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Abstract 19 

The existing assessment procedures of the thermal environment in the fields of public weather 20 

services, public health systems, precautionary planning, urban design, tourism & recreation 21 

and climate impact research show significant shortcomings. This is most evident for simple 22 

(mostly two-parameter) indices, when comparing them to complete heat budget models 23 

developed since the 1960s. ISB Commission 6 took up the idea to develop a Universal 24 

Thermal Climate Index (UTCI) which was to be based on the most advanced multi-node 25 

model of thermoregulation representing the progress in science within the last 3 to 4 decades, 26 

both in thermo-physiological and heat exchange theory. 27 

 28 

Creating the essential research synergies for the development of UTCI required pooling the 29 

multidisciplinary experts in the fields of   thermal physiology, mathematical modelling, 30 

occupational medicine, meteorological data handling (in particular radiation modelling) and 31 

application development  in a network. It was possible to extend the expertise of ISB 32 

Commission 6 substantially by COST (A European programme of promoting Cooperation in 33 

Science and Technology) Action 730 so that ultimately, for ISB and COST together, over 45 34 

scientists from 23 countries (Australia, Canada, Europe, Israel, New Zealand, and the USA 35 

http://www.utci.org/
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worked together. The work was done under the umbrella of WMO- Commission on 1 

Climatology CCl.  2 

 3 

After extensive evaluations Fiala‟s multi-node human Physiology and thermal Comfort model 4 

(FPC) was adopted for this study. The model was extensively validated applying as yet 5 

unused data from other research groups, and extended for purposes of the project. This model 6 

was coupled with a state-of-the-art clothing model considering the behavioural adaptation of 7 

clothing insulation by the general urban population to actual environmental temperature. 8 

UTCI was then derived conceptually as an Equivalent Temperature (ET). Thus, for any 9 

combination of air temperature, wind, radiation, and humidity (stress), UTCI is defined as the 10 

air temperature of the reference condition which would elicit the same dynamic response 11 

(strain) of the physiological model as the actual conditions.  As UTCI is based on 12 

contemporary science its use will standardize applications in the major fields of human 13 

biometeorology thus making research results comparable and physiologically relevant. 14 

 15 

Keywords: Outdoor climate, Thermal assessment, Index, Thermal stress, Thermo-physiology, 16 

Model 17 

 18 

Introduction 19 

The close relationship of humans to the thermal component of the atmospheric environment is 20 

self-evident and belongs to everybody‟s daily experience. Thus, issues related to thermal 21 

comfort, discomfort, and health impacts are the reason that the assessment and forecast of the 22 

thermal environment is one of the fundamental and enduring themes within human 23 

biometeorology. In this context the term “thermal environment” encompasses both the 24 

atmospheric heat exchanges with the body (stress) and the body‟s physiological response 25 

(strain). 26 

 27 

The following fields of applications are considered as particularly significant for users: 28 

1) Public weather service (PWS). The issue is how to inform and advice the public on 29 

thermal conditions at a short time scale (weather forecast) for outdoor activities, 30 

appropriate behaviour, and climate-therapy. Currently various national meteorological 31 

services around the world are using a plethora of indices in their public weather 32 
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advice. But in an increasingly internationalized weather information sphere, the use of 1 

local weather dialects seems no longer to be appropriate. 2 

2) Public health system (PHS). In order to mitigate adverse health effects by extreme 3 

weather events (here heat waves and cold spells) it is necessary to implement 4 

appropriate disaster preparedness plans. This requires warnings about extreme thermal 5 

stress so that interventions can be released in order to save lives and reduce health 6 

impacts. 7 

3) Precautionary planning. This refers to a wide range of applications in public and 8 

individual precautionary planning such as urban and regional planning, and in the 9 

tourism industry. The increasing reliability of monthly or seasonal forecasts should be 10 

considered to help develop appropriate operational products. 11 

4) Climate impact research in the health sector. The increasing awareness of climate 12 

change and therewith related health impacts requires epidemiological studies based on 13 

cause-effect related approaches.  14 

 15 

Balancing the human heat budget, i.e. equilibration of the organism to variable environmental 16 

(atmospheric) and metabolic heat loads is controlled by a very efficient (for healthy people) 17 

autonomous thermoregulatory system. This is additionally supported by behavioural 18 

adaptation (e.g. eating and drinking, activity and resting, clothing, exposure, housing, 19 

migration) which is driven by conscious sensations of thermal discomfort. These capabilities 20 

enable the (healthy) human being to live and to work in virtually any climate zone on earth, 21 

albeit with varying degrees of discomfort.  22 

 23 

The heat exchange between the human body and its environment takes place by sensible and 24 

latent heat fluxes, radiation and (generally negligible) conduction. Comprehensively 25 

characterising the thermal environment in thermo-physiologically significant terms requires 26 

application of a complete heat budget model that takes all mechanisms of heat exchange into 27 

account (Büttner, 1938; Parsons, 2003). Atmospheric environmental parameters governing all 28 

of the abovementioned heat exchanges include air temperature, water vapour pressure, wind 29 

velocity, mean radiant temperature including the short- and long-wave radiation fluxes of the 30 

atmosphere (see Weihs et al., 2011 elsewhere in this issue), in addition to metabolic rate and 31 

clothing insulation worn by the subject. Only thermal climate indices that incorporate all of 32 

the parameters of the human heat budget can be universally utilised across the full gamut of 33 
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biometeorological applications, across all climate zones, regions and seasons (e.g. Jendritzky 1 

and de Dear, 2009).  2 

 3 

In recognition that the human thermal environment cannot be represented adequately with just 4 

a single parameter, air temperature (Ta), over the last 150 years or so more than 100 simple 5 

thermal indices have been developed, most of them two-parameter indices. For warm 6 

conditions such indices usually consist of combinations of Ta and one of a variety of 7 

expressions for humidity, while for cold conditions the combination typically consists of Ta 8 

combined in some way with air speed (v). Simple indices are easy to calculate and therefore 9 

easy to forecast. In addition they are readily communicated to the general public and 10 

stakeholders such as health service providers (Koppe et al., 2004).  However, due to their 11 

simple formulation, i.e. neglecting significant fluxes or variables, these indices can never 12 

fulfil the essential requirement that for each index value there must always be a corresponding 13 

and unique thermo-physiological state (strain), regardless of the combination of the 14 

meteorological input values (stress). Simple indices can only be of limited value, results are 15 

often not comparable and often lead to misrepresentations of the thermal environment, and 16 

additional features such as safety thresholds have to be defined arbitrarily and cannot be 17 

transferred to other locations.  18 

 19 

These inadequacies of two-parameter indices have prompted hundreds of attempts at 20 

improvement The Wind-Chill Temperature (ISO 11079, 2007) and subsequently the New 21 

Wind Chill Index (Osczevski and Bluestein, 2005) are illustrative in this regard; the turbulent 22 

heat flux is disproportionate and has been critiqued by Shitzer (2006) and Shitzer and de Dear 23 

(2006). In occupational health the Wet Bulb Globe Temperature (WBGT, ISO 7243, 1989) 24 

evolved in the 1950s, but is still popular for considerations of humidity and thermal radiation 25 

in warm environments. Comprehensive reviews of simple indices can be found in e.g., Fanger 26 

(1970), Landsberg (1972), Driscoll (1992), and Parsons (2003).  27 

 28 

During the last 40 years thermal biomereorology advanced significantly with the development 29 

of heat budget models (see Stollwijk, 1971 and related 2-node model associated with Gagge 30 

et al, 1986).  Subsequent developments, still relatively simple, include models such as MEMI 31 

with the output of PET (Höppe, 1984, 1999; Matzarakis et al., 2007), and the Outdoor 32 
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Apparent Temperature
1
 (Steadman 1984, 1994). More comprehensive models and indices 1 

based upon the human heat balance equation include the Standard Effective Temperature 2 

(SET*) index (Gagge et al. 1986), and OUT_SET* (Pickup and De Dear 2000; De Dear and 3 

Pickup 2000), which translates Gagge's indoor version of the index to an outdoor setting by 4 

simplifying the complex outdoor radiative environment down to a mean radiant temperature 5 

(Tmrt). Blazejczyk (1994) presented the man-environment heat exchange model MENEX, 6 

while the extensive work by Horikoshi et al. (1995, 1997) resulted in a Thermal 7 

Environmental Index. While the aforementioned heat budget models are applicable across the 8 

full range of heat exchange conditions, the Predicted Heat Strain (PHS, ISO 7933, 2004) 9 

which is used in occupational medicine, is relevant only to warm environments. 10 

 11 

Fanger's (1970) PMV (Predicted Mean Vote) equation can also be included among the 12 

advanced heat budget models if  the improvement by Gagge et al. (1986) in the description of 13 

latent heat fluxes by the introduction of PMV* is applied. This approach is generally the basis 14 

for the operational thermal assessment procedure Klima-Michel-Model KMM (Jendritzky et 15 

al. 1979, 1981; Jendritzky, 1990) of the German national weather service DWD (Deutscher 16 

Wetterdienst) with the output parameter "Perceived Temperature (PT)" (Staiger et al. 1997; 17 

VDI 2008) that considers behavioural adaptation by varying clothing. For more than two 18 

decades KMM was the sole assessment procedure which has included a complete radiation 19 

model to calculate Tmrt on basis of meteorological data. To date the German weather service 20 

(DWD) is the only national weather service to run a complete heat budget model (KMM-PT) 21 

on a routine basis specifically for applications in human biometeorology. 22 

 23 

Although each of the heat budget models referred to above is, in principle, appropriate for use 24 

in any kind of assessment of the thermal environment, none of them is accepted as a 25 

fundamental standard, neither by researchers nor by end-users. This is probably because of 26 

persistent shortcomings in relation to thermo-physiology and heat exchange theory. On the 27 

other hand, it is surprising that after 40 years experience with heat budget modelling and easy 28 

access both to computational power and meteorological data, the crude and basic empirical 29 

indices like WBGT actually are still widely used. For comparisons of both selected simple 30 

indices and also of more complex heat budget based approaches to the creation of a Universal 31 

                                                 
1
 The Indoor AT, which forms the basis of the US Heat Index, often used in outdoor 

applications by neglecting the prefix "Indoor" belongs to the simple two-parameter indices. 
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Thermal Climate Index (UTCI) see Blazejczyk et al. (2011) and Kampmann and Bröde (2009 1 

and 2011 elsewhere in this issue). 2 

 3 

A decade ago the International Society on Biometeorology ISB recognised these 4 

shortcomings in thermal indices and established the Commission 6 ”On the development of a 5 

Universal Thermal Climate Index UTCI” (Jendritzky et al., 2002). Since 2005 these efforts 6 

have been reinforced by the COST Action 730 (Cooperation in Science and Technology, 7 

supported by the EU RTD Framework Programme) that provided ultimately the basis for 8 

scientists from 23 countries (18 from Europe plus experts from Australia, Canada, Israel, New 9 

Zealand, and the USA) to collaborate on development of such an index (COST UTCI, 2004). 10 

The aim was an international standard based on the latest scientific progress in human 11 

response related thermo-physiological modelling of the last four decades. The term 12 

“universal” must be understood in terms of being appropriate for all assessments of outdoor 13 

thermal conditions in major human biometeorological applications such as daily forecasts and 14 

warnings of extreme weather, bioclimatic mapping, urban and regional planning, 15 

environmental epidemiology and climate impacts research. This covers the fields of public 16 

weather service, the public health system, precautionary planning, and climate impact 17 

research in the health sector. 18 

 19 

The Universal Thermal Climate Index UTCI must meet the following requirements: 20 

1) Thermo-physiologically responsive to all modes of heat exchange between body 21 

and environment. 22 

2) Applicable for whole-body calculations but also for local skin cooling (frostbite) 23 

(see Shitzer and Tikusis (2011) elsewhere in this issue) 24 

3) Valid in all climates, seasons, and time and spatial scales 25 

4) Appropriate for key applications in human biometeorology  (listed above) 26 

 27 

 28 

Approach and results 29 

 30 

Thermoregulation 31 

 32 

For the human being it is crucial to keep the body‟s core temperature within a narrow range 33 

around 37°C, in order to ensure functioning of the inner organs and of the brain. In contrast 34 

the temperature of the shell, i.e. skin and extremities, can vary significantly depending on the 35 
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volume of blood it contains, which in turn depends on metabolic and environmental heat 1 

loads. Heat is produced by metabolism as a result of activity, sometimes increased by 2 

shivering or slightly offset by mechanical work where applicable, e.g. when climbing. The 3 

heat must be released to the environment by convection (sensible heat flux), conduction 4 

(contact with solids), evaporation (latent heat flux), radiation (long- and short-wave), and 5 

respiration (latent and sensible). 6 

 7 

From the analytical point of view, the human thermoregulatory system can be separated into 8 

two interacting sub-systems: (1) the controlling active system which includes the 9 

thermoregulatory responses of shivering [thermo genesis] sweat moisture excretion, and 10 

peripheral blood flow regulation (Fig. 1a), and (2) the controlled, passive system dealing with 11 

the physical human body and the heat transfer occurring within it and at its surface (Fig. 1b). 12 

This accounts for local heat losses from body parts by free and forced convection, long-wave 13 

radiation exchange with surrounding surfaces, solar irradiation, and evaporation of moisture 14 

from the skin and heat and mass transfer through non-uniform clothing. Under comfort 15 

conditions the active system shows the lowest activity level indicating no strain. Increasing 16 

discomfort is associated with increasing strain and related impacts on the cardiovascular and 17 

respiratory system. The tolerance to thermal extremes depends on personal characteristics 18 

(Havenith 2001, 2005): age, fitness, gender, acclimatization, morphology, and fat thickness 19 

being among the most significant. Of these, age and fitness are the most important predictors 20 

and both are closely correlated. High age and/or low fitness level are associated with low 21 

cardiovascular reserve which causes low thermal tolerance.  22 

 23 

Figure 1 a,b Schematic representation of human physiological and behavioural  24 

  thermoregulation (after Havenith 2001, Fiala et al. 2001) 25 

 26 

 27 

The heat budget 28 

 29 

The heat exchange between the human body and the thermal environment (Fig. 2) can be 30 

described in the form of the energy balance equation (Eq. 1); essentially the first theorem of 31 

thermodynamics applied to the body‟s heat sources (metabolism and environmental), and the 32 

various avenues of heat loss to environment (Büttner 1938): 33 

  34 
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            0,,,*, Re  SeTQveQveQTQvTQWM aSWLmrtaH   Eq. 1  1 

M Metabolic rate (activity) 2 

W Mechanical power  3 

S Storage (change in heat content of the body) 4 

 Peripheral (skin) heat exchanges: 5 

QH Turbulent flux of sensible heat  6 

Q* Radiation budget  7 

QL Turbulent flux of latent heat (passive diffusion water vapour through the skin)  8 

QSW Turbulent flux of latent heat (sweat evaporation)  9 

 Respiratory heat exchanges: 10 

QRe Respiratory heat flux (sensible and latent)  11 

 Thermal environmental parameters: 12 

Ta Air temperature 13 

Tmrt Mean temperature 14 

v Air speed relative to the body 15 

e Partial vapour pressure 16 

 17 

The meteorological input variables include air temperature Ta , water vapour pressure e, wind 18 

velocity v, mean radiant temperature Tmrt including short- and long-wave radiation fluxes, in 19 

addition to metabolic rate and clothing insulation. In eq. 1 the appropriate meteorological 20 

variables are attached to the relevant fluxes. However, the internal (physiological) variables 21 

(Fig. 1), such as the temperature of the core and the skin, sweat rate, and skin wettedness 22 

interacting with the environmental heat exchange conditions are not explicitly mentioned 23 

here.  24 

 25 

Figure 2  The human heat budget (Havenith 2001) 26 

 27 

 28 

Mathematical modeling of the human thermal system goes back 70 years. In the past four 29 

decades more detailed, multi-node models of human thermoregulation have been developed, 30 

e.g. Stolwijk (1971), Konz et al. (1977), Wissler (1985), Fiala et al. (1999, 2001), Huizenga et  31 

al. (2001) and Tanabe et al. (2002). These models simulate phenomena of human heat 32 

transfers within the body and at its surface, taking into account the anatomical, thermal and 33 

physiological properties of the human body (see Fig 1). Environmental heat losses from body 34 
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parts are modeled considering the inhomogeneous distribution of temperature and 1 

thermoregulatory responses over the body surface. Besides overall thermo-physiological 2 

variables, multi-segmental models are capable of predicting 'local' characteristics such as skin 3 

temperatures of individual body parts. Validation studies have shown that recent multi-node 4 

models accurately reproduce the human dynamic thermal responses over a wide range of 5 

thermal circumstances (Fiala et al. 2001, 2003; Havenith 2001, Huizenga et al. 2001). These 6 

models have become valuable research tools contributing to a deeper understanding of the 7 

principles of human thermoregulation. 8 

 9 

Modelling 10 

 11 

As the assessment of thermal stress should ultimately be based on the physiological response 12 

of the human body (thermal strain), ISB Commission 6 decided from the outset that this was 13 

to be simulated by one of the most advanced (multi-node) thermo-physiological models. After 14 

accessible models of human thermoregulation had been evaluated (Fiala et al. 1999; Tanabe et 15 

al. 2002), the Fiala‟s multi-node human Physiology and thermal Comfort (FPC) model (Fiala 16 

et al., 1999; 2001; 2003; 2010) was adopted for this study, extensively validated (Psikuta, 17 

2009; Psikuta et al., 2007; see also Psikuta et al. 2011 elsewhere in this issue), and extended 18 

for purposes of the project (Fiala et al., 2007; see also Fiala et al. 2011 elsewhere in this 19 

issue).  20 

 21 

The passive system of the Fiala model (Fiala et al. 1999, 2001) consists of a multi-segmental, 22 

multi-layered representation of the human body with spatial subdivisions. Each tissue node is 23 

assigned appropriate thermo-physical and thermo-physiological properties. The overall data 24 

replicates an average person with respect to body weight, body fat content, and Dubois 25 

surface area. The physiological data aggregates to a basal [whole body] heat output and basal 26 

cardiac output, which are appropriate for a nude, reclining adult in a thermo-neutral 27 

environment of 30°C. In these conditions, where thermoregulatory activity is minimal, the 28 

model predicts a basal skin wettedness of 6%; a mean skin temperature of 34.4°C; and body 29 

core temperatures of 37.0°C in the head core (hypothalamus) and 36.9°C in the abdomen core 30 

(rectum) (Fiala et al. 1999). Verification and validation work using independent experiments 31 

from air exposures to cold stress, cold, moderate, warm and hot stress conditions, and a wide 32 

range of exercise intensities revealed good agreement with measured data for regulatory 33 

responses, mean and local skin temperatures, and internal temperatures across the whole 34 
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spectrum of boundary conditions considered (Richards and Havenith 2007). By including as 1 

yet unused data from other research groups the Fiala human Physiology and thermal Comfort 2 

(FPC) model (Fiala et al. 2010) could be substantially advanced. FPC was adopted by the ISB 3 

Commission 6 as the benchmark (“most advanced”) in terms of thermo-physiology and heat 4 

exchange theory.  5 

 6 

In the next step a state-of-the-art adaptive clothing model was developed and integrated 7 

(Richards and Havenith, 2007; Havenith et al. 2011 elsewhere in this issue). This model 8 

considers 9 

1) the behavioural adaptation of clothing insulation observed for the general urban 10 

population in relation to the actual environmental temperature,  11 

2) the distribution of the clothing over different body parts providing local insulation 12 

values for the different anatomical segments, and  13 

3) the reduction of thermal and evaporative clothing resistances caused by wind and 14 

limb movements of the wearer, who was assumed to be walking at a speed of 4 15 

km/h on level ground (2.3 MET = 135 W/m²). 16 

 17 

UTCI was then developed following the concept of an equivalent temperature. This involved 18 

the definition of a reference environment with 50% relative humidity (but vapour pressure not 19 

exceeding 20 hPa), with calm air and radiant temperature equalling air temperature, to which 20 

all other climatic conditions are compared. Equal physiological conditions are based on the 21 

equivalence of the dynamic physiological response predicted by the model for the actual and 22 

the reference environment. As this dynamic response is multidimensional (body core 23 

temperature, sweat rate, and skin wettedness etc. at different exposure times), a strain index 24 

was calculated by principal component analysis as single dimensional representation of the 25 

model response (Bröde et al., 2009a; 2009b). The UTCI equivalent temperature for a given 26 

combination of wind, radiation, humidity and air temperature is then defined as the air 27 

temperature of the reference environment that produces the same strain index value. As 28 

calculating the UTCI equivalent temperatures by repeatedly running the thermoregulation 29 

model could be too time-consuming for climate simulations and numerical weather forecasts, 30 

a fast calculation procedure has been developed and made available (for details see Bröde et 31 

al. 2008; 2009a; Bröde et al. 2011 elsewhere in this issue).  32 

 33 

 34 



 11 

Conclusion 1 

 2 

The main objective of this collaboration between 45 scientists from 23 countries was to 3 

develop a readily accessible thermal index based on a state-of-the-art thermo-physiological 4 

model. The UTCI resulting from this research is intended to significantly enhance 5 

applications related to human health and well-being in the fields of public weather services, 6 

public health systems, precautionary planning, and climate impact research. The development 7 

of UTCI required cooperation of experts from diverse disciplines including thermo-8 

physiology, occupational medicine, physics, meteorology, biometeorological and 9 

environmental sciences. After many decades of frustrating attempts by individual researchers 10 

working on thermal indices in isolation from cognate disciplines, the UTCI team‟s 11 

multidisciplinary approach facilitated the research synergies necessary for a universal solution 12 

to the problem of characterising the human thermal environment. Embedding the UTCI 13 

project within a Commission of the International Society of Biometeorology and also a 14 

European COST Action provides an international framework for this new climatic index to 15 

evolve into a methodological standard.  16 

 17 

The Universal Thermal Climate Index UTCI assesses the outdoor thermal environment for 18 

biometeorological applications by simulating the dynamic physiological response with a 19 

model of human thermoregulation coupled with a state-of-the-art clothing model. The 20 

operational procedure (available as software from the UTCI website http://www.utci.org) 21 

shows plausible responses to humidity and radiative loads in hot environments, as well as to 22 

wind in the cold. UTCI was in good agreement with the assessment of other standards 23 

concerned with the thermal environment (Psikuta et al. 2011 elsewhere in this issue). Local 24 

cooling of exposed skin, including frostbite risk (wind chill effects), should best be regarded 25 

as a transient, rather than a steady-state phenomenon (Shitzer, 2006; Tikuisis and Osczevski, 26 

2002, 2003). The consensus final procedure for cold exposure using UTCI, however, still 27 

remains to be determined (Shitzer and Tikuisis, 2011 elsewhere in this issue).  28 

 29 
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Figures 14 

Figure 1 a, b Schematic representation of human physiological and behavioural  15 

  thermoregulation (after Havenith 2001, Fiala et al. 2001). 16 

Figure 2  The human heat budget (Havenith 2001). 17 
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