say that k -1 shadows give no information about the source. In [Ela84] a 

spectrum of threshold schemes is described which includes the extreme special cases of k -fold 

expansion with perfect security, and little or no expansion with only a small measure of security. 
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