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We present a zero-dimensional matrix model based on USp(2k) with supermultiplets 
in symmetric, antisymmetric and fundamental representations. The four-dimensional com­
pactification of this model naturally captures the exact results of Sen 1) in F theory. Eight 
dynamical and eight kinematical supercharges are found, as required for critical string inter­
pretation. The classical vacuum has ten coordinates and is equipped with orbifold structure. 
We clarify the issue of spacetime dimensions which F theory represented by this matrix 
model produces. 

§1. Introduction 
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Recently there have been a few interesting directions emerging on the formu­
lation of strings. On the one hand, a nonperturbative formulation of string the­
ory as matrix models via the notion of noncommuting coordinates 2) is developing. 
This includes vigorous activities on the large N quantum mechanical model 3) which 
formulates M theory4) as well as. the zero-dimensional model 5),6) of type-lIB su­
perstrings. Notions of string compactification and attendant counting of degrees of 
freedom appear to be very different from what we had thought from unification based 
on perturbative strings. So far we have been able to treat only toroidal compactifi­
cations with/without discrete projection 3), 7) - 9) through a specific procedure. 9) 

Another interesting direction includes the developments centered around F the­
ory.10) This provides a new perspective on treating type-lIB strings on exact quan­
tum backgrounds through a purely geometrical framework. F theory captures the 
intriguing phenomenon of string coupling depending on internal space*) beyond per­
turbative considerations. One way of viewing this F theory is that it provides us 
with a new scheme of compactifications of string theory which are defined beyond 
perturbation theory. This is the point of view we wish to adopt in the present paper. 
A series of compactifications whose perturbative limits are those of orientifold are 
prototypical examples. 

In this paper, we wish to give this scheme of F theory a constructive frame­
work as a matrix model. We present a U Sp(2k) matrix model in zero dimensions 
and discuss several properties. We argue that our model in the particular large N 
limit produces an exact F theory compactification. The model consists of matrices 
belonging to symmetric (adjoint) and antisymmetric representations and of nf 2k­
dimensional vectors. The nf = 4 and nf = 16 cases are of special significance. The 

*) In the conventional approach of the first quantized strings, this is physics related to the 
orientifold compactification. 11), 12) 
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large k limit captures string physics in the sense of 't Hooft. The model is inspired in 
the nf = 4 case by the supermultiplets of the UV finite N = 2 supersymmetric gauge 
theory in four dimensions with the gauge group USp(2k). We are motivated by the 
exact result of Sen 1) in F theory in eight spacetime dimensions on a certain elliptic 
fibered K3. The exact description of the axion/dilaton sector on this F theory com­
pactification has been found to be mathematically identical to that of the quantum 
moduli space 13) of the susy gauge theory mentioned above. (See Refs. 14) and 15).) 
We thus see that our model (the n f = 4 case) after four-dimensional compactifica­
tion under the procedure of Ref. 9) possesses the above quantum moduli space and 
naturally reproduces Sen's result in F theory in eight spacetime dimensions. We will 
discuss this again at the end of the paper. 

In the next section, we define the USp(2k) matrix model in zero dimensions. 
Eight dynamical and eight kinematical supercharges are shown to exist in our model 
in §3. This is necessary for this model to be interpreted as a critical string theory, 
i.e., a unified theory of gravity and other forces. 

In §4, we determine the classical vacuum, which is found to be labelled by ten 
coordinates. The one-loop stability of this geometry is ensured by supersymmetry. 
We discuss the case in which the model in a particular large k limit produces an exact 
F theory compactification. This is the compatification whose perturbative limit is 
described by the eight-dimensional type-IIB string on a T 2/Z2 orientifold. The issue 
of twelve versus ten spacetime dimensions naturally emerges. We clarify the sense 
of the spacetime dimensions designated by the model in the particular large k limit 
(compactification) . 

We adopt notation in which the inner product of two 2k-dimensional vectors Ui 
and Vi invariant under U Sp(2k) is 

(1) 

Here h is the unit matrix. We can define (Ui)* == (u*)i. Raising and lowering of the 
indices are accomplished by F = Fij and F-1 = Fij. Any element X of the usp(2k) 
Lie algebra satisfying X t F + F X = 0 and xt = X can be represented as 

X = (~ _~t), with Mt = M, Nt = N. (2) 

Chiral superfields are expanded by the generators of usp(2k) with complex coeffi­
cients. 

§2. Definition of the zero dimensional matrix model 

Our zero-dimensional model can be written by borrowing N = 1, d = 4 superfield 
notation in the Wess-Zumino gauge. One simply drops all spacetime dependence of 
the fields while keeping all Grassmann coordinates unchanged: 

S == Svec + Sasym + Sfund, 
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USp(2k) Matrix Model: F Theory Connection 131 

The chiral superfields introduced above are 

Wa = -~DDe-2V Dae2V, P = P + V2()'I/J~ + ()()F~, (4) 

Qi = Qi + V2()'l/JQ i + ()()FQ i , Tij = Tij + V2()'l/JT ij + ()()FT ij, (5) 

while 

D = ~ Dr. = - ~ 
a a()a ' ~ a()er. ' 

- -- -- I--
V = -()am()Vm + i()()() .. - i()()() .. + "2()()()()D 

We represent the antisymmetric tensor superfield Tij as 

. (A B) Y= (TF)/ = C At 

with Bt = -B, C t = -C. We define 17 similarly. 
In terms of components, the action reads (with indices suppressed) 

(6) 

(7) 

(8) 

SYec = 12 Tr( - ~Vmnvmn - [Vm, p]t[vm, p] - i)..am[Vm, "X] - i1/J(fm[Vm' 'I/J] 
9 4 

-iV2[).., 'I/J]pt - iV2["X, 1/J]p) 

+ 912 Tr (~DD - D[pt, p] + FJF~) , (9) 

Saaym = 12 {-(VmT)*(VmT) - i1/JTamVm'I/JT 
9 
-iV2T* )..(aaym)'l/JT + i~T"X(aaym)T 
-(VmT)(vmT)* - i1/Ji'(fmvm'I/Ji' - iV2T* )..(aaym)'l/Ji' + i~i'"X(aaym)T 
-2(PCaaym)T*)(P(aaym)T) - 2(TP(aaym))(T*PCaaym)) 
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-V2('¢t,¢(/lIlYm)T + T,¢(asym)'¢T + '¢ttP(asym),¢T) 

-V2(ifiT,¢(asym)T* + T*"ifi(asym)"ifii' + '¢TtP(asym)"ifii') 

+V2T F~asym)T + V2T* F;(asym)T* + T D(asym)T + T* D(asym)T* }, (10) 

nj 

Sfund = + 12 L, (-(1JmQ(f))*(1JmQ(f)) - i'¢Q(f)am1Jm'¢Q(f) 
9 1=1 

+iV2Q(f) .. '¢Q(f) - iV2"ifiQ(f)>'Q(f)) 
nj 

+ ~ L, (-(1JmQ(f))(1JmQ(f))* - i'¢Q(f)(jm1Jm'¢Q(f) 
9 1=1 

-iV2Q(f) .. '¢Q(f) + iV2"ifiQ(f)>.Q(f)) 
1 nj __ 

+2 L,(Q(f)DQ(f) + Q(f)DQ(f)) 
9 1=1 

nj 

+ :2 ~ { - (m(f))2(Q(f)Q(f) + Q(f)Q(f)) - m(f)(,(fiQ(f)'¢Q(f) + ~Q(f)if;Q(f») 

-V2(Q(f)tPt Q(f) + Q(f)tPtQ* + Q(f)tPQ(f) + Q(f)tPQ(f)) 

-2Q(f)tPttPQ(f) - 2Q(f)tPttPQ(f) 

-V2('¢Q(f)'¢Q(f) + Q(f)'¢'¢Q(f) + '¢Q(f)tP'¢Q(f») 

-V2("ifiQ(f)"ifiQ(f) + Q(f)'¢'¢Q(f) + '¢Q(f)tPt"ifiQ(f») 

+V2Q(f)F4JQ(f) + V2Q(f)FJQ(f)}, (11) 

where 
nj 

D j [A'Ot ""] j + "(Q* j Q Q-j Q-* ) + 2T* jkrr 2T-jkT-* 
i = ~ ,~ i L...J (f) (f) i + (f) (f) i i ki + ki' 

1=1 
nj 

F4Ji j = - L,(V2Q(hQ(f) i) - V2T*jkTki · 
1=1 

(12) 

(13) 

Here 1Jm = iVm with Vm in appropriate representations, and tP(asym) , ,¢(asym) and 

F~asym) are the fields in the anti-symmetric representation. 
As is discussed in the Introduction, after the four-dimensional compactification 

the model possesses the exact quantum moduli space which describes the local defor­
mation of four 7-branes away from an orientifold surface in F theory on K3. For this 
to hold, we have to set n 1 = 4 and keep nonvanishing mass parameters. In a more 
generic situation, only the global cancellation of the charge associated with an eight­
form potential is required, and in this case nl = 16. It remains to be seen whether 
our model is able to provide a constructive framework for this general situation. 
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USp(2k) Matrix Model: F Theory Connection 133 

§3. Dynamical and kinematical supercharges 

Let us determine the number of supercharges our model possesses. It is straight­
forward to confirm that the action of our USp(2k) matrix model is invariant under 
the following dynamical supersymmetry transformations: 

8(I)vm = -i~a-m>' + i)..a-m~ - iiWm'lj; + iifia-m'f/, 

8(1) >. = (J"mn~vmn + i~D - i../2(J"mfJVmiJ> - ../2'f/Fq" 

8(1)iJ> = ../2~'Ij; - ../2'f/>', 

8(1)'Ij; = iv'2(J"m~VmiJ> + (J"mn'f/Vmn + i'f/D + ../2~Fq" 
8(I)T = v'2~'Ij;T - ../2fJifi,p, 

8(I)T* = v'2~ifii' + ../2'f/'Ij;T, 

8(1)'Ij;T = +i../2(J"m~VmT + i../2(J"mfJVmT* + ../2~FT + ../2'f/FT(T~i'.,i"~-T)' 
8(I)ifii' = -i../2~(J"mVmT* + i../2'f/(J"mVmT + ../2~Ft + ../2fJFt(T~i'.,i't~_T)' 
8(1)Q = v'2~'Ij;Q - ../2fJifiQ, 

8(I)Q* = v2~ifiQ + ../2'f/'Ij;Q, 

8(1)'Ij;Q = +iv2(J"m~VmQ + i../2(J"mfJVmQ* + ../2~FQ + ../2'f/FQ(Q~Q',Q'~_Q)' 
8(I)ifiQ = -i../2~(J"mVmQ* + i../2'f/(J"mVmQ + ../2~F¢ + ../2fJF¢(Q~Q',Q'~_Q)' 

where D and Fq, are given by (12) and (13), and 

Q tn.2 (Ai* ) k£ r;;. D' Q-* tn.2Q-• Ai*k rTij = -v~ ~(asym) ij .Lkb rQi = -m i - v~ k~ i' 

Ftij = -../2 (iJ>(asym»)ij k£ Tk£, FQ i = -mQi - ../2iJ>i jQj. 

The kinematical supersymmetry transformations are 

8(2)vm = 0, 8(2) >. = 0, 8(2)iJ> = 0, 

8(2)Q = 0, 8(2)Q* = 0, 8(2)'Ij;Q = 0, 

8(2)T = 0, 8(2)T* = 0, 8(2)'Ij;T = (, 

8(2)'Ij; = 0, 

8(2)ifiQ = 0, 

8(2)ifii' = (. 

(14) 

(15) 

(16) 

(17) 

Our model has eight dynamical supercharges and eight kinematical supercharges. 
This is the proper number of supercharges in order for this model to be interpretable 
as critical strings. Up to field dependent gauge transformations and equations of 
motion for the fermionic fields, we obtain the following commutation relations: 

[82~, 8~~,~,lT = 0, 

[82~, 8~~:17,1'lj;T = 0, 

[ (1) (1) 1 -* 
81;,17,81;',17' T = 0, 

[8~~~, 8~~:17,lifii' = 0. (18) 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/99/1/129/1925713 by guest on 16 August 2022



134 H. Itoyama and A. Tokura 

We also have the following commutation relations: 

(19) 

(20) 

The combination 8(1) ± 8(2), therefore, forms the supersymmetry algebra of sixteen 
supercharges which closes into translation of the four of the bosonic matrices in the 
antisymmetric representation. 

§4. Vacuum configuration 

Let us find a configuration with vanishing action, which is a particular classical 
solution of the model. This tells us how many spacetime coordinates are generated 
from our model. We set all fermions to zero in the action. We first demand 

Vmn = 0, 

[Vm, p] = i [vm, p] = 0, 

VmQ, = VmQ, = o. (21) 

We see that all of the Vm , P and pt lie on the Cartan subalgebra of usp(2k). Namely, 

N = 0 and M = d = diagonal (22) 

in X of Eq. (2). In addition, 

(23) 

As for the antisymmetric tensor fields, we first examine 

(24) 

where vm (asym) = ivm (r)t(r) (asym). This can be written as 

(25) 
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USp(2k) Matrix Model: F Theory Connection 135 

In general, the commutator [X, Y] with X E usp(2k) is written in terms of k x k 
blocks as 

( 
[M,A]- (-NC+ BN*) MB - (MB)t - AN + (AN)t ) 

[X, Y] = N* A - (N* A)t - CM + (CM)t [M, AJl- (-NC + BN*)t . 

(26) 
When X is restricted to the Cartan subalgebras, the condition that the commutator 
vanish, [X, Y] = 0, implies 

and therefore 

in Eq. (8). 

A = a = diagonal, B = C = 0, 

A = Ii = diagonal, jj = C = 0 (28) 

Under Eqs. (21) and (23), with all fermions set zero, the remaining part of the 
action Sres is 

_ 1 {I t t} Sres - g2 Tr "2DD - D[p ,p] + Fq>Fq> 

-2(P(asym)T*)(P(asym)T) - 2(TP(asym))(T*P(asym)) 

+V2i' FJasym)T + V2i'* F;(asym)T* + T D(asym)T + T* D(asym)T* 

= ;2 Tr{ - ~([pt,P] + [yt, Y] + [Yt, y])2 

-2([Yt, yt][y, Yl + [Y,cl>][cl>t, ytl + [yt,pt][p, Y])}. (29) 

Equation (29) vanishes for the configuration satisfying Eqs. (22) and (28). 
We conclude that the vacuum configuration is represented by 

Pit 

p~ d· (class) == lag vM (30) 

sgn(M)p~ 

and 
Q f = Q f = Qj = Qj = 0, (31) 

where 

{
-I M = 0 ... 5 

sgn(M) = + 1 M = 6: ... : 9' (32) 

= ( cl> + pt P _ pt Y + yt Y _ yt Y + yt Y _ yt) . 
v M - V

m
, V2 ' V2i' V2 ' V2i ' V2 ' V2i (33) 
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The spacetime coordinates generated extend not only to the six directions ob­
tained from the gauge fields and the adjoint scalars lying on the Cartan subalgebra of 
the usp(2k) but also to the four additional directions from the antisymmetric tensor 
fields. 

It is relatively clear that the one-loop stability of this vacuum is ensured by 
supersymmetry. We consider the second order fluctuation from diag v~ass) and 
compute determinants. Let the adjoint action PM on the matrix X be PM X 
= [diag v~ass), Xl. Following Ref. 5), the one-loop effective action obtained from the 
bosonic, fermionic and ghost degrees offreedom is (! ·10 - ~ ·16 - 1)Tr log(pM PM) 
and vanishes. 

We would now like to have a more definite physical interpretation of this model 
than those discussed briefly in §§1 and 2. At the same time we would like to clarify 
the issue of the number of spacetime dimensions. Let us recall that ten of the non­
commuting coordinates VM (Eqs. (33), (2) and (8)), which are dynamical variables, 
satisfy 

t F F- I Vi = - Vi , 
t F F- I 

VI = VI , 

i = 0 rv 5, 

1= 6 rv 9. (34) 

The VM represent the noncommuting analog of the ten string coordinates XM in the 
standard first quantized approach. In addition, the operation F is the matrix analog 
of the twist operation !l. The classical counterpart of Eq. (34) is therefore 

Xi = -!lXi!l-I, i = 0 rv 5, 

XI = !lXIV-I, 1= 6 rv 9. (35) 

The presence of a four-dimensional fixed surface (orientifold surface) becomes clear 
from Eq. (35). 

Equation (34) also constitutes the relations of embedding the VM into U(2k) 
matrices. In fact, via this embedding, the part of the action which do not invlove 
fundamentals is obtained from zero-dimensional reduction of the ten-dimensional 
super Yang-Mills theory by the projection. This dimensionally reduced model has 
been interpreted as a matrix model of type-lIB superstrings. 5) We conclude that our 
model not only provides an exact F theory compactification through the procedure 
of Ref. 9) applied to the Vm (m = 0,1,2,3) but also is a matrix model representing 
type-lIB superstrings on a large volume TJ /Z2 orientifold. 

Let us now impose periodicities on the infinite size matrices Vm (m = 0,1,2,3) 
in all four directions. For this, we decompose the Vm into blocks of n x n matrices. 
We specify each individual block by a row vector ii = (al,' .. a4) and a column vector 
b = (bl, ... b4): (vm) - b- == N (ii I vm I b). Let the shift vector be a, 

(U(i))ii,b = ( II Oaj,bj ) Oai,bi+1' (36) 
j(~i) 

The condition to be imposed is 

U(i)vmU(i)-1 = Vm - Om,iR/N. (37) 
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The solution in Fourier transformed space is 

(x I vm IX') = -i (f):m + iVm(X)) 8(4) (x - X'), 

vm(x) = _L ~m(l) exp (-i~. x) , 
lEZ4 R 

R == a'/R. 

137 

(38) 

(39) 

The Fourier transform acts as the T dual transformation: it interchanges the radius 
parameter R setting the period of the original matrix index with the dual radius R 
which is the period of the space Fourier conjugate to the matrix index. The point is 
that we take the R --t 0 limit after the Fourier transform. The resulting description of 
the model in the dual coordinates Vm (m = 0, 1,2,3) is the large k limit of the N = 2 
supersymmetric USp(2k) gauge theory with an antisymmetric hypermultiplet and 
n f fundamental hypermultiplets. The ten noncommuting coordinates have classical 
counterparts which are 

Xi = -ilXiil-I, i = 4,5, 

Xl = ilXlil-1, J! = 0,1,2,3, 

XI = ilXIil-l, 1= 6 '" 9. (40) 

Here Xl == Xl R - Xc L denotes the dual coordinates of Xl == Xl R + XC L. The fixed 
orientifold surface is now eight dimensional, as a minus sign appears twice (i = 4,5) in 
Eq. (40). The model in this limit therefore represents the nonperturbative completion 
of type-liB on a large volume T2 / Z2 orientifold, namely on C pl. 

As it stands, the model produces only ten spacetime dimensions as eigenvalue 
distributions of the ten matrix coordinates. The original argument of Ref. 10) that 
F theory is a theory in twelve spacetime dimensions takes the following form in the 
present context of our matrix model representing F theory. The low energy effective 
action of the four-dimensional U Sp(2k) N = 2 susy gauge theory above, which is 
our matrix model in the compactification described, has been exactly determined. 13) 

The effective running coupling T depends on t rp2/2 == U : T = T(U). The work of 
Ref. 13) exactly determines this function, and this is precisely the moduli of the torus 
which is the fiber of the elliptic fibered K3 surface with C pI the base labelled by 
u. This is the only rationale for regarding this torus as representing two additional 
dimensions. Coordinates which parametrize this torus do not, however, manifest 
themselves in the present framework: only its moduli appear. Even if one is willing 
to take this twelve-dimensional viewpoint, the two additional dimensions are treated 
very differently from the remaining ten dimensions, which are directly related to the 
noncommuting coordinates as dynamical variables. *) 

0) We should, however, note that the possibility of twelve spacetime dimensions is suggested in 
Ref. 16), as well as in the recent work, based on current algebra 17) and also in the work on the 
topological matrix model. 18) 
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