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Abstract

We propose a new framework for modeling stochastic local volatility, with poten-
tial applications to modeling derivatives on interest rates, commodities, credit, equity,
FX etc., as well as hybrid derivatives. Our model extends the linearity-generating
unspanned volatility term structure model by Carr et al. (2011) by adding a local
volatility layer to it. We outline efficient numerical schemes for pricing derivatives in
this framework for a particular four-factor specification (two “curve” factors plus two
“volatility” factors). We show that the dynamics of such a system can be approximated
by a Markov chain on a two-dimensional space (Zt, Yt), where coordinates Zt and Yt
are given by direct (Kroneker) products of values of pairs of curve and volatility fac-
tors, respectively. The resulting Markov chain dynamics on such partly “folded” state
space enables fast pricing by the standard backward induction. Using a nonparamet-
ric specification of the Markov chain generator, one can accurately match arbitrary
sets of vanilla option quotes with different strikes and maturities. Furthermore, we
consider an alternative formulation of the model in terms of an implied time change
process. The latter is specified nonparametrically, again enabling accurate calibration
to arbitrary sets of vanilla option quotes.

∗Opinions expressed in this paper are those of the authors, and do not necessarily reflect the view of
JPMorgan Chase and Numerix.
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1 Introduction

1.1 Motivation

The present work is motivated by the desire to have a unified modeling methodology and
shared implementation for derivatives pricing with a dynamic volatility smile for various asset
classes, including interest rates (IR), commodities, equities, credit, foreign exchange (FX)
etc., as well as for modeling hybrid derivatives such as equity-IR or equity-commodities
hybrids. We present one possible approach, which extends a recently proposed class of
stochastic volatility models.

1.2 Related Previous Work

Gabaix (2007) proposed a new class of asset price models, the so-called linearity-generating
processes (LGP). Such processes are defined by the condition that the current prices of basic
instruments (stock, bonds, futures, swaps etc.) are linear in a driving Markov process Xt.
This stands in sharp contrast to popular affine models where, e.g., a zero-coupon bond price
P (t, T ) is an exponentially-affine function of a Markov driver Xt.

On the theoretical side, the LGP processes appear very attractive. Indeed, typical ways
we model basic instruments are drastically different between, say, IR and equity models1.
In the equity world, basic instruments (equities) are linear in stochastic factors (usually
taken to be equity prices themselves for purposes of modeling derivatives), and volatility is
stochastic (SV) and unspanned (USV, see below for the definition of this term).

In the IR world, the mathematics are almost the same for the HJM-type models that
model the entire yield curve. As the yield curve is in one-to-one correspondence with bond
prices, it can be viewed as an “observable” basic instrument that again is linear in factors,
and typically gives rise to USV.

But such linearity of HJM-like models has a high price, namely that the number of state
variables needed for the Markovian dynamics turns out to be too high for use in a lattice-
based setting in most cases of practical interest. Therefore, even with Markovian specifica-
tions, HJM-like models are typically employed within a Monte Carlo setup rather than on a
lattice. On the other hand, an attempt to reduce the curve modeling to a short-rate mod-
eling, as is done in affine models, leads to a nonlinear relation between bond prices and the
factors, which produces undesirable side effects, such as a dependence of the instantaneous
forward curve on the short-rate volatility.2

This problem is resolved in the LGP approach. By putting both equity and bonds on
equal footing in terms of making them both linear functionals of the factors (and doing

1Both are taken to be examples of term-structure models vs. spot-models. Instead of IR and equity, we
could, e.g. compare commodities and FX.

2This is the cost one has to pay for non-linearity. Clearly, nothing similar ever occurs in spot models:
today’s stock price St is obviously independent of the current volatility or current value of the volatility
factor Yt. Mathematically, this can be formulated as the statement that for spot stochastic volatility models
(such as e.g. the Heston model), the pricing function f(St, Yt) of basic instruments (stocks) is an identity
f(St, Yt) = St, see also Table 1 in Sect. 2.
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it in a different way from HJM), the LGP-based models play a role of “grand unification
models,” similar in a conceptual sense to “grand unification theories” (GUT) in physics. No
proliferation of the number of Markov drivers occurs in LGP-type models as we move from
one class of basic instruments (stocks) to other class (bonds).

Also on the practical side, linearity has profound consequences for tractability of asset
pricing modeling within the LGP framework. In particular, if a zero-coupon bond price is
linear in Xt, then so will be prices of a coupon bond or a swap. As a result, the swaption
pricing, e.g. can be done in a semi-analytical form without additional approximations, such
as those used by the Libor Market Models (LMM). It is also very helpful in calibration, as
will be discussed in more detail below.

To summarize, the class of LGP-like models identified by Gabaix is a new interesting
class that may develop into a viable competitor to both affine models, which are currently
one of the main workhorses for derivatives modeling in credit, commodities, rates and other
asset classes, and also HJM-type models. Yet this approach is in its infancy compared to
the well-studied class of affine models.

In 2011, Carr, Gabaix and Wu (CGW) proposed a LGP-type stochastic volatility term
structure model (Carr et al. (2011)). CGW, in particular, emphasize the point that stochastic
volatility generated in LGP-type models is unspanned in the sense of the definition of Colin-
Dufresne & Goldstein (2002), who coined the original term “unspanned volatility”3. The
CGW model offers a number of attractive features. Most importantly, it is a low-dimension
Markov model with unspanned stochastic volatility (USV), and an orthogonal set of model
parameters with a separate calibration to the term structure and option volatilities.

The CGW model is a pure stochastic volatility model, as volatility is modeled as a
superposition of CIR processes. To make it more practical, it would be very useful to add a
local volatility layer to the model. Our extension of the CGW model amounts to introduction
of such a local volatility factor, along with efficient numerical methods for calibration and
pricing. To differentiate our framework from CGW, in what follows we will refer to it as the
unspanned stochastic local volatility (USLV) model.

2 Overview of Our Framework

By construction, USLV preserves the linearity and USV properties of the CGW approach.
Another property inherited from the CGW model is that USLV is formulated directly in the
physical measure P (see below) rather than in the risk-neutral measure Q, which makes it
easier, e.g., to combine the historical and pricing data for model estimation, if desired.

The main theoretical construction that USLV adds to the CGW model is a local volatil-
ity layer. The resulting mixed stochastic/local volatility dynamics has a few important
implications.

First, adding a local volatility layer enables nearly perfect matching of an arbitrary

3Following Colin-Dufresne & Goldstein (2002), the volatility is called unspanned if bond prices do not
depend on the stochastic volatility driver.
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number of European vanilla option quotes with different strikes and maturities.4 Such an
extension is clearly desirable in order to apply this approach for pricing of both vanilla and
exotic derivatives, especially if vanilla options are used to hedge the exotics.

Second, the presence of a local volatility layer alongside a stochastic volatility part induces
a decomposition of the option volatility into spanned and unspanned parts, rather than being
of a pure unspanned type as in the CGW model. One could expect that such decomposition
of volatility should translate into a decomposition of an option’s vega into a delta-vega and
a “genuine vega” part.

Because of the way our model is calibrated, it enables traders to incorporate their view on
the relative weights of the spanned and unspanned parts in the option’s vegas.5 By viewing a
trader’s inputs as a prior model that does not necessarily match observed options, our model
finds a minimal adjustment (“tweak”) to the trader’s prior model in order to reinforce an
accurate match of the option quotes.

In contrast, the volatility in local volatility models would be 100% spanned. In local
volatility models, matching vanilla pricing would fix the volatility surface for all strikes and
maturities, and would not leave any flexibility for the model to match prices of more exotic
options. The inclusion of stochastic volatility allows one to simultaneously have more realistic
forward smile dynamics and additional parameters to match exotics’ prices (if available). The
ability of USLV to incorporate a possible trader’s view is what sets it apart from both pure
local volatility models and pure SV models of the CGW type.

On the implementation side, USLV concentrates on the most important low-dimensional
specifications for practicality, e.g., two factors for the term structure (with N curve factors
in general), and one or two factors for stochastic volatility (with M volatility factors in
general). In particular, for a (2+2)-factor case, we show how to approximate the dynamics
of the driving factors by a two-dimensional Markov chain on a space constructed by folding
(see below) of the original four-dimensional state space. This enables fast pricing by standard
backward induction on the chain.

It should be noted that while in this paper we concentrate on modeling term-structure
dynamics (e.g., of futures, swap rates or credit spreads) with potential applications to “term
structure asset classes,” such as IR, commodities or credit, the same approach can be used for
modeling spot prices, which would be a proper setting for “spot asset classes,” such as equities
or FX. Moreover, due to a symmetric treatment of “term-structure assets” and “spot assets”
in the present framework, this approach is readily available for modeling hybrid derivative
products (e.g., equity-IR or equity-commodity hybrids) using the same implementation.
Changes from one asset class to another would amount to a proper reparametrization and
reinterpretation of the Markov generator matrices while leaving the computational algorithm
intact.6 Furthermore, in the continuous limit, different parametrizations of the stochastic

4Note that while this property of USLV is shared by local stochastic volatility models as well, the key
point here is that now we have an additional risk factor (volatility) to acknowledge, model and hedge.

5Technically, this is done by giving the end user the ability to input his/her own set of speed factors (SF),
see below.

6In principle, this could produce a generic pricing engine, similar in a sense to Monte Carlo (MC). Indeed,
the latter method is a “universal” method of derivatives pricing in the sense that in this framework, we only
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volatility generator in our Markov chain model give rise to a rich class of (2+2)-factor
models, including stochastic local volatility with jumps. Note that in this paper we primarily
concentrate on specifications whose continuous limit is a two-dimensional diffusion with a
two-dimensional diffusive stochastic local volatility. This case is covered in detail below in
Sect. 6. However, in Sect. 7, we will present an alternative formulation that can give rise to
jumps in both the underlying and stochastic volatility. Our approach is thus quite flexible
in its ability to accommodate different specifications of the dynamics, including a four-factor
stochastic local volatility model with jumps.

2.1 USLV vs. HJM vs. Affine Models

Our initial interest in using LGP-type models for a potential model for stochastic volatility
was inspired by the observation that LGP-type models (and, by extension, USLV-like models)
seem to combine the best features of both HJM-type models and affine models, while avoiding
their disadvantages. Indeed, like the HJM-type models, the stochastic volatility is unspanned
in USLV. Unlike the HJM-types, the model is Markov in dimension N + M rather than
N + N(N + 1)/2 + M , as in HJM-type models. Conversely, both affine models and USLV
have the same number of state variables (N + M). However, in USLV, volatility is always
(partly) unspanned, while in affine models, volatility in general will be spanned unless some
special constraints are imposed on parameters, which might be restrictive for calibration
purposes. (See also Table 1 below.)

The above reasoning suggests that if we manage to generalize the pure stochastic volatility
model of CGW to a stochastic local volatility model (i.e., to make a USLV out of CGW), and
do it in a numerically efficient way, and if the resulting model demonstrates good parameters
and hedges stability etc., then such a model can be considered a viable candidate for use
in practice. This paper outlines the theoretical framework for USLV, leaving numerical
experiments for future work.

A few more words of caution are in order here. Our outline of the USLV is generic and is
not tied yet to any specific asset class. Each asset class makes its own demands on a model.
For example, the ability to reproduce the Samuelson effect and asset cointegration are very
important for commodities, alongside the ability to handle seasonality in asset levels and
volatilities for certain commodities, such as gas or power. It has yet to be seen how (or
whether) the USLV framework can accommodate such specific requirements. A discussion
of this matter is planned for the second stage of the present theoretical work.

A brief summary of different model classes is presented in Table 1, where we compare
the behavior of equity stochastic volatility models such as the Heston model, HJM-type,
affine-type and LGP/CGW/USLV-type. The third column shows the functional form of

need to implement dynamic equations and payoff functions for a particular model-product combination
in order to use a generic MC engine. Likewise, our Markov chain framework is “universal” in the same
sense (within a class of all diffusive local stochastic volatility models in up to (2+2) dimensions). The
only difference here is that while in MC we typically start with continuous space dynamics, which is then
discretized for simulation through discretization of processes (e.g., Brownian motions) driving the dynamics,
the dynamics in our approach are fundamentally defined in terms of discretized state variables.
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Model BIt BVt BIt = f(BVt) USV D
Equity St St, Yt f(St, Yt) = St Yes 1 +M

IR HJM P T
t P T

t , Yt f(P T
t , Yt) = P T

t Yes N +N(N + 1)/2 +M
IR Affine P T

t Xt, Yt f(Xt, Yt) No N +M
CGW/USLV P T

t Xt, Yt f(Xt, Yt) = αtTXt + βtT Yes N +M

Table 1: Model comparison summary. Note that “Yes” in column USV for IR HJM means
“in general, yes,” and likewise “No” for IR Affine means “in general, no, unless special ’knife-
edge’ constraints are imposed on parameters of the model.” Here St, P

T
t and Yt stand for the

stock and bond prices and volatility factor, respectively, while BIt and BVt stand for basic
instruments and basic variables, respectively. Finally, D stands for for the total number of
state variables needed for a Markovian description.

conditional expectations arising in calculation of prices of elementary instruments.

3 The Carr-Gabaix-Wu Model

In this section, we provide a brief overview of the CGW model of Carr et al. (2011). The
CWG model is then used as the first step in our setting. Simultaneously, in this section we
set our notation, on which we largely follow Carr et al. (2011).

3.1 State-Price Processes and Martingale Pricing

The famous fundamental theorem of asset pricing (Harrison & Pliska (1981)) states that if
the economy is arbitrage free, then there exists, under certain technical conditions such as
positivity and time consistence, a strictly positive process Mt called the state space deflator,
such that the deflated gain process associated with any admissible trading strategy is a
martingale under the measure P. In particular, for a contingent payoff ΠT at time T > t, its
value at time t is given by the following P-conditional expectation:

V (t, T ) = Et
[
MT

Mt

ΠT

]
The ratio MT/Mt is sometimes referred to as the stochastic discount factor or the pricing
kernel. The P-measure SDE for Mt reads

dMt

Mt

= −rdt− γ(Zt)dZt,

where Zt is a vector of risk factors and γ(Zt) measures the market prices of risk for these
factors. The formal solution to this SDE takes a multiplicative form

Mt = M0 exp

(
−
∫ t

0

rsds

)
E
(
−
∫ t

0

γ(Zs)dZs

)
,
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where E(·) stands for the stochastic exponential martingale operator. The latter defines the
Radon-Nikodým derivative dQ/dP that transforms the physical measure P to the risk-neutral
measure Q such that, under Q, the contingent claim valuation reads

V (t, T ) = EQ
t

[
exp

(
−
∫ T

t

rsds

)
ΠT

]
. (1)

3.2 One-Factor Case

Assume that the state variable Xt is driven by the following SDE under the measure Q:

dXt = −κXt (1−Xt) dt+ dnt, (2)

where nt stands for a martingale component that we will leave unspecified for a while.7 The
short rate rt is obtained from Xt by a linear transformation:

rt = θr + κXt. (3)

Note that in order to prevent exploding solutions of Eq.(2), Xt has to be constrained to live
on the unit interval, 0 ≤ Xt ≤ 1. We will return to this point below.

As defined by Gabaix (2007), a linearity-generating process (LGP) is characterized by
two requirements: (i) The time-t zero-coupon bond price is linear in the state vector Xt, and
(ii) the time-t conditional expectation of the deflated state vector Xt+1 is linear in Xt:

8

P (t, T ) = Et
[
MT

Mt

]
= α(t, T ) + δ(t, T )Xt,

Et
[
MT

Mt

XT

]
= γ(t, T ) + Γ(t, T )Xt, (4)

where α(t, T ), δ(t, T ) and Γ(t, T ) are some functions, while γ(t, T ) is set to zero in Gabaix
(2007). To handle both constraints, Gabaix proposes the following compact description of
dynamics in terms of the two-component vector

Yt =

(
1−Xt

Xt

)
Mt. (5)

The explicit calculation yields

Et
[
dY

(1)
t

]
= Et [d ((1−Xt)Mt)] = (1−Xt)MtEt

[
dMt

Mt

]
−Mt

(
Et [dXt] +

[
dX,

dM

Mt

]
t

)
= − (1−Xt)Mtrtdt−MtEQ

t [dXt] = − (1−Xt)Mtrtdt+ κMtXt (1−Xt) dt

= (1−Xt)Mt [−(θr + κXt) + κXt] dt = −θrY (1)
t dt. (6)

7Note that our definition of Xt differs from that suggested in Gabaix (2007). For consistency of notation
in the one factor and multi-factor cases, our definition rescales by κ.

8Note that in this paper all expectations assume the physical measure P unless stated otherwise.
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A similar calculation produces

Et
[
dY

(2)
t

]
= − (θr + κ)Y

(2)
t dt. (7)

We emphasize that these results are independent of the specification of the martingale nt in
Eq.(2). Eq.(6) and Eq.(7) can be jointly written in a vector form

Et [dYt] = −AYtdt, (8)

where A is the Markov generator matrix

A =

(
θr 0
0 κ+ θr

)
.

The solution of Eq.(8) is then obtained by the matrix exponential:

Et [YT ] = e−A(T−t)Yt = e−θrτ
(

1−Xt

e−κτXt

)
Mt, (9)

where τ = T − t.
Now observe that the map Mt → Yt defined in Eq.(5) can be inverted by summing over

the indices i = 1, 2 of Yt. This can be written in the equivalent form Mt = νYt, where
ν = (1, 1). Then, using Eq.(9), we obtain the following relation for the zero-coupon bond
price:

P (t, T ) = Et
[
MT

Mt

]
=

1

Mt

Et [νYT ] =
1

Mt

νe−AτYt = e−θrτ
(
1−

(
1− e−κτ

)
Xt

)
, (10)

which can be compared to Eq.(4). Note that Eq.(10) implies that P (t, t) = 1, as it should.
We emphasize again that Eq.(10) holds for any specification of the martingale nt in Eq.(2).

3.3 Z-Parametrization

Carr, Gabaix and Wu (CGW) find it convenient to reparametrize Eq.(5) as follows:

Yt = e−θrt
(

α0 + β0Zt
e−κt (α1 + β1Zt)

)
= e−At

(
α0 + β0Zt
α1 + β1Zt

)
(11)

where (α0, α1, β0, β1) are scalar coefficients and Zt is a nonnegative P-martingale that starts
at Z0 = 1. We assume that parameters are chosen such that α0 +β0Zt ≥ 0 and α1 +β1Zt ≥ 0
for any t ≥ 0. We postpone a specification of the dynamics of Zt until Sect. 4, while in this
section we concentrate on the results that are independent of this specification.

Equating Eq.(5) and Eq.(11), we impose the following relations between Xt, Zt and Mt:

e−θrt (α0 + β0Zt) = (1−Xt)Mt,

e−(θr+κ)t (α1 + β1Zt) = XtMt. (12)
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Resolving this with respect to Xt , Mt in terms of Zt, we obtain (here ν = (1, 1) as above)

Mt = νYt = e−θrt
[
α0 + β0Zt + e−κt (α1 + β1Zt)

]
, (13)

Xt =
e−κt (α1 + β1Zt)

α0 + β0Zt + e−κt (α1 + β1Zt)
=

1

Mt

e−(θr+κ)t (α1 + β1Zt) . (14)

We interpret these relations as follows. Eq.(13) produces the state price deflator Mt

as a functional of the Markov driver Zt. Note that this is a linear functional, which is
exactly the reason we do not have any convexity corrections in Eq.(10). For any nonlinear
functional, a resulting expression for P (t, T ) would depend on volatility of Zt. Such behavior
is intentionally avoided in the present framework.

The second equation, Eq.(14), computes a map Zt → Xt. The main property of this
map is that, by construction, the bond price is linear in Xt according to Eq.(10), so that
Xt can be viewed as a quasi-observable factor in the sense of being directly linked to bond
prices.9 Note that Eq.(14) implies that that Xt lives on the unit interval 0 ≤ Xt ≤ 1 as long
as α0 + β0Zt ≥ 0 and α1 + β1Zt ≥ 0, as was assumed above. This ensures that Eq.(2) is well
behaved, and in particular does not give rise to exploding solutions.

The dynamics of the state price deflator Mt and the mapped factor Xt can now be
obtained using Ito’s lemma for Eq.(13) and Eq.(14). The P-measure SDE for Mt reads

dMt

Mt

= −(θr + κXt)dt− γ(Zt)dZt ≡ −rtdt− γ(Zt, t)dZt, (15)

where the market price of Z-risk is

γ(Zt, t) = − β0 + β1e
−κt

α0 + β0Zt + e−κt(α1 + β1Zt)
.

Now let us derive the SDE for Xt under the measure Q. For the diffusion function, we
use Eq.(14) to find the following expression:

σ(Zt, t) ≡
∂Xt

∂Zt
=

e−κt (α0β1 − α1β0)

[α0 + β0Zt + e−κt (α1 + β1Zt)]
2 . (16)

To get the risk-neutral drift of Xt, a “naive” use of Ito’s lemma for Eq.(14) will not do the
job, as we do not know the drift of Zt under the measure Q. All we know is that Zt is a
P-martingale.

To proceed with the calculation, we start with the definition of the risk-neutral drift:

EQ
t [dXt] = Et [dXt] +

[
dXt,

dMt

Mt

]
= Et

[
d (MtXt)

Mt

]
−XtEt

[
dMt

Mt

]
.

9One can notice here a certain conceptual similarity between the CGW and Markov functional models
on the one hand, and a difference with the affine models on the other hand. For the latter, the driving SDE
has affine drift and diffusion coefficients, while the function f(Xt, Yt) is nonlinear (nonaffine). For the CGW
model and other LGP-type models, the situation is reversed: the state equation is now nonaffine but the
pricing equation is affine.

9



Both terms entering here can be easily evaluated. Using Eq.(14) and Eq.(15), we obtain,
respectively:

Et
[
d (MtXt)

Mt

]
= Et

[
d
(
e−(θr+κ)t (α1 + β1Zt)

)
Mt

]
= −(θr + κ)Xtdt,

Et
[
dMt

Mt

]
= −(θr + κXt)dt. (17)

Putting this together, we obtain the risk-neutral drift of Xt:

EQ
t [dXt] = [−(θr + κ)Xt +Xt(θr + κXt)] dt = −κXt (1−Xt) dt. (18)

This is exactly the risk-neutral drift that enters the SDE Eq.(2), which demonstrates self-
consistency of the formalism. To identify a diffusion term, we derive a SDE for Xt under
the measure P. This is obtained by using Itó’s lemma for Eq.(14). To this end, we assume
the following dynamics of Zt under the measure P:

dZt
Zt

= σ̂(Zt, t)dWt, (19)

where σ̂(Zt, t) is a local volatility function that will be specified below. This yields

dXt = −κXt (1−Xt) dt+ σ(Zt, t)

(
dZt −

(β0 + β1e
−κt)Z2

t σ̂
2(Zt, t)

α0 + α1e−κt + (β0 + β1e−κt)Zt
dt

)
≡ −κXt (1−Xt) dt+ σ(Zt, t)dZ

(Q)
t , (20)

where

dZ
(Q)
t = dZt −

(β0 + β1e
−κt)Z2

t σ̂
2(Zt, t)

α0 + α1e−κt + (β0 + β1e−κt)Zt
dt = Ztσ̂(Zt, t) (dWt + γ(Zt)Ztσ̂(Zt, t)dt) .

(21)
Note that this is a Q-martingale. Indeed, using Eq.(19), we can write the stochastic expo-
nential operator in terms of the usual exponential P-martingale:

E
(
−
∫ t

0

γ(Zs)dZs

)
= e

∫ t
0 b(s)dWs− 1

2

∫ t
0 (b(s))2ds , b(t) = −γ(Zt)Ztσ̂(Zt, t). (22)

By Girsanov’s theorem, the new Brownian motion W
(Q)
t with dW

(Q)
t = dWt − b(t)dt is a

Q-martingale, which is exactly the combination that arises in Eq.(21).
Comparing Eq.(18) and Eq.(20), we obtain the SDE under the measure Q:

dXt = −κXt (1−Xt) dt+ σ(Zt, t) dZ
(Q)
t , (23)

where the (parametric) local volatility σ(Zt, t) is defined in Eq.(16), and Z
(Q)
t defined in

Eq.(21) is a Q-martingale.
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While the SDE Eq.(23) may look complicated due to the presence of a local volatility
function in Eq.(21) that defines the measure Q, fortunately Eq.(23) is not used for pricing
derivatives in the LGP model of Carr et al. (2011). Instead, it is the P-measure dynamics
Eq.(19) of Zt that drives derivatives prices in this framework. We recall that Zt is a P-
martingale with Z0 = 1, which otherwise can be arbitrary in Eq.(23). We will deal with a
specification of dynamics of Zt in Sect. 4.

3.4 Extension to a Multi-Factor Case

The previous formulation treats a one-factor case N = 1. For an arbitrary number of factors
N ≥ 1, state variables are defined similarly to Eq.(11):

Yt = e−At (C + BZt) = e−At


C0 + (BZt)0

C1 + (BZt)1
...

CN + (BZt)N

 ,

where C = (C0, C1, . . . , CN)> is a parameter vector, B is a factor loading matrix of size

(N + 1)×N , and Zt =
(
Z

(1)
t , . . . , Z

(N)
t

)>
is a non-negative vector-valued P-martingale that

starts at Z0 = (1, . . . , 1)T .
Following Carr et al. (2011), we use a diagonal generator A:

A = θrIN+1 + diag (κ0, κ1, . . . , κN) ,

where IN+1 stands for the identity matrix of size (N + 1)× (N + 1), and κ0 = 0. The state
vector Yt now takes the form

Yt = e−θrt


e−κ0t (C0 + (BZt)0)
e−κ1t (C1 + (BZt)1)

...
e−κN t (CN + (BZt)N)

 = Mt


X0
t

X1
t

...
XN
t

 = MtXt. (24)

As can be easily checked, we recover the previous relation Eq.(11) from these formulae when
N = 1, Ci = αi and Bi1 = βi with i = 0, 1 if we set X1

t = Xt and X0
t = 1−Xt.

Again, the map Mt → Yt defined by Eq.(24) can be inverted by introducing a (N + 1)-
component vector ν = (1, . . . , 1) such that νXt = 1 for any t. This results in the following
generalization of Eq.(13) for the state-price deflator Mt:

Mt = νYt = e−θrt
N∑
i=0

e−κit (Ci + (BZt)i) . (25)
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To resolve the constraint νXt = 1 just introduced, we choose X0
t = 1−

∑N
i=1X

i
t . Now for a

zero-coupon bond we obtain, similarly to Eq.(10),

P (t, T ) = Et
[
MT

Mt

]
=

1

Mt

νEt [YT ] =
1

Mt

νe−ATYt = νe−AτXt

= e−θrτ

(
1−

N∑
i=1

(
1− e−κiτ

)
X i
t

)
. (26)

Note that Eq.(26) implies that P (t, t) = 1 as long as νXt = 1. Finally, for the short rate rt,
we obtain the following expression (compare to Eq.(3)):

rt = θr +
N∑
i=1

κiX
i
t . (27)

4 The USLV Model

Until this point, our formalism was identical to that of the CGW model by Carr et al. (2011).
Now it is time to part ways.

CGW investigate a parametric stochastic volatility (SV) specification of the dynamics of
Zt. In that specification, the stock volatility is obtained by a stochastic time change with
an activity rate process given by a superposition of CIR processes.

Our plan is different. We want to stick to simple one- or two-factor specifications of
the stochastic volatility process, while concentrating on modeling a nonparametric local
volatility layer in Eq.(19) in such a way that all observable option quotes would be exactly
matched. Furthermore, our approach is necessarily numerical and is based on a Markov
chain approximation to the dynamics of the martingale Zt.

We will construct our model in two steps. In the first step, we develop a discretized
nonparametric local volatility version of USLV that corresponds to a zero vol-of-vol limit of
the full-blown model. Calibration to option quotes in this framework is achieved via a set of
multiplicative adjustment factors acting on elements of the Markov generator (see below).
We will refer to these adjustment factors as the one-dimensional (1D) Speed Factors (SFs).
Calibration of such a one-dimensional USLV model amounts to computing a set of 1D SFs.

In the second step, we move on to a full-blown USLV model with a nonzero vol-of-vol by
turning stochastic volatility on. In the present discrete-space framework, this amounts to
making the Markov chain generator stochastic.

To retain a near-perfect calibration to a set of option quotes obtained in the first (1D)
step, we introduce another set of speed factors which we will refer to as 2D speed factors
(2D SFs). The 2D SFs are then calibrated from the previously computed 1D SFs using
a version of the Markovian projection method implemented in an efficient manner using
forward induction on the Markov chain. Once calibrated, the resulting 2D Markov chain can
be utilized to set up efficient pricing schemes for derivatives based on backward-induction
algorithms.

12



We note that the resulting discrete-space continuous-time dynamics on a Markov chain
with a stochastic generator arising in our approach resembles the BSLP model developed
for portfolio credit derivatives in Arnsdorf & Halperin (2007). The two models are similar
in that both use a two-step approach to calibration. In addition, both the definition and
parametrization of our speed factors are similar to how analogously defined contagion factors
are introduced and used in the BSLP model. The difference of the USLV model from the
BSLP model is that while a discrete-space description is exact for credit,10 it is used as an
approximation to the dynamics of the underlying for USLV. Furthermore, while the BSLP
model uses a non-linear death process as a model for a portfolio loss, in the present case we
use a nonlinear quasi-birth-death (QBD) process as a discrete approximation to the dynamics

of a two-dimensional Markov driver Zt =
(
Z

(1)
t , Z

(2)
t

)>
. Finally, we use a different method

for an efficient computation of matrix exponentials arising in evaluation probabilities on
Markov chains.

In what follows, we use the following compact notation for different flavors of our model.
We denote one- and two-factor discretized local volatility models as USLV(1,0) and USLV(2,0),
respectively. Versions with stochastic volatility are denoted as USLV(1,1), (2,1), or (2,2).

We call a discretized process for Zt =
(
Z

(1)
t , Z

(2)
t

)>
a 1D process, while the joint process of

Zt and stochastic volatility is referred to as a 2D process.

4.1 USLV(1,0): One-Factor Local Volatility

We consider the following SDE describing a local volatility dynamics of a one-dimensional
Markov driver Zt under the P-measure:

dZt
Zt

= σ̂(Zt, t)dWt, (28)

where Wt is a Brownian motion and σ̂(Zt, t) is a local volatility. Our objective is to discretize
the dynamics corresponding to Eq.(28).

To this end, we first construct a nonuniform grid of possible values of the martingale
Zt > 0 with Z0 = 1. Let p be the number of points on the grid and 0 < z0 < z1 < · · · < zp−1

be the nodes on the grid. Irregularity of the grid allows making it denser in interesting
regions, and sparser in uninteresting ones. Clearly, the fact that our process is a martingale
helps as our grid should not be too large: as time passes, the underlying stays around the
current value in the sense of expectations.

Let the current state be zi and let ∆zi,i−1 = zi − zi−1, i ∈ [1, p − 1] be the ith space
interval on the grid. We construct the elements of the generator matrix At following the
adaptive Markov chain approximation of Cerrato et al. (2011). Adapting their formulae to

10Provided some additional assumptions are made, such as a discrete spectrum of recovery values.
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our case of a zero-drift diffusion Zt, we obtain the Markov chain generator

A =


a00 a01 0 · · · 0
a10 a11 a12 · · · 0
...
0 · · · ap−2,p−3 ap−2,p−2 ap−2,p−1

0 · · · 0 ap−1,p−2 ap−1,p−1

 (29)

with elements

ai,i−1 =
si(t)

∆zi,i−1 (∆zi,i−1 + ∆zi+1,i)
, ai,i+1 =

si(t)

∆zi+1,i (∆zi,i−1 + ∆zi+1,i)
, (30)

aii = −ai,i−1 − ai,i+1, ai+j,i = ai,i+j = 0, j > 1.

where we defined a grid-valued set of speed factors (SFs)

si(t) = σ̂2(zi, t). (31)

Now we have a Markov generator parametrized by the pointwise set of speed factors in
Eq.(31). Next we will show how the SFs in Eq.(31) are turned into tunable parameters and
used for calibration to option quotes.

4.2 Parametrization of Speed Factors in USLV(1,0)

As it stands, the parametrization in Eq.(29) is very general. The number of free parameters
per a given time slice t is p, typically far exceeding the number of observed option quotes
available for calibration for cases of practical interest.11

To achieve an exact match between the number of free parameters in our model and
the number of available option quotes, we consider the following parametrization of our 1D
speed factors Eq.(31). Our approach here is similar to how contagion factors are used in the
BSLP model of Arnsdorf & Halperin (2007).

We assume that as a function of time t, the SFs si(t) are piecewise constant between ma-
turities of traded options. This considerably simplifies computation of matrix exponentials.

For the dependence of si(t) on the grid index i (i.e., for the z dependence), we proceed
as follows. Let K0, K1, . . . , Kq−1 be a set of strikes for traded options across all maturities,
expressed in terms of the Z-space as, e.g., in Proposition 3 of Carr et al. (2011). We assume
that all these strikes correspond to q different nodes on our grid.12 We then model the
speed factors si for all values of i by picking exactly q free values ŝ0, . . . , ŝq−1 at locations
K0, K1, . . . , Kq−1, and using linear interpolation for points in between. In other words, our
speed factors si(t) are piecewise-linear in zi, while the anchor points at q selected nodes serve

11Typical values of p that we have in mind for practical implementation are around 20 to 100; see also
Cerrato et al. (2011).

12This is because our grid is constructed in such a way that it puts all strikes exactly at some nodes, plus
add some nodes in between and beyond the range of quoted strikes.
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as free parameters for calibration to option quotes. Any consistent set of option quotes can
be exactly matched by the present method.13

Note that calibration of local volatility models without assuming availability of a complete
set of option quotes (i.e., when the number of option quotes is less then the number of nodes
on a grid) has been previously discussed in the literature. In particular, a recent paper by
Lipton & Sepp (2011) analyzes a setting where the local volatility function is piecewise-flat
between quoted strikes (or between mid-points) using Laplace-transform based methods.
Unlike their method, which is exact in 1D, our approach is based on numerical optimization,
but it is extendable to a multivariate setting (2D and higher) along the same lines as in 1D.
In addition, a piecewise-linear volatility model appears to be a less drastic approximation
than a piecewise-flat model.

4.3 Calibration of the USLV(1,0) Model

Calibration of the speed factors si(t) in the above setting is straightforward. The anchor
points introduced above serve as parameters of optimization. Given a multidimensional op-
timizer, at each iteration we first construct the generator matrix given the current set of the
anchor points. After that, finite-time probability distributions are computed by taking ma-
trix exponentials of the generator. As the mathematical structure of our model is essentially
the same for the N = 1 and N = 2 cases (one or two factors for the term structure), we
postpone presenting details of this procedure until the next section where we introduce an
N = 2 version of our model. Theoretical option prices for a given set of model parameters
are then computed using these probability distributions. Finally the optimizer adjusts the
current set of free parameters to decrease the error between the model and the market.

5 USLV(2,0): Two Curve Factors

With two factors for the curve (N = 2), we assume the following vector-valued SDE for the

dynamics of Zt = (Z1
t , Z

2
t )
>

:(
dZ

(1)
t

dZ
(2)
t

)
=

(
Σ11 Σ12

Σ21 Σ22

)(
dW

(1)
t

dW
(2)
t

)
, (32)

where two Brownian motions W
(1)
t ,W

(2)
t are independent, and the volatility matrix Σ = Σ(z)

is defined as follows:

Σ(z) =
√
s(z, t)

(
σ1

√
1− ρ2 σ1ρ
0 σ2

)
, Σ(z)Σ(z)T = s(z, t)

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)
. (33)

13Alternatively, if the number of liquid option quotes per maturity is large while the calibration speed is
an issue, then some strikes can be omitted from the set of anchor points at the price of giving up an exact
calibration for these omitted strikes, while keeping an exact calibration for the other strikes. For example,
one can be guided by the size of quoted bid-ask spreads in deciding which strikes could be skipped without
much sacrifice to accuracy while gaining in performance. To preserve no-arbitrage for the omitted strikes,
one should use a monotonic interpolation in the probability space.
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Here s(z, t) = s(Zt, t|Zt = z) ≥ 0 is a scalar function of the state variable Zt =
(
Z

(1)
t , Z

(2)
t

)>
,

and z = (z1, z2) are the values of Zt at time t. An explicit specification of this function will

be given below. Note that components Z
(1)
t and Z

(2)
t defined by Eq.(32) and Eq.(33) are

correlated with correlation coefficient ρ.
Our first objective is to approximate the dynamics given by Eq.(32) by a 2D Markov

chain. To this end, we start with a Markov generator corresponding to the 2D diffusion
given by Eq.(32):

LV (z) =
1

2

N=2∑
i,j=1

[
ΣΣT

]
ij

∂2V (z)

∂zi∂zj
, (34)

where V (z) = V (zT |z) is an arbitrary function (a value function or a transition density)
of backward variables z (with forward variables zT treated as parameters). The generator
specifies the continuous-space backward equation

∂V (z, t)

∂t
= −LV (z, t) .

Note that in order to be probabilistically interpretable as a generator of a Markov chain,
a discrete version A of the generator L should have all nondiagonal elements nonnegative,
and all diagonal elements negative, such that all rows sum up to one. These remarks are
important as not any discretization of L gives rise to a valid Markov chain generator. For
example, using a central divided difference to approximate the mixed derivatives in Eq.(34)
would not preserve nonnegativity of nondiagonal elements of A.

With these remarks in mind, and given a two-dimensional grid14 of values of
(
Z(1), Z(2)

)
with p nodes per dimension, we approximate second derivatives by divided differences.
Derivatives Vzk,zk , k = 1, 2, are represented using the central differences

∂2V

∂z2
1

∣∣∣∣
ij

=
Vi+1,j − 2Vi,j + Vi−1,j

(∆z1)2
+O

(
(∆z1)2

)
,

∂2V

∂z2
2

∣∣∣∣
ij

=
Vi,j+1 − 2Vi,j + Vi,j−1

(∆z2)2
+O

(
(∆z2)2

)
,

while for the mixed derivative we take uncentered differences which preserve nonnegativity:

∂2V

∂z1∂z2

∣∣∣∣
ij

=
Vi+1,j+1 − Vi+1,j − (Vi,j+1 − 2Vij + Vi,j−1)− (Vi−1,j − Vi−1,j−1)

2∆z1∆z2

+O (∆z1∆z2) +O
(
(∆z1)2

)
+O

(
(∆z2)2

)
, ρ ≥ 0,

∂2V

∂z1∂z2

∣∣∣∣
ij

=
Vi+1,j − Vi+1,j−1 + (Vi,j+1 − 2Vij + Vi,j−1)− (Vi−1,j+1 − Vi−1,j)

2∆z1∆z2

+O (∆z1∆z2) +O
(
(∆z1)2

)
+O

(
(∆z2)2

)
, ρ < 0.

14For simplicity, in this section we assume that our one-dimensional grids are uniform with the same
number p of grid points per each dimension. Therefore, zi+1,j−zi,j = δz1, ∀j = 1, N, i ∈ [1, p), zi,j+1−zi,j =
δz2, ∀i = 1, N, j ∈ [1, p). For analysis of a nonuniform grid, see Appendix A.
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Using this in Eq.(34) and regrouping terms, we obtain

(LV (z))ij =
∑

k,m∈{−1,0,1}

aij|i+k,j+m, Vi+k,j+m (35)

where we introduced the following compact notation:

aij|i+1,j = aij|i−1,j =
1

2
sij(t)

(
σ2

1

(∆z1)2 −
|ρ|σ1σ2

∆z1∆z2

)
,

aij|i,j+1 = aij|i,j−1 =
1

2
sij(t)

(
σ2

2

(∆z2)2 −
|ρ|σ1σ2

∆z1∆z2

)
,

aij|ij = −sij(t)
(

σ2
1

(∆z1)2 −
|ρ|σ1σ2

∆z1∆z2

+
σ2

2

(∆z2)2

)
, (36)

aij|i+1,j+1 = aij|i−1,j−1 =

{ sij(t)

2
ρσ1σ2

∆z1∆z2
if ρ ≥ 0,

0 if ρ < 0,

aij|i+1,j−1 = aij|i−1,j+1 =

{
0 if ρ ≥ 0,
sij(t)

2
|ρ|σ1σ2
∆z1∆z2

if ρ < 0,

where sij(t) = [s(Zt, t)]ij.
To ensure that all parameters aij|i+k,j+m, k,m 6= 0 are nonnegative, we impose the

following constraint on the step size ∆z2 given a chosen step ∆z1:

|ρ|σ2

σ1

∆z1 ≤ ∆z2 ≤
σ2

|ρ|σ1

∆z1. (37)

Assuming Eq.(37) is satisfied, we can interpret Eq.(35) as a generator matrix of a 2D Markov
chain. We can write it in a matrix form as follows:

(LV (z))ij = [AV ]ij =
∑
i′,j′

Aij|i′j′Vi′j′ . (38)

As we deal with a two-factor setting, the matrix elements of the generator A carry four
indices rather than two. To sum over two indices corresponding to the Z(1)- and Z(2)-states
in Eq.(38), it is convenient to group all transitions according to the change of one variable
(e.g., Z(1)). We obtain

(LV (z))ij =
∑
i′,j′

Aij|i′j′Vi′j′ =
∑
j′

Aij|i−1,j′Vi−1,j′ +
∑
j′

Aij|ij′Vij′ +
∑
j′

Aij|i+1,j′Vi+1,j′

=
[{
aij|i−1,j−1Vi−1,j−1 + aij|i−1,jVi−1,j + aij|i−1,j+1Vi−1,j+1

}
+
{
aij|i,j−1Vi,j−1 + aij|ijVij + aij|i,j+1Vi,j+1

}
(39)

+
{
aij|i+1,j−1Vi+1,j−1 + aij|i+1,jVi+1,j + aij|i+1,j+1Vi+1,j+1

}]
.

Here terms in the first, second, and third row correspond to transitions i→ i−1, i→ i, and
i→ i+ 1 in the Z(1)-dimension, respectively.
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Mathematically, this is expressed via the following tridiagonal block-matrix form for the
resulting “one-dimensional” Markov chain generator A:

A =


L(0) F (0) 0 0 · · · 0 0
B(1) L(1) F (1) 0 · · · 0 0

0 B(2) L(2) F (2) · · · 0 0
...
0 0 0 0 · · · B(p−1) L(p−1)

 , (40)

where all matrices B(i), L(i), F (i) have dimension p × p, i.e., the dimension of our one-
dimensional grids.15 Explicit expressions for these matrices can be found from Eq.(39):

B
(i)
j,j−1 = aij|i−1,j−1, B

(i)
j,j = aij|i−1,j, B

(i)
j,j+1 = aij|i−1,j+1,

L
(i)
j,j−1 = aij|i,j−1, L

(i)
j,j = aij|ij, L

(i)
j,j+1 = aij|i,j+1,, (41)

F
(i)
j,j−1 = aij|i+1,j−1, F

(i)
j,j = aij|i+1,j, F

(i)
j,j+1 = aij|i+1,j+1,

while all other elements of these matrices vanish. Note that this implies that the generator
Eq.(40) is “doubly” sparse, as matrices B(i), L(i) and F (i) are themselves sparse; see also a
comment at the end of this section.

The block-tridiagonal matrix structure Eq.(40) of the Markov chain generator A is char-
acteristic of so-called quasi-birth-death (QBD) processes. A QBD process is a bivariate

Markov chain of a special type of dynamics of two components. The first component, Z
(1)
t ,

called the “level,” follows a birth-and-death (BD) process on either a finite or infinite set

of states. Conditional on the realization of the Z
(1)
t -component at a given step [t, t + dt],

the second component Z
(2)
t , called the “phase,” follows another Markov process. For a short

review of QBD processes, see, e.g., Kharoufeh (2011). Note that in our particular case, Z
(2)
t

follows another BD process, while the support of Z
(1)
t is finite. QBD processes with finite

support are called finite QBD processes.
The symbols L,B and F in Eq.(40) stand for local (without change of level), backward

and forward (the level is changed by one unit up or down) moves, respectively. Note that as
long as the matrices L(i), B(i) and F (i) depend on level i via the discretized local volatility
function sij, our QBD process with generator Eq.(40) is a level-dependent (or nonlinear)
finite QBD, denoted sometimes as a (finite) LDQBD in the literature.

It is easy to check that Eq.(40) with elements defined as in Eq.(36) is a valid Markov
generator where all off-diagonal elements are positive, diagonal elements are negative and
each row in A sums to zero.

After the QBD generator matrix is constructed according to Eq.(40), a matrix P of
finite-time transition probabilities with matrix elements

Pij|i′j′(t, T ) ≡ P
[
(Z

(1)
T , Z

(2)
T = z

(1)
i′ , z

(2)
j′ |Z

(1)
t , Z

(2)
t = z

(1)
i , z

(2)
j

]
(42)

15If grids in z(1) and z(2) have different lengths p1 and p2, then the size of these matrices will be p2 × p2.
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can be computed by solving the forward Kolmogorov equation

∂P

∂T
= PA. (43)

For a given interval [t1, t2] where the generator A does not depend on time, the solution of
the forward equation is

P = Pt1e
(t2−t1)A,

where Pt1 is a state vector at time t1, and eX stands for the matrix exponential of X.
A few remarks on the complexity of the method just presented are in order here. We

have managed to map the two-factor continuous-space dynamics Eq.(32) on the state space
Z1 × Z2 onto a QBD process with generator Eq.(40). The latter can formally be viewed
as a one-dimensional Markov chain in an extended linear space whose basis is formed by
elements of a Kroneker product of grid values Z

(1)
g ⊗Z

(2)
g (and properly rearranged to form a

QBD structure). Therefore, computation of transition probabilities Eq.(43) in our two-factor
model is, at least formally, as simple as a corresponding calculation for a one-factor model,
and reduces to computation of a single matrix exponential, albeit of a larger matrix.16

While naively the generator A has O(p4) free parameters, their actual number is much
lower due to sparsity of the matrix. It is simple to find that the number of nonzero elements
that need to be stored scales as (3p− 2)p+ 2(2p− 1)2. For example, for p = 100 our matrix
A would be of size 10000 × 10000 with only 109,002 non-zero elements. Matrices of such
sizes can well be handled by modern matrix exponentiation methods (see below).17

5.1 Transient Probabilities of QBD Chain by Randomization

It is well known that a direct computation of a matrix exponential etA with a Markov
generator A via a straightforward use of a Taylor series expansion as

∑∞
n=0(tA)n/n! is in

general not a good idea (see Moler & van Loan (2003)). The main reason for this is that
severe roundoff errors might accumulate (especially when the matrix is large) due to the
fact that the generator has both positive and negative entries. In addition, matrices (tA)n

become nonsparse even if the original matrix A is sparse, as is the case for the QBD process.
An efficient method of choice for dealing with matrix exponentials for large matrices is

known as Jensen’s randomization; see, e.g., Gross & Miller (1984), or Haverkort (2001) for
a more recent review. The method proceeds as follows. We start with choosing a parameter
λ ≥ maxi {|Aii|}, and define the matrix

P = I +
A

λ
⇒ A = λ (P− I) . (44)

16Here in addition to various efficient algorithms for computing a matrix exponential of a sparse matrix,
one could use splitting in different dimensions that would take into account a block-diagonal form of the
generator matrix A.

17While a randomization method that we describe in the following section may not be the most efficient
method when the L2 norm of matrix A is large (Sidje & Stewart (1999)), it is very convenient for introducing
stochastic volatility via a stochastic time change. We therefore stick to this approach in what follows.
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With our choice of λ, all entries of P are between 0 and 1, and all rows sum to 1. This
means that P is a stochastic matrix that describes a discrete-time Markov chain “related”
to the original continuous-time Markov chain with generator A. We now want to discuss in
more detail the sense in which these two Markov chains are “related.”

To this end, we substitute A as given by Eq.(44) into the solution of the forward equation:

P (t) = P ′0e
tA = P ′0e

λt(P−I) = P ′0e
−λteλPt.

Using a Taylor series expansion for the matrix exponential in this expression, we obtain

P (t) = P ′0e
−λt

∞∑
n=0

(λt)n Pn

n!
= P ′0

∞∑
n=0

ψ(λt, n)Pn, (45)

where

ψ(λt, n) = e−λt
(λt)n

n!
, n ∈ N,

are Poisson probabilities, i.e., probabilities of observing n events by time t for a Poisson
process with intensity λ. Note that a naive Taylor expansion of the matrix exponential
etA behaves badly, but the new expansion is much better behaved: roundoff errors are now
largely eliminated as all entries of matrix P are between 0 and 1. Moreover, different terms
are weighted by the Poisson probabilities, so that the expansion is expected to converge fast
when the product λt is not too large.

We note that the construction given by Eq.(45) can be interpreted as a discrete-time
Markov chain (DTMC) Yn (n = 0, 1, . . . , p) with transition matrix P subordinated to a
Poisson process Nt where the latter serves as a randomized “operational time” for Yn, so
that the subordinated process is now defined as Xt = YNt (see, e.g., Feller (1968)). We will
return to the topic of subordinated processes in Sect. 7.1.

It is important to point out that the method just presented can be used without a
matrix-matrix multiplication (as Eq.(45) would naively suggest). Let π̂n be the probability
distribution vector in the DTMC with transition matrix P after n epochs. This vector can
be computed recursively:

π̂0 = P0,

π̂n = π̂n−1P, n ∈ N+. (46)

Using the vector π̂n, the state probabilities Eq.(45) in the original CTMC are computed as
follows:

P (t) =
∞∑
n=0

ψ(λt, n) (P ′0P
n) =

∞∑
n=0

ψ(λt, n)π̂n.

Therefore, computationally the algorithm amounts to a series of vector-matrix multiplica-
tions that can be done very efficiently for matrices of sizes typical for our problem. Moreover,
the recursive procedure of Eq.(46) preserves the sparsity of P, thus enabling a substantial
acceleration of the vector-matrix multiplication.

In practice, the infinite sum in Eq.(45) is truncated at some value nmax. This value can
be adaptively controlled within the algorithm itself, as a theoretical upper bound for an error
resulting from the truncation is available as discussed, e.g., by Gross and Miller (1984).
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5.2 Calibration of Speed Factors in USLV(2,0)

Summarizing our results for the USLV(2,0) model so far, we see that the mathematical
structure of the (2,0) model is similar to that of the (1,0) model. Indeed, for the latter our
Markov chain construction gives rise to a nonlinear birth-death (BD) process modulated by
1D speed factors (SFs) si(t). After a proper parametrization as described in Sect. 4.2, SFs are
calibrated to market option quotes. For the (2,0) case (two factors for the term structure),
the resulting Markov chain is a nonlinear quasi-birth-death process, again modulated by a
set of SFs sij. In terms of computational complexity, the two cases are essentially the same,
as both amount to calculation of matrix exponentials of a Markov chain generator (albeit in
different dimensions).

Calibration of the (2,0) model is done by the fitting function s(z, t) in Eq.(32). To this
end, we proceed similarly to the one-factor case. We assume that function s(z, t) = s(z1, z2, t)
is a function of single argument, s(z1, z2, t) = s(α1z1 + α2z2, t), where α1, α2 ≥ 0 are some
weights (e.g., α1 = α2 = 0.5). For calibration purposes, we could parametrize this function
in a piecewise-linear way, i.e., in exactly the same way as we did before for the N = 1 model.
The number of free parameters (anchor points) and their locations would be chosen based
on a particular set of instruments available for calibration.

To continue with our theoretical construction of the model, in what follows we assume
that the stage of construction of a (2,0) (or (1,0)) version of the USLV model is completed
along the lines described here. In what follows, we refer to these SFs as 1D SFs, in order to
differentiate them from another set of speed factors (2D SFs) that will be introduced below
when we add stochastic volatility to the model.

Finally, we note that while the main purpose of the USLV(2,0) model for our purposes
is to use it as a building block in the construction of a full-blown USLV(2,2) model with
stochastic volatility, the pure local volatility USLV(2,0) model can also be useful in its own
right, e.g., as a way of pricing European vanilla options with illiquid strikes in terms of prices
of liquidly traded options.

6 USLV(2,2): Two Curves and Two Volatility Factors

Once we have a calibrated USLV(2,0) model, introduction of stochastic volatility in this
framework amounts to two things: (i) introducing new dynamics for volatility drivers, and (ii)
making sure the model still calibrates to available option prices. This produces a calibrated
USLV(2,2) model.

Let us note that stochastic volatility dynamics can be introduced in our framework in two
ways. In the first approach, we follow the formulation of a continuous-time Markov chain
(CTMC) dynamics, which we now augment by 2D dynamics of “spot” variance factors. For
numerical implementation, the model is then put on a time grid [t0, t1, . . . , tn] with a uniform
time step ∆t. All calculations (see below) are done to O(∆t2) accuracy, which assumes that
∆t should be sufficiently small.18 With this method, we solve the forward and backward

18For example, we might need to use daily or more frequent steps, depending on the level of volatility,
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Kolmogorov equations one step ∆t at a time, similarly to finite difference methods.
In the second approach, we deal with arbitrary time lines which do not necessarily have

small time steps. For example, we may want to model the values of underlying factors only
on a sparse set of “interesting” dates (e.g., coupon dates, call dates etc.). Essentially, by
taking matrix exponentials of the generator, we aim here to achieve a functionality similar
to the USLV(1,0) and USLV(2,0) models (or any CTMC model, for that matter), which are
capable of computing finite-time transition probabilities directly.19

Respectively, in what follows we present two versions of the USLV(2,2) model. In the

first version, we assume a Markov dynamics in the pair (Zt,Yt) where Yt =
(
Y

(1)
t , Y

(2)
t

)
is a bivariate “spot” variance driver. In the second version, we instead assume a Markov
dynamics in a pair of Zt and an integrated bivariate variance, or, more generally, a bivariate

stochastic time subordinator (see below). We will use the notation Tt =
(
T

(1)
t , T

(2)
t

)
for

the latter in what follows. For reasons that will become clear shortly, we will refer to these
two versions of the model as the activity-rate-based model (AR-USLV), or the implied-time-
change-based model (ITC-USLV), respectively.

On the theoretical side, it turns out that both approaches can be viewed in a unified way
by interpreting them as particular realizations of a stochastic time change of the original
QBD Markov chain. We will give more details on this below in Sect. 7.1.

On the practical side, we can choose between two numerical methods. With the first
method, we can implement both the AR- and ITC-versions of our model in a similar way
using a version of the Markovian projection method. The latter reduces calibration of
USLV(2,2) to a fast forward induction method in what is essentially a 1D problem, without
a need for a forward induction on a full 2D Markov chain.20 No new optimization in addition
to one performed at the stage of calibration of the USLV(2,0) model is involved here. There-
fore, the method is very fast on each given time step, the only potential bottleneck being
the necessity to perform such computation repeatedly on a dense time grid. The method is
nonparametric in that it solves the problem of calibration of the full-blown USLV(2,2) model
via a judicious choice of 2D speed factors (SFs) that are computed off the calibrated 1D SFs
of the USLV(2,0) model.

The second method, which is applied below for the ITC-USLV version of our model but in
principle could be used for both versions, is to “break the symmetry,” and make the process

Tt =
(
T

(1)
t , T

(2)
t

)
parametric in one dimension (e.g., T (2)), while keeping it nonparametric in

another dimension (resp., T (1)). The idea here is that for the purpose of calculation of finite-

with this approach.
19To the extent that one-step methods, such as the Runge-Kutta method, can be viewed as particular ways

to compute matrix exponentials (see Moler & van Loan (2003)), what we mean here by “direct” calculations
are other methods of computing matrix exponentials that might in some cases be more efficient than one-step
methods.

20Recall that by 1D and 2D, we mean linearized spaces obtained from the pairs
(
Z

(1)
t , Z

(2)
t

)
and(

Y
(1)
t , Y

(2)
t

)
by taking elements of pairwise Kroneker products as new 1D bases. In terms of factor counting,

our 1D and 2D Markov chains correspond to the two- and four-factor model specifications, respectively.
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time transition probabilities in the Z-space, we can perform averaging over the randomness
due to T

(2)
t analytically (or semi-analytically) once a tractable model for subordinator T

(2)
t is

specified. The averaging over the residual randomness due to T
(1)
t is performed numerically.

Similarly to the previous case, this calculation can be done in a nonparametric setting, where
at each step on our sparse time grid, we introduce just enough free parameters to match
observed quotes for options maturing at this time. Differently from the previous case, the
recalibration to option quotes in the present setting amounts to a (convex) optimization
problem in the dimension equal to the number of option quotes for this maturity.

The two flavors (AR and ITC) of our USLV(2,2) model outlined above thus offer a certain
trade-off in terms of complexity. For the AR-USLV(2,2) model, the recalibration is fast for
one step, but complexity scales linearly with the number Nd of time steps on a dense grid;
i.e., the complexity is O(Nd). For the ITC-USLV(2,2) model, the complexity is O(NsNc),
where Ns is the number of nodes on a sparse time line, and Nc is the number of option quotes
per node, independently of ∆t, but the O(Nc) part above involves convex optimization in
dimension Nc. Based on previous experience with similar models, we expect a compatible
performance from the two versions of the USLV(2,2) model, at least for typical cases (e.g.,
Nc = 5, Nt = 40). Therefore, in what follows we will present both versions of the model.

Our plan for the reminder of this paper is as follows. In the rest of this section, we describe
the AR-USLV(2,2) version of the model, where the Markov pair is (Zt,Yt), with a bivariate

spot variance driver Yt =
(
Y

(1)
t , Y

(2)
t

)
. In Sect. 6.1, we provide a qualitative overview

of this version of the model. The following subsections of Sect. 6 provide details of our
approach. The ITC-USLV(2,2) version of the model, where the Markov pair is (Zt,Tt) with

Tt =
(
T

(1)
t , T

(2)
t

)
being a bivariate subordinator, is presented in Sect. 7. As will be shown

below, calibration to observed option prices amounts, in this approach, to a construction of
an implied time change (ITC) process. Within a particular approach presented in Sect. 7,
the ITC process is defined in terms of a bivariate exponential-Lévy process Lt = (Tt, θt)
where Tt is a parametric subordinator (e.g., an exponential gamma process), and θt is a
nonparametric subordinator. The latter will be referred to as a time dilaton process, for
reasons explained below.

6.1 Overview of AR-USLV(2,2)

As was mentioned above, a model obtained from our USLV(2,0) model by adding new state

variables (in this case, spot volatility drivers Yt =
(
Y

(1)
t , Y

(2)
t

)
) would not in general match

observed option prices, even if our initial USLV(2,0) model does. Moreover, for any particular

parametric model for the dynamics of the pair
(
Y

(1)
t , Y

(2)
t

)
, we are still not guaranteed that

the full model could accurately fit available option quotes even after calibration of parameters
of the Y -process.

In order to reinforce a nearly exact calibration to options for all consistent sets of quotes,
we introduce 2D speed factors (SFs) S(z, y, t) in the full (2,2) model, that play an analogous
role to 1D SFs Eq.(31) in the (2,0) version of the model. We then provide a fast scheme to
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compute 2D SFs based on solving the forward equation on the Markov chain. Our method is
similar to one used by Britten-Jones & Neuberger (2000) (BJN), see also Rossi (2002), for a
lattice-based stochastic local equity model in a (1+1) setting. A similar method was used in
the BSLP model by Arnsdorf & Halperin (2007) for modeling dynamics of credit portfolios.
For a similar method used for equity option pricing, see Ren et al. (2007).

A peculiar feature of a BJN-like forward induction method (to be presented in detail
below) is that it tries to adjust the Z-process for any Y -process. It does not address the
problem of calibration of parameters of the Y -process itself. In certain situations, it might
make sense to try to calibrate parameters of the Y -process as accurately as we can before
adding a local volatility layer (so that our change to a parametric model due to introduction
of a local volatility would be a minimal tweak of the model). Alternatively, we could try to
fit parameters of the Y -process after we introduce the local volatility layers, but before we
compute the 2D SFs. This might be an attractive option for a practical method of model
calibration in our setting. The reason is that if such parametric calibration of the Y -process
produces a good but not perfect fit to the data, the role of non-parametric 2D SFs of the
(N = 2,M = 2) model would be to perfect quality of calibration at the price of adding some
nonparametricity.21

Note that while the BJN-like approach does not by itself address the problem of cali-
bration of parameters of the Y -process for a parametric specification of the dynamics of Yt,
this is where we could use Laplace transform based methods for stochastic subordinators,
similar to the method presented in Sect. 7 in a slightly different setting. This implies that
the calibration method presented later in this section and a method presented in Sect. 7
can in practice be used together for a joint parametric/nonparametric calibration of the
AR-USLV(2,2) model.

Yet another possible way to calibrate our model would be as follows. If a trader has
a strong view on the relative weights of a spanned (delta-driven) and unspanned (genuine
vega) contribution to options’ vegas, and wants the model to behave accordingly, this could
be achieved as follows. Assuming that we are able to map constraints like those onto some
typical behavior of the set of SFs,22 we first fix some set of 1D SFs, and then calibrate
parameters of the Y -process given these SFs. After parameters of the Y -process are specified
in this way, we proceed in the regular way of calibrating the model, by first computing the
“true” (market-implied) set of 1D SFs, and then following the forward calibration of 2D SFs
in the full-blown model with parameters of the Y -process just computed at the previous
step. Again, a combination of various methods presented below can be used to implement
such a calibration strategy.

As a brief summary, our QBD Markov chain stochastic-local volatility offers substantial
flexibility in how the model can be calibrated to available market and/or historical data. Dif-
ferent steps/versions of the calibration procedure can be combined (or skipped), depending
on the specific needs of an end user. We now proceed with describing our framework.

21We hold a view that nonparametricity is “evil,” but it is a “common evil” in the sense that it is used
everywhere (for term structure calibration, local volatility models etc.).

22Such dependence can be established either theoretically, or empirically on the basis of behavior of the
model as a function of model parameters.
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6.2 QBD Processes and Stochastic Time Changes

We prefer to think of stochastic volatility in terms of a stochastic time change of some “base”
process such as a Brownian motion. (See Sect. 7 for more details and relevant references.)
As our original two-factor (N = 2) diffusion equation, Eq.(32), has two Brownian drivers,

W
(1)
t and W

(2)
t , we can use two different stochastic clocks on them. This would amount to

having a stochastic local volatility model with N = 2 and M = 2.
Such formulation can be useful for asset classes where the short- and long-term option

volatilities typically behave differently (e.g., have different typical levels or vol-of-vol), in
addition to a different behavior of Zt-factors driving short- and long-term prices of basic
instruments (bonds, futures etc.). For example, for modeling commodity derivatives, we

might want to have one long-term factor Z
(1)
t driven by a Brownian driver W

(1)
t with its own

stochastic clock (stochastic volatility) driver Y
(1)
t , and another, short-term factor Z

(2)
t driven

by another (possibly correlated) Brownian driver W
(2)
t , with its own stochastic clock driver

Y
(2)
t .23 This results in a four-factor scenario with correlated long- and short-term factors,

each having its own stochastic volatility driver.
The above picture of two curve drivers each having its own stochastic clock is not lost

in our discrete-space Markov chain construction. As we will show next, the structure of our
QBD Markov chain Eq.(40) for the N = 2 case enables introducing two stochastic clocks in
the model in an internally consistent way, and without any need of introducing additional ad
hoc constraints on the model dynamics. These stochastic clocks will modulate two Markov
chain generators. As the latter play the role of stochastic drivers in the discrete-space
setting, the resulting “ecosystem” of (discrete-valued) curve and volatility factors bears a
strong structural similarity to its continuous-space counterpart.

To explain our construction, we start with representing the Markov generator Eq.(40) in
the following form:

A =


−F̂ (0) F (0) 0 · · · 0

B(1) −F̂ (1) F (1) · · · 0

0 B(2) −F̂ (2) · · · 0
...

0 0 · · · B(p) −F̂ (p)

+


L̂(0) 0 0 · · · 0

0 L̂(1) 0 · · · 0

0 0 L̂(2) · · · 0
...

0 0 0 · · · L̂(p)


≡ A1 + A2, (47)

where F̂ (i) = diag
(
F (i)1

)
+ diag

(
B(i)1

)
and L̂(i) = L(i) + F̂ (i), with 1 being a vector of

ones. Using Eq.(36) and Eq.(41), it can be readily checked that both A1 and A2 defined in
Eq.(47) are valid generators in the sense that for both, all off-diagonal elements are positive,
all diagonal elements are negative and all rows sum up to zero.

This can be interpreted as follows. The second generator A2 corresponds to an idiosyn-
cratic component of the Z-dynamics that is independent of the rest of the system, and can be

23Alternatively, correlated dynamics of two stochastic drivers with each one having its own stochastic
volatility factor can be used for pricing hybrid derivatives.
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thought of as describing idiosyncratic jumps of Z
(2)
t that occur without a simultaneous jump

of Z
(1)
t on the same time interval.24 In terms of representation of stochastic dynamics of

our system, this generator is an avatar of the idiosyncratic Brownian driver W
(2)
t in Eq.(32).

The first generator A1 describes joint jumps of Z
(1)
t and Z

(2)
t , and can be thought of as an

avatar of the common Brownian driver W
(1)
t in Eq.(32).

As shown in Appendix B, a random time change of a continuous-time Markov chain
amounts, in terms of the resulting Markov generator for the chain, to scaling all elements of
the original Markov chain generator by a common factor given by the value of the activity
rate (intensity of the time change) process.

As they conserve probability separately from each other, two generators A1 and A2 can be
seen as representing two different subsystems of our dynamic system in the (Z

(1)
t , Z

(2)
t )-space.

As a time change acts as a common scaling factor on a generator matrix (see Appendix
B), this implies that we can subject two generators, A1 and A2, to different stochastic
clock changes without any problems with laws of probability: after separate time changes,
probabilities are still all nonnegative, and sum up to one in each subsystem separately. This
gives rise to a discrete-space version of a continuous M = 2 stochastic volatility model.

To summarize, the (2+2)-factor structure of the original continuous-space system Eq.(32)
(i.e. two factors for the term structure and two factors for the volatility) is now naturally
mapped onto a corresponding structure in our Markov chain model, where a QBD process

is an avatar of a two-dimensional Brownian motion
(
W

1)
t ,W

(2)
t

)
, and two volatility factors

are separately introduced as two stochastic clocks for two generators A1 and A2 as explained
above. We now discuss specific realizations of this scenario in our model.

6.3 Forward Equation and Transition Probabilities in USLV(2,2)

We assume discrete dynamics of stochastic intensity (stochastic volatility) drivers Yt, with

an odd number Ny = 2q + 1 of discrete states for each driver Y
(1)
t , Y

(2)
t . Points on a two-

dimensional Y -grid are denoted as
{
Y

(1)
α1 , Y

(2)
α2

}α1,α2=2q

α1,α2=0
. The initial values (Y

(1)
t=0, Y

(2)
t=0) corre-

spond to the midpoints (Y
(1)
q , Y

(2)
q ) on the grid.

In practice, we prefer to keep a low number of states (say 3 to 11) per volatility factor.
As volatility is unobservable, we feel that maintaining a low number of states might suffice
to reproduce most important stylized facts about stochastic volatility such as mean reversion
and/or volatility clustering (persistence), alongside its role in providing a better behavior of a
forward smile (a non-flattening smile for longer maturities) than typical behavioral patterns
observed with local volatility models.

To ease the notation, in this section we use Latin indices i, j, k to enumerate states
(Zt = Zi,Zt+dt = Zj etc.), and Greek indices α, β to enumerate values of Yt, Yt+dt. However,
because we deal with a two-factor setting, both the indices and factor values are now two-

24This can also be viewed as a one-dimensional orthogonal projection of two-dimensional dynamics of the

pair (Z
(1)
t , Z

(2)
t ) onto a subspace where no jumps in variable X = Z

(1)
t are allowed.
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component vectors rather than scalars; for example,

Zi =
(
Z

(1)
i1
, Z

(2)
i2

)
, i = (i1, i2) , i1, i2 ∈ Z+. (48)

A similar representation is used for volatility drivers Yα =
(
Y

(1)
α1 , Y

(2)
α2

)
. In what follows we

use both the vectorized and component notations.
We postulate that the 2D dynamics of the pair (Zt,Yt) (where both factors Zt and Yt

are two-dimensional) in the USLV model is Markovian. The system is defined in terms of
the joint marginal probabilities

π(j, α, t) ≡ P [Zt = Zj,Yt = Yα]

and conditional transition probabilities

piα|jβ(t, t+ dt) ≡ P [Zt+dt = Zj,Yt+dt = Yβ|Zt = Zi,Yt = Yα] .

The forward equation takes the form

π(j, β, t+ dt) =
∑
j,α

piα|jβ(t, t+ dt)π(i, α, t). (49)

The transition probabilities have the following expansion:

piα|jβ(t, t+ dt) = δijδαβ + Aiα|jβ(t)dt+O
(
dt2
)
, (50)

where Aiα|jβ(t) is the Markov generator, and δij = δi1j1δi2j2 is the 2D Kroneker symbol (with
a similar definition for δαβ).

To proceed, we introduce the following conditional probabilities:

P
(α)
ij (t, t+ dt) = P [Zt+dt = Zj|Zt = Zi,Yt = Yα] , (51)

P̂
(ij)
αβ (t, t+ dt) = P [Yt+dt = Yβ|Yt = Yα,Zt = Zi,Zt+dt = Zj] .

The joint probability piα|jβ can now be written as follows:

piα|jβ(t, t+ dt) = P
(α)
ij (t, t+ dt)P̂

(ij)
αβ (t, t+ dt). (52)

Using Eq.(50), we obtain

P
(α)
ij (t, t+ dt) =

∑
β

piα|jβ(t, t+ dt) ≡ δij + Â
(α)
ij (t)dt+O

(
dt2
)
, (53)

where
Â

(α)
ij (t) =

∑
β

Aiα|jβ(t) ,
∑
j

Â
(α)
ij (t) = 0 (54)

is the conditional generator of the Z-Markov chain.
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It is convenient to write the second conditional probability in Eq.(51) in the following
form:

P̂
(ii)
αβ (t, t+ dt) = δαβ + Q̂

(i)
αβ(t)dt ,

∑
β

Q̂
(i)
αβ(t) = 0, (55)

P̂
(i,i+m)
αβ (t, t+ dt) = δαβ + Q̃

(m)
αβ (t) ,

∑
β

Q̃
(m)
αβ (t) = 0 , (m1,m2) 6= (0, 0).

Note that the term Q̃
(m)
αβ (t) in the second equation is not multiplied by dt because the second

relation in Eq.(51) is not a transition probability but rather a conditional probability where
we condition, in particular, on Zt+dt. If dZt 6= 0, then dt cancels out in the calculation of

the conditional probability. This means that Q̃
(m)
αβ (t) is not a real generator, but rather a

“pseudo generator” introduced here to simplify formulae to follow. In its turn, this means
that diagonal elements of Q̃

(m)
αβ (t) cannot be made arbitrarily negative, as otherwise we would

end up with probabilities reaching outside of the unit interval [0, 1].
Now we plug Eq.(50) and Eq.(53) into Eq.(52). This produces the following relation

(here we omit O (dt2) terms):

δijδαβ + Aiα|jβ(t)dt = P̂
(ij)
αβ (t, t+ dt)

[
δij + Â

(α)
ij (t)dt

]
. (56)

A more explicit expression for the generator Aiα|jβ in terms of auxiliary generators Â
(α)
ij , Q̂

(i)
αβ

and Q̃
(m)
αβ can be obtained using the following identity (which can be checked by inspection):

Aiα|jβ = (1− δij)Aiα|jβ + (1− δαβ)Aiα|jβ − (1− δij)(1− δαβ)Aiα|jβ + δijδαβAiα|iα. (57)

Using Eq.(56) to evaluate different terms in the right-hand side of Eq.(57) in terms of the
auxiliary generators, we obtain, after some algebra, the following general representation of
generator Aiα|jβ(t) of USLV(2,2):

Aiα|jβ = δijQ̂
(i)
αβ + (1− δij)Q̃(j−i)

αβ Â
(α)
ij + δαβÂ

(α)
ij . (58)

Different terms in this expression are interpreted as follows.25

The first term δijQ̂
(i)
αβ is a generator of idiosyncratic jumps of Yt that proceed without

a simultaneous jump of Zt in the interval [t, t + dt]. Various continuous-space models can
be used as a means to parametrize this generator via discretization of the state space. For
example, starting with a diffusive model for Yt, we end up with a tridiagonal generator
matrix Q̂

(i)
αβ. More details and examples will be given below in Sect. 6.6.

The second term in Eq.(58) is a generator of joint jumps of (Zt,Yt). Note that it is a

valid generator on its own as long as
∑

β Q̃
(m)
αβ = 0. Again, different specifications of this

generator can be considered within our general framework. This will be discussed in some
detail below in Sect. 6.7.

25We thank Leonid Malyshkin for proposing a decomposition of the Markov generator in such form, as
well as for discussions that helped improve the presentation in this section.
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Finally, the last term in Eq.(58) is a generator of idiosyncratic jumps of Zt that proceed
without a simultaneous jump of Yt. It is determined by the conditional Markov chain
generator Â

(α)
i|j (t). This generator plays a special role in our construction. It is special

because the conditional Markov chain generator Â
(α)
i|j (t) is the only generator in Eq.(58) that

impacts prices of European vanilla options, while prices of exotic options will in general
depend on all generators that enter Eq.(58). As will be explained in more detail below, this

is due to the following relations that follow as long as
∑

β Q̂
(i)
αβ = 0 and

∑
β Q̃

(m)
αβ = 0:∑

β

Aiα|jβ(t) = Â
(α)
ij (t), (59)∑

β

piα|jβ(t) = δij + Â
(α)
ij (t)dt.

Note that the fact that theoretical prices of vanilla options computed in USLV(2,2) do not
depend on specification of the other generators Q̂ and Q̃ in Eq.(58) has a few interesting
implications.

First, it suggests a nice “orthogonality” property of model parameters determining var-
ious generators that enter Eq.(58), such that parameters driving prices of exotic options
can be tuned (or picked) without impacting calibration to vanillas. If prices of some exotic
options are available in the marketplace, this can be used to calibrate these two generators,
after the model is calibrated to available vanillas.

Second, in a scenario where no reliable pricing information is available for exotic options,
we could use this property of the model in order to specify a measure of “exoticness” as,
e.g., the amount the price of the given exotic derivative moves under certain functional or
parametric tweaks of the first two generators in Eq.(58). Given two exotic options and given
tweaks to be performed on the generators in Eq.(58) (such as a common rescaling of all
elements) while pricing both options, one of the options from the pair would in general end
up being “more exotic” than the other. While these issues will be addressed in a future
work, here we concentrate on the problem of calibrating the model to European vanilla
option prices.

6.4 Conditional Markov Chain Generator

Clearly, prices of European vanilla options on a given underlying Zt for a set of options
maturing at times T1, T2, . . . are only determined by marginal distributions of Zt at these
times. An equation driving evolution of marginal Z-distributions in the full USLV(2,2) model
can be obtained by summing over β = (β1, β2) in the forward equation Eq.(49). We obtain

π(j, t+ dt) =
∑
β

∑
i,α

piα|jβ(t, t+ dt)π(i, α, t) =
∑
i,α

(
δij + Â

(α)
ij (t)dt

)
π(i, α, t), (60)

where we used Eq.(59) for the last equality. This justifies the claim we made above: observed
prices of European vanilla options impose certain constraints on the conditional Markov chain
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generator Â
(α)
ij , but not on the other generators appearing in Eq.(58). Rearranging terms in

Eq.(60), we obtain
dπ(j, t)

dt
=
∑
i,α

Â
(α)
ij (t)π(i, α, t). (61)

An explicit expression for the conditional Markov chain generator Â
(α)
ij (t) can be obtained

using Eq.(52):

Â
(α)
ij =

1

dt
[P [Zt+dt = Zj|Zt = Zi,Yt = Yα]− δij] +O

(
dt2
)
. (62)

From this point onwards, we reserve the notation Â
(α)
ij for a calibrated generator of USLV(2,2),

while using the notation A
(α)
ij for an initial guess for Â

(α)
ij . The latter is assumed to be a

valid generator (obtained from some consistent model) that is not necessarily accurately
calibrated to the observed market. In what follows, we will refer to the latter as a prior
conditional Markov chain generator. While a particular functional relation between the two
generators Â

(α)
ij and A

(α)
ij will be considered in the next section, in the reminder of this section

we concentrate on specifying the second, “prior” generator A
(α)
ij .

As was outlined above (see also Appendix B), we define A
(α)
ij as a combination of gener-

ators A1 and A2 (see Eq.(47)), scaled by two components of Yt =
(
Y

(1)
t , Y

(2)
t

)
:

A
(α)
ij = Y (1)

α1
A1 + Y (2)

α2
A2. (63)

Recalling the original definition Eq.(40) of the Markov chain generator, we can write this in
a matrix form:

A
(α)
ij =


L

(0)
Y F

(0)
Y 0 0 · · · 0 0

B
(1)
Y L

(1)
Y F

(1)
Y 0 · · · 0 0

0 B
(2)
Y L

(2)
Y F

(2)
Y · · · 0 0

...

0 0 0 0 · · · B
(p)
Y L

(p)
Y

 , (64)

where all matrices B
(i)
Y , F

(i)
Y are obtained by scaling of B(i), F (i) by Y

(1)
α1 :

B
(i)
Y = Y (1)

α1
B(i) , F

(i)
Y = Y (1)

α1
F (i), (65)

while elements of L
(0)
Y are scaled by Y

(2)
α2 , except for the diagonal elements:(

L
(i)
Y

)
jk

=

{
Y

(2)
α2 L

(i)
jk if k = j ± 1,

Y
(2)
α2

(
L

(i)
jj + F̂

(i)
jj

)
− Y (1)

α1 F̂
(i)
jj if k = j,

(66)

where F̂ (i) is defined in Eq.(47). Using Eq.(36) in Eq.(66), we obtain the explicit expression:(
L

(i)
Y

)
jk

=

 Y
(2)
α2

sij(t)

2

(
σ2
2

∆z22
− |ρ|σ1σ2|

∆z1∆z2

)
if k = j ± 1,

−Y (2)
α2 sij(t)

(
σ2
2

∆z22
− |ρ|σ1σ2|

∆z1∆z2

)
− Y (1)

α1 sij(t)
σ2
1

∆z21
if k = j.

(67)
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Clearly, conditional on values Y
(1)
α1 , Y

(2)
α2 ≥ 0, diagonal elements of the conditional Markov

chain generator Eq.(64) given by the second line of Eq.(66) are negative (as long as Eq.(37)
holds), while all off-diagonal elements are positive, and the row-wise sums of elements in
Eq.(64) are all zeros. Therefore, Eq.(64) is a valid conditional generator for any fixed val-

ues of Y
(1)
α1 , Y

(2)
α2 ≥ 0. The first component Y (1) modulates transitions between Z(1)-states

(which may or may not be accompanied by transitions between Z(2)-states), while the second
component Y (2) modulates transitions between Z(2)-states without simultaneous transitions
between Z(1)-states.

6.5 Fast Calibration of USLV(2,2) by 1D Forward Induction

In this section, we present a fast calibration algorithm that enables a recalibration of the
full 2D USLV(2,2) model starting from a calibrated 1D USLV(2,0) without using a forward
induction on a full-blown 2D Markov chain. It uses a recursive procedure of “integrating in”
the stochastic volatility process. Our method is similar to Arnsdorf & Halperin (2007). In
its turn, a fast calibration method on a 2D Markov chain used in Arnsdorf & Halperin (2007)
is similar to an algorithm originally developed by Britten-Jones and Neuberger (BJN)26.

Recalling our previous notation where we used symbols Â and A for the calibrated and
“prior” conditional Markov chain generator, we assume the following relation between them:

Â
(α)
ij (t) = (1− δij) qij(Yt, t)A

(α)
ij (t)− δij

∑
m6=0

qjm(Yt, t)A
(α)
jm(t). (68)

Here qij(Yt, t) ≥ 0 are adjustment factors that will be used below to calibrate the full-blown
USLV(2,2) model.27 Note that Eq.(68) defines a valid generator as long as qij(Yt, t) ≥ 0

and A
(α)
jm(t) is a valid generator, as all nondiagonal elements of Â

(α)
ij (t) are non-negative, all

diagonal elements are negative, and all rows sum up to zero.
The purpose of introducing the adjustment factors qij(Yt, t) in Eq.(68) is to provide de-

grees of freedom needed for calibration to option prices in the (2,2) model in a way similar to
the way the 1D speed factors were used above to calibrate the (2,0) model without stochastic
volatility. As will be shown below, such calibration can be done in a numerically efficient way
by reutilizing results of a previous calibration in a local volatility USLV(2,0) model. Note
that after calibration of USLV(2,2) is done via a choice of multiplicative adjustment factors
qij(Yt, t), the latter can be combined with the 1D SFs sij(t) that appear in the “prior”

generator A
(α)
jm(t) to produce 2D SFs Sij(Yt, t).

26This approach was later popularized by Piterbarg (2006) under the name “Markovian projection.” Note
that both BJN and Peterbarg cite the work by Dupire on the link between stochastic and local volatility
models. Dupire’s approach seems to provide a common basis for both the BJN and Markov projection
methods.

27The theoretical interpretation of adjustment factors qij(Yt, t) is that they provide “risk-neutralizing”
drift corrections to the dynamics in the presence of stochastic volalitity; see a related discussion in Britten-
Jones & Neuberger (2000) and Rossi (2002).
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To proceed, we first plug Eq.(68) into Eq.(61). This yields

dπ(j, t)

dt
=
∑
i 6=j,α

[
qij(Yt, t)A

(α)
ij (t)π(i, α, t)− qji(Yt, t)A

(α)
ji (t)π(j, α, t)

]
. (69)

This can be compared to the forward equation obtained in the USLV(2,0) model where we
have the following definition of the generator:

pij(t, t+ dt) = δij + Aijdt+O
(
dt2
)
, (70)

while the forward equation has the form

dπ(j, t)

dt
=
∑
i 6=j

[Aij(t)π(i, t)− Aji(t)π(j, t)] . (71)

Comparing Eq.(69) and Eq.(71), we find that marginal distributions π(j, t+ dt) in both the
USLV(2,2) and USLV(2,0) models are matched at each node j = (j1, j2) provided we make
the following choice for adjustment factors qij(t) in Eq.(68):

qij(Yt, t) =
Aij(t)π(i, t)∑

αA
(α)
ij (t)π(i, α, t)

=
Aij(t)

∑
α π(i, α, t)∑

αA
(α)
ij (t)π(i, α, t)

. (72)

We now use our key result Eq.(72) to set up a convenient and fast forward-induction method
for the calibration of USLV(2,2) that utilizes the results of the 1D calibration of the Zt-
Markov chain of the USLV(2,0) model with a calibrated generator Aij(t), starting with a

“prior” conditional generator A
(α)
ij (t) of the USLV(2,2) model.

We assume that the 1D calibration of the Zt-Markov chain is performed as discussed
above. We start with the initial conditions for the 2D and 1D probability distributions,
correspondingly,

π(i, α, 0) = δîiδαα̂ , π(i, 0) = δîi, (73)

where î = (̂i1, î2) and α̂ = (α̂1, α̂2) are indices corresponding to the initial values of Z0 and
Y0 (which we assume to be known), respectively. Using Eq.(72), we solve for qîj(Y0, 0):

qîj(Y0, 0) =
Aîj(0)

A
(α̂)

îj
(0)

. (74)

Note that for i 6= î, the correction factors at time t = 0 are undefined. However, this does
not pose any problem as such states are unachievable at time t = 0, and therefore play no
role in the dynamics. If desired, these parameters can be assigned some dummy values that
would not have any impact on any numerical results produced with the model.

Next we use the forward equation on interval [0, dt] to compute the joint probability
π(j, β, dt), which is then used to compute the adjustments for all nodes at time t = dt, and
so on. As a result, we have a full 2D USLV(2,2) Markov chain calibrated to the set of option
quotes using a fast and effective algorithm.
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6.6 Generator of Idiosyncratic Dynamics of Yt

In this section, we provide some examples of specification of the first generator, δijQ̂
(i)
αβ,

in Eq.(58). We recall that by construction of the model, the choice of this generator in
USLV(2,2) has no impact on the quality of calibration of the model to prices of European
vanilla options in a calibration set, while in general it does impact prices of exotic options
produced by the model.

As was mentioned above, for practical applications we typically have in mind a low (e.g.,
3 to 11) number of possible states per dimension of the stochastic volatility factor. This has
two implications.

First, we prefer to view continuous-space models as a convenient and compact way to
parametrize the generator δijQ̂

(i)
αβ in Eq.(58). This generator corresponds to idiosyncratic

moves of Yt without simultaneous moves of Zt. Such parametrization is clearly preferred to
directly specifying ∼ 2(2q + 1)2 free parameters defining a discrete-state generator δijQ̂

(i)
αβ.

Second, as long as the number of volatility states is low, the generator matrix for Yt

should not necessarily be sparse. This remark is important as nonsparse matrices arise while
discretizing jump-diffusion processes.

For simplicity, in this paper we restrict ourselves to a particular bivariate mean-reverting
diffusion process as a continuous-space model that produces generator Q̂

(i)
αβ after a proper

discretization.28 More specifically, we consider a bivariate Ornstein-Uhlenbeck (OU) process

for the logarithmic variables y
(i)
t = log Y

(i)
t :

dy
(1)
t = k1

(
η1 − y(1)

t

)
dt+ ν1dW

(1)
t ,

dy
(2)
t = k2

(
η2 − y(2)

t

)
dt+ ν2dW

(2)
t , (75)

where the two Brownian motions W
(1)
t and W

(2)
t are correlated with correlation ρy.

The continuous-space Markov generator corresponding to Eq.(75) reads

LyV (y) = b1(y)
∂V (y)

∂y1

+ b2(y)
∂V (y)

∂y2

+
1

2
ν2

1

∂2V (y)

∂y2
1

+
1

2
ν2

1

∂2V (y)

∂y2
1

+ ρyν1ν2
∂2V (y)

∂y1∂y2

, (76)

where
bi(y) = ki

(
ηi − y(i)

t

)
, i = 1, 2. (77)

Note that parameters of generator Ly can be made dependent on the value of Zt if desired.
The Y -generator can be discretized in a similar way to a procedure used above in Sect. 5.

We use central differences for the second derivatives and a noncentral difference for the mixed
derivative in Eq.(76). In addition, we use the upwind-difference discretization for the first
derivatives in Eq.(76). Regrouping different terms in the discretized generator much as it
was done above in Sect. 5, the resulting discrete Markov chain generator for Yt can be cast

28If any other model of stochastic volatility is chosen instead of the one presented below, the only change
needed in the present framework would be to construct different transition matrices (or generators) for the
Y -states, while the computational part of calibration and pricing would stay the same.
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in the form of another QBD process, in an analogous way to our construction of the QBD
process for Zt. The resulting generator takes the familiar QBD form (compare, e.g., with
Eq.(64)):

Q̂(i) =


L(0) F (0) 0 0 · · · 0 0
B(1) L(1) F (1) 0 · · · 0 0

0 B(2) L(2) F (2) · · · 0 0
...
0 0 0 0 · · · B(2q) L(2q)

 , (78)

where all matrices B(i), L(i), F (i) have dimension (2q + 1) × (2q + 1), i.e., the dimension of
our one-dimensional grids.

We would like to conclude this section with a few remarks. Using a diffusive prototype
is certainly not the only way of constructing the idiosyncratic generator Q̂(i) in Eq.(58).
Alternatively, we could consider more general jump-diffusion or Lévy processes as continuous-
space prototypes of the generator. For such more general specifications, generator Q̂(i)(t)
would not in general be sparse. Note, however, that a potential nonsparsity of the generator
in the latter case would not be a major concern if we have a small number of states for Yt.

Furthermore, as was mentioned above, a BJN-like fast 1D calibration procedure for AR-
USLV(2,2) presented below in Sect. 6.5 can also be applied when instead of spot variance
factors Yt, we use integrated variance drivers/subordinators Tt. The only difference from the
case of spot variance factors just presented would be that generators for subordinators should
have all zeros below the diagonals (as a subordinator should be a non-decreasing function of
time). However, both the calibration and pricing algorithms would stay the same.

6.7 Generator of Joint Jump Dynamics

Here we consider the second term (1−δij)Q̃(j−i)
αβ Â

(α)
ij in Eq.(58). We recall that this expression

defines the generator of joint jumps whose matrix elements give intensities of simultaneous
jumps of Zt and Yt.

The motivation for introducing joint jumps of Zt and Yt is to incorporate the asset-
volatility codependence29 in our framework. We note that in a discrete-time setting, both
Britten-Jones & Neuberger (2000) and Rossi (2002) introduce different transition matrices for
the Y -states for different transitions between the Z-states in an ad hoc way. Our approach,
which starts with a continuous time dynamics and the decomposition Eq.(58) of the Markov
generator, is hopefully a bit more systematic and easier to relate to one’s intuition.

As the conditional Markov chain generator Â
(α)
ij is fixed by the above procedure of cal-

ibration to vanilla options, the joint jump generator is specified by defining the pseudo-
generator Q̃

(m)
αβ (t) (see Eq.(55)). Much as we did in our approach above for the idiosyncratic

Y -generator, here we settle for a very simple and parsimonious choice. Alternative and
more complicated specifications of the pseudo-generator Q̃

(m)
αβ (t) could clearly be considered

instead without significantly affecting complexity or performance of the model.

29Such as the well-known leverage effect (a negative spot-volatility correlation) for equity markets.
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Specifically, we assume that conditionally on
(

∆Z
(1)
t ,∆Z

(2)
t

)
, jumps ∆Y

(1)
t and ∆Y

(2)
t

are independent. We further specify that jump ∆Y
(1)
t depends only on ∆Z

(1)
t rather than on

the pair
(

∆Z
(1)
t ,∆Z

(2)
t

)
, and similarly ∆Y

(2)
t depends only on ∆Z

(2)
t . To control the amount

of the asset-volatility codependence in our model, we introduce two parameters, γ1 and γ2,

that determine the codependence for the joint moves
(

∆Z
(1)
t ,∆Y

(1)
t

)
and

(
∆Z

(2)
t ,∆Y

(2)
t

)
,

respectively, such that γi > 0 and γi < 0 correspond to positive and negative codependences,
respectively. We then define the pseudo-generator Q̃

(m)
αβ (t) as follows:30

Q̃
(m)
αβ (t) =

[
δα1β1 + (γ1m1)+A

(1,+)
α1β1

+ (γ1m1)−A
(1,−)
α1β1

]
(79)

×
[
δα2β2 + (γ2m2)+A

(2,+)
α2β2

+ (γ2m2)−A
(2,−)
α2β2

]
− δα1β1δα2β2 , (m1,m2) 6= (0, 0),

where for any real number x we defined x+ = max(0, x) and x− = max(0,−x). Matrices
A(+) and A(+) in Eq.(79) stand for some upper- and lower-triangular generator matrices,
respectively. For example, a nonsparse specification of generator Eq.(79) could be provided
using two parameters, q1, q2 ≤ 1, that determine the speed of decay of the generator away
from the diagonal:

A
(i,+)
αβ = θ(β − α)qβ−α−1

i − δαβ
∑
β>α

qβ−α−1
i , i = 1, 2,

A
(i,−)
αβ = θ(α− β)qα−β−1

i − δαβ
∑
β<α

qα−β−1
i , i = 1, 2, (80)

where θ(x) stands for a Heavyside step-function. Alternatively, if we want to keep the
generator sparse, we could consider bi-diagonal specifications for matrices A(i,±).

7 ITC-USLV(2,2): Implied Time Change Process

The algorithm of forward induction-based calibration of the USLV model just presented
is simple and intuitive; however, it is not ideal from a practical viewpoint, as it assumes
that the time steps are small enough to justify the use of a trinomial (birth-and-death)
approximation for the diffusion process in Zt. In practice, this means we should take daily
(possibly hourly) steps, which may slow down calibration and pricing. If we want to be able
to have a lattice with larger steps (e.g., monthly), or work with irregular large steps, we need
a different method.

Several alternatives of different complexity can be considered at this point. One approach
would be to generalize Eq.(68) to the case of larger time steps ∆t by viewing the left- and
right-hand sides of Eq.(68) as leading terms in expansions of finite-time matrix exponentials
of the conditional (on a realization of Yt) generator of the QBD Markov chain for the
calibrated and “prior” model, respectively. While it can be shown that the recursive forward

30This parameterization was proposed by Leonid Malyshkin.
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calibration can be carried over in such framework as in the one-step BJN method described
above, practical uses of such an approach may be constrained by our ability to compute
conditional multi-step transition probabilities for Z-states in a numerically efficient way. We
expect that splitting methods can be efficiently used to this end, but we leave research in
this direction for a future work, and instead concentrate on alternative approaches. The
latter are based on stochastic time change techniques, which is what we present next.

7.1 Modeling Stochastic Time Changes

Let ξt be a (random) matrix-valued value of the QBD process with generator Eq.(40) at
time t. Consider a right-continuous nondecreasing process Tt with τ0 = 0 with independent
and homogeneous increments.31 In the present context, such process Tt is called a Bochner
subordinator; see, e.g., Feller (1968).

Now consider a new process ηt ≡ ξTt given by our QBD process Eq.(40) evaluated at a
random (business) time Tt instead of the calendar time t. This produces a QBD Markov
chain subordinated to the Bochner subordinator Tt.

Note that the idea of a subordinated Markov chain has already been used above in
Sect. 5.1 (see also a discussion on this point in Gross & Miller (1984)) as a computational
tool for evaluation of matrix exponentials of generator Eq.(40). A more general subordinator
is given by a nondecreasing Lévy process; see, e.g., Carr et al. (2003) and references therein.
It can be written as

Tt =

∫ t

0

Ysds+ T
(jump)
t , (81)

where Yt is a nonnegative process called the activity rate, and T
(jump)
t stands for a jump

component of the time change.
Many specifications of a time change process can be described by the general formula

Eq.(81). For example, subordination by a Poisson process was used above in Sect. 5.1, which
corresponds to the Bochner subordinator being a pure jump process with a finite jump
activity. Another simple choice for a pure jump time change would be a gamma process
(incidentally, this process has a particularly simple Laplace transform). Alternatively, one

can consider purely diffusive time changes where T
(jump)
t vanishes, with the activity rate Yt

specified, e.g., by a CIR process or a positive OU process.
Let us assume that the stochastic time change is independent of the QBD Markov chain,

and that its Laplace transform
LTt(u) = E

[
e−uTt

]
(82)

is known in closed form, or can be computed numerically at a low cost. Consider first a
one-factor stochastic time change for a single Markov chain with generator A. Recall that
finite-time transition probabilities can be computed using the randomization method as in

31That is, τt+s − τt is independent of the filtration Ft and has the same distribution as τs.
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Eq.(45), which we write here as

P (t) = P ′0e
−λt

∞∑
n=0

(λt)n Pn

n!
=
∞∑
n=0

(−1)n

n!
P ′0P

n

(
λ
d

dλ

)n
e−λt. (83)

Substituting here t→ Tt, taking the expectation with respect to future scenarios of the time
change process Tt, and interchanging the summation and expectations in Eq.(83), we obtain

E [P (Tt)] =
∞∑
n=0

(−1)n

n!
P ′0P

n

(
λ
d

dλ

)n
LTt(λ). (84)

Note that in practice, randomization methods truncate an infinite series in Eq.(83) at some
finite nmax determined by a needed accuracy level ε. If we first truncate the series for fixed
t given ε, and then do a stochastic time change, this might lead to a substantial loss of
accuracy. One possible way to achieve a fixed-ε calculation for a given t in the model with
stochastic time Tt is as follows. We first find a maximum value of τmax = maxτ Tt that can
be reached at some confidence level, and then truncate the sum at some value n′max that
provides needed accuracy for Eq.(83) where t is replaced by τmax.

This means that if derivatives of the Laplace transform of the time change are easy
to compute, and the number of terms we need to keep in Eq.(84) for given tolerance is
reasonably small, then the problem of parametric calibration of parameters of the Y -process
in the USLV(1,1) (or USLV(2,1), see below) models can be solved, in the zero-correlation
limit, in one step, with no need for a forward induction algorithm.

Note that while the assumption of zero correlation might be restrictive, the above ap-
proach can in fact be generalized to the case of nonzero correlation, at the price of introducing
a complex-valued measure (see Carr & Wu (2004)). This could be used to calibrate param-
eters of the Y process for a given set of option quotes while keeping the 1D SFs fixed or
flat.32 Further improvements of calibration quality (if desired) could then be achieved using
a forward-induction-based calibration method described in Sect. 6.5.

For the most interesting two-factor time change specification (i.e., for USLV(2,2)), the
situation is more tricky because of correlations between different drivers, as well as because of
noncommutativity of generators A1 and A2. However, as will be shown in the next section,
it turns out that a tractable framework can be obtained with a proper construction of a
two-factor time change.

7.2 Time Change with a Hierarchical Bivariate Subordinator

It might be tempting to try to extend our framework by incorporating stochastic time changes
with a nonvanishing jump component T

(jump)
t in Eq.(81), with a two-factor time change

Tt = (T
(1)
t , T

(2)
t ). If T

(1)
t , T

(2)
t include jumps, this leads to jumps in the underlyings Zt =

32Alternatively, we could use the zero-correlation limit as a “quick and dirty” way to estimate the pa-
rameters of the full model with nonzero correlation, except of course those parameters that are critically
dependent on the level of correlation.
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(
Z

(2)
t , Z

(2)
t

)
. If both the nonvanishing activity rate Yt and a jump component T̂

(jump)
t are

retained in Eq.(81), this results (in our setting) in a four-factor stochastic-local volatility
dynamics with jumps in both the underlyings and volatility.

Now we introduce such a two-factor stochastic time change with a bivariate subordinator
and show how to evaluate finite-time transition probabilities in a resulting subordinated
Markov chain using a generalization of the randomization method presented in Sect. 5.1.

Recall from Sect. 6.2 that the Markov chain generator A in our problem has the decompo-
sition Eq.(47), where both A1 and A2 are valid generators that can be subject to individual
stochastic time changes. Consider a bivariate subordinator of the following form

Tt =

(
T

(1)
t

T
(2)
t

)
=

(
θtTt
Tt

)
. (85)

Here θt > 0 is a stochastic process with E[θt] = 1 that will be specified in more detail below.
We assume that θt is independent of Tt. As θt acts as a time dilation factor on top of the
random time Tt, we will refer to θt as a time-dilaton process. Note that correlation between
T

(1)
t and T

(2)
t is now driven by the variance of θt:

ρ
T

(1)
t ,T

(2)
t

=

√
V ar (Tt)

V ar (Tt) + V ar (θt)
(
V ar (Tt) + (E [Tt])

2) (86)

so that we can fit any nonnegative correlation between T
(1)
t and T

(2)
t by a proper choice of

V ar(θt).
We assume that (Tt, θt) is a 2D Markov process with independent and time-homogeneous

increments. Furthermore, we assume that both Tt and θt are non-decreasing exponential-
Lévy processes. As a product θtTt of two (non-decreasing) exponential-Lévy processes Tt and
θt is another (non-decreasing) exponential-Lévy process, Eq.(85) defines a valid subordinator
that can be used to time-change our QBD process with generator Eq.(47).

The interpretation of the bivariate subordinator Eq.(85) is as follows. The second compo-

nent T
(2)
t = Tt provides a common time change that modulates all transitions on the chain;

i.e., it acts on both generators A1 and A2. The first component T
(1)
t = θtTt can be thought

of as a hierarchical time change. In this hierarchical scheme, we first apply a common time
change Tt , and then time-change it again using a linear time change function T

(1)
t (Tt) = θtTt.

This time change will be applied below to generator A1 alone.33 Note that if both Tt and
θt are non-decreasing exponential Lévy processes, this implies that the stochastic clock runs
faster for transitions involving changes of both Z(1) and Z(2) than for transitions that only
involve changes of Z(2). Also note that while θt is a stochastic process, in the context of
calculation of finite-time transition probabilities on a fixed interval t ∈ [0, t] (where t is some

33Note that the order of the time changes indicated above is very important: if we reversed it, this would
be equivalent to allowing future events of transitions driven by A1 to impact the dynamics of the whole
system at the present time. For a recent application of such hierarchical time changes, see, e.g., Puzanova
(2011).
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“interesting” time, e.g., a coupon date) what matters is only a terminal value θt (see below
in Eq.(87)). Therefore, for such calculation we can treat the terminal value θt as a random
variable,34 which certainly simplifies an approach presented below.

The finite-time transition probability for a time-changed QBD Markov chain can now be
computed by conditioning on the realization of θt:

P (t) = E
[
P ′0e

T
(1)
t A1+T

(2)
t A2

]
= E

[
P ′0e

θtTtA1+TtA2
]

= E
[
E
[
P ′0e

Tt(θtA1+A2)
]∣∣ θt]

≡ E
[
E
[
P ′0e

TtAθ
∣∣ θt]] . (87)

Here the outside expectation corresponds to averaging with respect to the randomness due
to θt, while the inner expectation averages over the randomness due to Tt for a fixed value
of θt. In the last equation, we have defined Aθ = θtA1 + A2 for any fixed θt = θ.

Now consider the inner expectation in Eq.(87). For any fixed θt = θ, we proceed as
follows. First we specify a nonnegative parameter Λθ ≥ maxn |(Aθ)nn|. Next, we use the
idea of the randomization method of Sect. 5.1 to define a DTMC with transition matrix

Pθ = I +
Aθ

Λθ

⇒ Aθ = Λθ (Pθ − I) . (88)

Substitute A as given by Eq.(88) into the solution of the forward equation, which we write
here as Pθ(t) to emphasize that the whole calculation is done for a fixed θt = θ:

Pθ(t) = E
[
P ′0e

TtAθ
∣∣ θt] = E

[
P ′0e

TtΛθ(Pθ−I)
∣∣ θt] = E

[
e−ΛθTtP ′0e

TtΛθPθ
∣∣ θt] .

Using a Taylor series expansion for the matrix exponential in this expression and interchang-
ing the summation and expectation, we obtain

Pθ(t) =
∞∑
n=0

(P ′0P
n
θ )

n!
E
[
(ΛθTt)

n e−ΛθTt
∣∣ θt] =

∞∑
n=0

(−1)n

n!
(P ′0P

n
θ )

(
λ
d

dλ

)n
LTt(λ)

∣∣∣∣
λ=Λθ

, (89)

where LTt(u) stands for a Laplace transform Eq.(82) of the time change Tt.
Eq.(89) is a “semi-analytical” expression for a finite-time transition probability in our

Markov chain after the first time change driven by Tt, but before the second time change
driven by θt. The product P ′0P

n
θ can be efficiently implemented via a recursive vector-matrix

multiplication as in Eq.(46). The derivatives
(
λ d
dλ

)n LTt(λ) can be easily computed if the
Laplace transform LTt(λ) is known in closed form (or can be computed numerically at a low
cost). Note that this part of the calculation is independent of any pricing data—the latter
only impacts the matrix Pθ through a calibrated set of 1D SFs si.

As an example, consider an exponential-gamma subordinator specification for T
(1)
t = Tt

with Tt = exp(Xt), where Xt is a Gamma process. Recall that an univariate (homogeneous)
Gamma process Xt ≥ 0 with X0 = 0 and parameters a, b ∈ R+ is a process with independent

34This is due to the Markov property of the θt-dynamics which was assumed above: For a continuous-time
Markov process, a time line can be chosen in an arbitrary way, while the corresponding finite-time transition
probabilities would be related by the Chapman-Kolmogorov equations; see, e.g., Feller (1968).
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increments such that Xt is Gamma-distributed Γ(at, b) with the following probability density
function (pdf):

fat,b(x) =
bat

Γ(at)
xat−1e−bx1R+(x), (90)

with

E [Xt] =
at

b
, V ar [Xt] =

at

b2
. (91)

Here the parameter a is called the shape parameter, and b is the rate parameter. In what
follows, we set a = b = 1/ν. The Laplace transform of Eq.(90) reads

LXt(u) = (1 + νu)−
t
ν . (92)

Given this expression, we can approximately compute the Laplace transform of Tt = exp(Xt).
All rescaled derivatives

(
λ d
dλ

)n LTt(λ) would then have to be computed from that latter
Laplace transform.

After the condtional time-t probabilities are computed, the unconditional probabilities
are obtained by averaging over a marginal probability density pt(θ) of θt:

P (t) = E [Pθ(t)] =

∫
dθpt(θ)Pθ(t). (93)

In practice, this integral should be computed by discretization of the range of θt onto a finite
grid [θ0, θ1, . . . , θq−1].

Note that we can proceed in two different ways with a computation involved in Eq.(93).
The first way would be to specify a process for θt, discretize it, and then compute a discrete
approximation to Eq.(93). We could tune parameters of this process to fit a given set of
option quotes. However, a particular parametric model of θt might be too restrictive for
such task, especially if the number of option prices to fit grows larger. For this reason, in
the next section we present a more flexible nonparametric approach that is able to fit any
arbitrage-free set of option quotes.

7.3 Implied Time-Dilaton Process

For a particular parametric specification of a (discretized) time dilaton process θt, Eq.(93)
produces some transitions probabilities for the Z-states in the time-changed QBD Markov
chain. In general, these transition probabilities would be different from marginal probabilities
in the local volatility USLV(2,0) calibrated to observed option prices. This means that a
nearly perfect calibration to options achieved in the USLV(2,0) model would in general be
lost once we add a stochastic time change to our model.

However, we can rematch the prices of options in our calibration set after a time change
if we treat the distribution pt(θ) of realizations of different values of θt as a distribution
implied by option prices (given the specification of a process for Tt). Furthermore, for
a multi-period setting specified by a particular time grid t0, t1, . . . (where ti can be, e.g.,
swaption maturities in the calibration set), we can construct an implied process for θt if
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we impose a Markovian structure on it. In this section, we show how such process can be
constructed using a Minimum Cross Entropy (MCE) method (see, e.g., Cover & Thomas
(2006)). Our construction is similar to Halperin (2009) where analogous ideas were used in
a different context.

Let Fijk be a payoff function of the option with maturity ti and strike Kj (with j =
1, . . . , K) in a scenario where the terminal value of the underlying at the option maturity

is given by values
(
Z

(1)
k1
, Z

(2)
k2

)
, and let Cij be the corresponding market prices of options in

our calibration set. Using Eq.(93), we can express this scenario as a set of constraints35∫
dθpi(θ)Gij(θ) = Cij , Gij(θ) ≡

∑
k

Fijk [Pθ]k̂,k (ti) , j = 0, . . . , K, (94)

where k̂ = (k̂1, k̂2) is an index corresponding to the initial value Z0. Note that Eq.(94)
with j = 0 corresponds to the constraint E[θt] = 1 implied above in Eq.(86), which is here
enforced as an additional artificial option quote with j = 0, Fi0k = θt and Ci0 = 1.

We can now find a probability density pi(θ) that satisfies these constraints using the MCE
approach. With this method, given a reference (“prior”) model qi(θ) (given, e.g., by another
exponential-gamma process), we minimize the Kullback-Leibler (KL) distance between the
two distributions pi(θ) and qi(θ) (see Cover & Thomas (2006)):

D [pi(θ)||qi(θ)] =

∫
dθpi(θ) log

pi(θ)

qi(θ)
(95)

subject to constraints of Eq.(94). This produces a least biased (relatively to the reference
measure qi(θ)) distribution pi(θ) that satisfies the constraints of Eq.(94).

For the first node on the time grid, minimization of Eq.(95) with constraints Eq.(94) is
done using the method of Lagrange multipliers. Using Eq.(95) with i = 1, the corresponding
Lagrange function is

L =

∫
dθp1(θ) log

p1(θ)

q1(θ)
−
∑
j

ξ
(1)
j

(∫
dθp1(θ)G1j(θ)− C1j

)
, (96)

where ξ
(1)
j are Lagrange multipliers. Minimizing this expression with respect to p1(θ), we

obtain

p1(θ) =
1

Z1

q1(θ)e
∑
j ξ

(1)
j G1j(θ) , Z1 =

∫
dθq1(θ)e

∑
j ξ

(1)
j G1j(θ). (97)

The Lagrange multipliers can now be computed by plugging Eq.(97) back into Eq.(96),

and maximizing the resulting expression as a function of {ξ(1)
j }. This amounts to a convex

optimization problem in dimension equal to the number of option quotes. (For more details
on the MCE method in both the one- multi-period settings, see, e.g., Halperin (2009) and
references therein.)

35Note that we use the continuous notation here for simplicity of presentation only. For implementation,
all stochastic processes are discretized within our approach.

41



For the second maturity, instead of minimizing the unconditional KL distance Eq.(95),
we minimize a conditional KL distance for the next interval. This is done as follows. Using
the Markov property we can write the pricing constraints as

C2,j =

∫ ∞
0

dθ2 p2(θ2)G2j(θ2) =

∫ ∞
0

dθ2G2j(θ2)

∫
dθ1 p1(θ1) p(θ2|θ1). (98)

Assuming that the density p1(θ1) is fixed at the previous step, the conditional transition
density p(θ2|θ1) can be found by minimization of the expected conditional KL cross entropy36

H [p(θ2|θ1)||q(θ2|θ1)] =

∫
dθ1 p1(θ1)

∫
dθ2p(θ2|θ1) log

p(θ2|θ1)

q(θ2|θ1)
(99)

subject to pricing constraints Eq.(98). Here q(θ2|θ1) is a prior transition probability. As
the time change Tt should be nondecreasing, it should satisfy the condition q(θ2|θ1) = 0
for θ2 < θ1. Again, a natural choice for the prior transition density could be the transition
density of an exponential-gamma process.

The corresponding Lagrange function for the second interval is

L =

∫
dθ1 p1(θ1)

∫
dθ2p(θ2|θ1) log

p(θ2|θ1)

q(θ2|θ1)

−
∑
j

ξ
(2)
j

(∫ ∞
0

dθ2G2j(θ2)

∫
dθ1 p1(θ1) p(θ2|θ1)− C2,j

)
(100)

where ξ
(2)
j are Lagrange multipliers enforcing the constraints in Eq.(98). Minimizing this

expression with respect to p(θ2|θ1), we obtain the conditional transition probability

p(θ2|θ1) =
1

Z2(θ1, ξ(2))
q(θ2|θ1)e

∑
j ξ

(2)
j G2j(θ2),

Z2(θ1, ξ
(2)) =

∫ ∞
0

dθ2 q(θ2|θ1)e
∑
j ξ

(2)
j Gij(θ2). (101)

Note that p(θ2|θ1) < 0 if θ2 < θ1 (i.e., our “true” time-dilation process is a valid subordinator)
as long as our prior model q(θ2|θ1) is a valid subordinator.

Substituting Eq.(101) into Eq.(100) (and flipping the sign to convert a maximization
problem to a minimization problem), we obtain the following function U(ξ(2)) (sometimes
referred to as a potential function):

U(ξ(2)) =

∫
dθ1 p(θ1) logZ2(θ1, ξ

(2))−
∑
j

ξ
(2)
j C2j (102)

The problem of computation of the Lagrange multipliers ξ
(2)
j is now reduced to minimizing

Eq.(102), which again amounts to a convex optimization problem in dimension equal to the
number of option quotes for maturity t2.

36The conditional KL cross entropy is a measure of the difference between two conditional transition
probabilities, averaged over the position of the initial point; see, e.g., Cover & Thomas (2006).
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For a multi-period setting with more than two nodes on a time line, the above scheme is
applied recursively. Let t1, t2, . . . , tN be nodes on the time line. We first solve the problem for
the pair t1, t2 as described above. Using these results, we next calculate marginal probabilities
f (θ2) using the Chapman-Kolmogorov equations. Now the problem for the pair of times t2, t3
is treated in the exact same manner as above. We then move to the pair t3, t4, etc. As a result,
we end up with an implied discrete-valued process for θt on a discrete timeline t1, t2, . . . , tN .
Derivatives pricing with this framework can be done using the standard backward induction
method.
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Appendices

A 2D Markov Generator on a Nonuniform Grid

In this appendix, we discuss how to construct the 2D Markov chain generator A in Eq.(29)
using a nonuniform grid in the Eq.(30).

To simplify notation, we introduce hk,i = ∆zk,(i,i−1), h
+
k,i = ∆zk,(i+1,i), k = 1, 2, i =

0, . . . , pk, where p1, p2 are the upper boundary of our discrete grid in the first and second
dimensions. The central difference approximation of the second derivatives reads

∂2V

∂z2
1

∣∣∣∣
ij

= δ−1,iVi−1,j + δ0
1,iVi,j + δ+

1,iVi+1,j +O
(
h2

1,i)
)

+O
(
(h+

1,i)
2)
)

+O
(
h1,ih

+
1,i)
)
, (103)

∂2V

∂z2
2

∣∣∣∣
ij

= δ−2,jVi,j−1 + δ0
2,jVi,j + δ+

2,jVi,j+1 +O
(
h2

2,i)
)

+O
(
(h+

2,j)
2)
)

+O
(
h2,jh

+
2,j)
)
,

where

δ−k,i =
2

hk,i(hk,i + h+
k,i)

, δ0
k,i = − 2

hk,ih
+
k,i

, δ+
k,i =

2

h+
k,i(hk,i + h+

k,i)
.

At the boundaries these coefficients are δ−k,i = 0, i = 1 and δ+
k,i = 0, i = pk.

For the mixed derivative we take noncentral differences to preserve nonnegativity

∂2V

∂z1∂z2

∣∣∣∣
ij

=

j+1∑
m=j−1

[
γ+
i,mVi+1,m + γ0

i,mVi,m + γ−i,mVi−1,m

]
+Rij.

For ρ ≥ 0 one has Rij = O(h1,ih
+
2,j) +O(h1,ih

+
1,i) and

γ−i,j−1 =
1

h1,ih2,j

, γ−i,j = −γ−i,j−1 − γ−i,j+1, γ−i,j+1 =
1

(h1,i + h+
1,i)h

+
2,j

,

γ0
i,j−1 = − 1

h1,ih2,j

, γ0
i,j = −γ0

i,j−1 − γ0
i,j+1, γ0

i,j+1 = − 1

h+
1,ih

+
2,j

,

γ+
i,j−1 = 0, γ+

i,j = −γ+
i,j+1, γ+

i,j+1 =
h1,i

h+
1,i

(
h1,i + h+

1,i

)
h+

2,j

.
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For ρ < 0 we find Rij = O(h1,ih
+
2,j) +O(h+

1,ih
+
2,j) +O(h1,ih

+
1,i) and

γ−i,j−1 = 0, γ−i,j = −γ−i,j+1, γ−i,j+1 = −
h+

1,i

h1,i

(
h1,i + h+

1,i

)
h+

2,j

,

γ0
i,j−1 =

1

h2,jh
+
1,i

, γ0
i,j = −γ0

i,j−1 − γ0
i,j+1, γ0

i,j+1 =
1

h1,ih
+
2,j

,

γ+
i,j−1 = − 1

h2,jh
+
1,i

, γ+
i,j = −γ+

i,j−1 − γ+
i,j+1, γ+

i,j+1 = − 1(
h1,i + h+

1,i

)
h+

2,j

.

Using this in Eq.(34) and regrouping terms, we obtain

(LV (z))ij =
∑

k,m={−1,0,1}

aij|i+k,j+mVi+k,j+m,

where the following notation is used :

aij|i+1,j =
1

2
sijσ1

(
σ1δ

+
1,i + ρσ2γ

+
i,j

)
, aij|i−1,j =

1

2
sijσ1

(
σ1δ

−
1,i + ρσ2γ

−
i,j

)
aij|i,j+1 =

1

2
sijσ2

(
σ2δ

+
2,j + ρσ1γ

0
i,j+1

)
, aij|i,j−1 =

1

2
sijσ2

(
σ2δ

−
2,j + ρσ1γ

0
i,j−1

)
aij|ij = −1

2
sij
(
σ2

1δ
0
1,i + ρσ1σ2γ

0
i,j + σ2

2δ
0
2,j

)
,

aij|i+1,j+1 = ρσ1σ2sijγ
+
i,j+1, aij|i−1,j−1 = ρσ1σ2sijγ

−
i,j−1,

aij|i+1,j−1 = ρσ1σ2sijγ
+
i,j−1, aij|i−1,j+1 = ρσ1σ2sijγ

−
i,j+1.

where sij = [s(Zt)]ij.
To construct a valid Markov generator, we have to make sure that all off-diagonal elements

are positive and all rows sum to zero. It is also necessary to obey the following property: if fn

and fn+1 are the state vectors at time moment n and n+1, and A is the transition matrix (i.e.,
fn+1 = Afn), then to preserve positiveness of f , the matrix A must be diagonally dominant.
When applied to the above equations, these three conditions give rise to tricky dependencies
between the grid steps h1,i, h

+
1,i, h2,i, h

+
2,i, which could be hard to reconcile with the usual

approach of building a nonuniform grid based on expected values of model parameters. One
possible approach that escapes the need to deal with exceedingly complicated constraints on
the grid steps could be to use a nonuniform grid in one direction and a uniform grid in the
other direction.37

37This is similar to building space grids as a part of an FD approach to solving 2D PDEs that determine
the option price under some stochastic volatility models. For more details, see, e.g., Toivanen (2010).
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B Random Time Change of a Continuous-Time Markov

Chain

Consider a homogeneous Markov chain with a diagonalizable generator A such that

A = UDU−1 , D ≡ diag(d1, d2, . . . , dN),

where the eigenvalues {di} are assumed to be in a descending order. The matrix U consists
of eigenvectors stored column-wise. For a finite-time transition matrix, we then have

P (t, T ) = Ue(T−t)DU−1.

Next we make the transition matrix stochastic by introducing the random time change t→ Tt
driven by a nonnegative stochastic process (activity rate) Yt such that

Tt =

∫ t

0

Ysds. (104)

By viewing Tt as a “true” “business” or “trading” time as opposed to the calendar time t,
the transition matrix becomes stochastic as it now depends explicitly on Yt:

PX(t, T ) = UeD
∫ T
t YsdsU−1. (105)

Consider now a Markov chain obtained by conditioning on a path of Yt. By taking the
derivative of Eq.(105) with respect to t and comparing with the Kolmogorov equation

∂PX(t, T )

∂t
= −AX(t)PX(t, T ),

we see that the conditional on the realization of the path of Yt, our process is given by an
inhomogeneous Markov chain with generator

AX(t) = YtUDU
−1 = YtA.
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