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Abstract—Advanced Driver-Assistance Systems (ADAS) have
been attracting attention from many researchers. Vision-based
sensors are the closest way to emulate human driver visual
behaviour while driving. In this paper, we explore possible
ways to use visual attention (saliency) for object detection and
tracking. We investigate: 1) How a visual attention map such
as a subjectness attention or saliency map and an objectness
attention map can facilitate region proposal generation in a 2-
stage object detector; 2) How a visual attention map can be used
for tracking multiple objects. We propose a neural network that
can simultaneously detect objects as and generate objectness and
subjectness maps to save computational power. We further exploit
the visual attention map during tracking using a sequential
Monte Carlo probability hypothesis density (PHD) filter. The
experiments are conducted on KITTI and DETRAC datasets.
The use of visual attention and hierarchical features has shown
a considerable improvement of ≈8% in object detection which
effectively increased tracking performance by ≈4% on KITTI
dataset.

I. INTRODUCTION

A fundamental requirement for accurate, robust and safe

Advanced Driver Assistance Systems (ADAS) is the detection

and tracking of other road users (objects) using sensors in-

corporated into the vehicles. Commonly this includes visual

sensors such as video that results in very high volumes of

input to be processed and interpreted in near real-time. Human

drivers do not focus on all objects at all times but rather focus

on the salient or critical regions in their field of view. As

human drivers, we can focus and divert attention based on

task priority. Similarly, in computer vision, visual saliency

can predict how our visual perception ranks the importance

of visual information, whether low level features or high level

semantics. On the other hand, to localize and classify objects,

computer based object detectors usually process all visual

information and treat all information in different regions of

interest equally.

Noting that regions of interest can have different levels

of importance, we incorporate a derived attention map that

provides a probabilistic map of the most visually important

regions in a video to improve the efficiency and accuracy

of object detection and tracking in video for ADAS. We
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investigate two possible approaches that can be used as proxies

of the attention map: objectness map and saliency map. In the

paper, we refer to the saliency map as the subjectness map, as

the term saliency map is more human perception oriented as

the eye fixation on stimulus can vary greatly from participant

to participant whilst the prediction of a saliency map from a

given RGB image is deterministic.

Fig. 1. Pipeline for detection based tracking of multiple objects

II. RELATED WORK

Object detection and tracking in video has advanced signifi-

cantly with the development of Deep Neural Networks (DNN).

The modern NN based detector has two categories – single

stage and two stage. Single stage detectors, such as YOLO

[1] and SSD [2] and their derivatives, are single pass methods

that do not separate region proposals. These types of detectors

directly predict class probabilities and bounding box offsets

from feature maps.

In contrast, two stage detectors, including RCNN [3], Fast

RCNN [4], Faster-RCNN [5] and Mask RCNN [6] etc, all

have an intermediate step to generate region proposals where

objects might be located, and the region proposals are then

refined in the last step to further predict the class and lo-

cation of the proposals. Generally speaking, region proposal

based detectors have better performance than proposal-free

approaches. In this paper, we choose to use the Faster-RCNN

based detector, not only because it has better performance, but

also to validate attention maps as visual cues to reject region

proposals by filtering the proposals in non-significant regions.

After filtering, fewer region proposals go to the second stage

thus improving the efficiency of the detectors.

We further exploit the generated attention map for tracking

objects especially vehicles in ADAS datasets by using visual



(a) Binarized Saliency Map (b) Generated Saliency ROIs

Fig. 2. Generation of Saliency ROIs.

information from the attention map in the tracking refinement

process. There are two important areas of research in our

study: (1) attention map generation and (2) object tracking.

Section II-A and II-B will describe related work for each of

these topics respectively.

A. Subjective and Objective Attention

Significant research has been performed to generate accurate

and better saliency maps [7], [8]. The computer vision com-

munity is starting to investigate applying attention mechanisms

in the context of autonomous driving [9]. There are many

approaches to generate saliency maps. Figure 2 shows an

example of generated saliency map using SalGAN [10] to

produce Regions of Interest (RoIs). It is a generative model

that uses VGG-16 to generate an image representation and

a reverse VGG-16 to deconvolute the representation code to

a saliency map. During training both saliency image recon-

struction loss and a discriminator loss are used together to

update the gradient. We use this Neural Network for saliency

generation because it has a clear VGG-16-like structure that

is easy to run and trained weights are publicly available.

Subjective attention or saliency models are normally trained

with eye fixation data collected when experiment partici-

pants view images. The images displayed to the participants

normally contain broad concepts and generic object classes.

Similarly an objectness map is more object oriented and is

generated using ground truth bounding box data. Figure 8a

and 8b shows an example of an original image and the ob-

jectness map generated using ground truth object annotations.

The objectness map separates foreground and background and

thus identifies possible coarse locations for objects.

There are works [11] using background subtraction for

better performance in surveillance video from a fixed camera.

In particular, RON [12] uses an objectness map as the attention

map to suppress the features that belong to background areas.

Although, subjective attention or saliency are purely object

oriented, it captures richer information than solely objectness.

In Figure 2a and 2b, the example images show that the

generated saliency map does not only give attention to vehicles

but also to surrounding objects that are not relevant in this

context including generic object concepts such as vegetation,

buildings and road signs.

Saliency has also been applied in many other areas such

as for better guidance in few shots learning [13]. Researchers

have been using an attention map as a weighting mechanism

to generate better image representations [14]. We are using

attention as a filter to reduce the number of region proposals

before performing non maximum suppression.

This paper will explore the use of saliency and objectness

for object detection and tracking through the pipeline shown

in Figure 1. Conventional methods use one model for saliency

generation and one model for the objectness map generation

and object detection. Object detection using a 2-stage detector

can use lots of computational power, so instead of using

two models, we using one VGG16 model [15] as backbone

for saliency generation, objectness map generation and object

detection to avoid unnecessary repeated computing such as

image representation generation.

To train a network with multiple tasks, we need to have

multiple targets for the network to learn or be optimized

for. For the saliency map, we use an off-the-shelf pre-trained

SalGAN to generate the saliency map target. To generate the

objectness map as a learning target, we create a map the same

size as the original image with all pixels within ground truth

bounding boxes marked as 1 and background marked as 0.

Figures 7 and 8 show the attention map that uses distilled

SalGAN and objectiveness maps. We observe in Figure 7 that

there are some traces of centre bias originating from saliency

model and that the areas that the saliency map focuses on are

not always the objects that we are interested in. However, the

saliency map rightly diverts attention to the left side of the

image.

B. Tracking

In a tracking-by-detection framework for object tracking,

the tracker receives the position and bounding box of the tar-

gets in the scene from the detection module. Due to detection

and sensor errors from this module, the tracker module needs

to handle missed and uncertain detection. The probability

hypothesis density filter (PHD) [16] is the adaptation of

random finite set for multi-target tracking [17] to handle this

uncertainty. Depending on the kind of complexity (linear or

non-linear) in the target, PHD filters are implemented in two

popular schemes. When the target dynamics are linear and

can be assumed to be a Gaussian process then the Gaussian

mixture (GM-PHD) filter [18] is employed and if the dynamics

are highly non-linear and non-Gaussian process, the Sequential

Monte Carlo or particle-PHD filter [19] is used.

To reduce the complexity of a tracker with increased num-

bers of targets during data association, Maggio et al. [20] used

a PHD filter to propagate the first order moments instead of

the full posterior of the multi-target. To handle the resulting

missed detections and varying numbers of targets in the scene,

Feng et al. [21] used a retro-diction PHD filter with a backward

filtering algorithm to estimate the approximation error and

employed an adaptive recursive step to improve the accuracy.

To address the resulting false detections, Wojke and

Paulus [22] propose a recursive method, Daniyan et al. [23]

apply Kalman gain to minimise target error and Zhang, Ji

& Hu [24] have applied a Poisson extended target model to

assist tracking with cluttered detections. In the current work,

we have used Intersection Over Union (IoU) and visual feature

descriptors to associate tracks with the detection using the

Munkres algorithm. A correction mechanism via KalmanGain



as mentioned in [23] is used to minimize the error between

the estimated and actual values by the tracker module.

III. VISUAL ATTENTION FOR DETECTION AND TRACKING

In this paper we refer to the saliency map as a subjectness

map because it is a proxy of human perception of what

is subjectively interesting to view. In contrast, objectness

maps are generated using ground truth object bounding boxes

from manual annotations. We then use multi-peak gaussian

density functions in a modified particle-PHD filter to distribute

particles adaptively according to generalised visual attention.

A. Teacher student network for subjective attention

We use a student-teacher network for knowledge distilla-

tion [25] to train a student network to learn how to generate

a saliency map from an input image. Chen et. al [26] have

demonstrated the possibility of transferring knowledge learned

from one model to another model that is normally smaller

than the original model. The condition of such successful

transferring of knowledge is that it happens in the same

knowledge domain. Even so, in some circumstances, strict

supervision is needed, not only at the target level but also in

the latent intermediate spaces. Insufficient work has explored

the possibility of knowledge distillation while several tasks

have been trained concurrently.

In our network, object detection, saliency and objectness

map generations are combined into one network by using

multiple task targets during training. In Figure 3 we use the

output of SalGAN as a teacher to supervise the generation

of a saliency map from each hierarchical feature map. We

also use an objectness map as a related concurrent target for

the network to learn. The generation of the objectness map

also uses multiple layer feature maps. We use binary cross

entropy to compute loss between predicted objectness and

saliency map and generated targets. In this case each pixel is

treated as independent Bernoulli distribution. These objectness

and saliency map binary cross entropy loss along with RPN

and ROI localization and classification loss are summed up to

compute gradient for each batch.

Fig. 3. Saliency Map teacher providing supervision

Auxiliary loss such as hint [27] are computed by extracting

representations from each layer and then loss from each

layer are computed and summarized to provide intermediate

layer supervision, which is useful where the student network

cannot directly learn to fit the final target or supervision

given by the teacher network. Interestingly, we observe that

when training multiple tasks jointly for object detection, the

objectness map and a saliency map, this intermediate hint is

not needed. Similar idea [28] was also used in deep supervised

learning, where auxiliary tasks could also help to improve the

performance of a main task.

B. Hierarchical Features

Researchers [29] have extracted features from multiple

layers in object detectors. Yang, Choi & Lin use ROI pooling

to pool features from different CNN layers based on the

size of the region proposals (RPs) and it seems that the

hierarchical features can thus improve the performance of a

detector. We also use features from different layers but instead

of pooling features based on the size of RPs, we pool features

from all three layers and concatenate them together. In this

architecture we use representations from both Conv 5 3, Con

4 3 and Con 3 3 layer. Figure 4 shows how hierarchical RPNs

are then used to generate region proposals. The class and

bounding box prediction of the region proposals are aggregated

from different layers and then pass through a non-maximum

suppression to generate the combined RPs. These combined

RPs are then pooled through hierarchical ROIAlign. Pooled

features from different layers are then concatenated to form

the final representation for final classification and bounding

box refinement.

Fig. 4. Combining Region Proposals and Attention Masks from hierarchical
features from hierarchical layers in Neural Networks

C. Attention Guided RP filter

We propose a visual attention guided, location-aware, region

proposal filter to reduce the number of region proposals using

an objectness and/or subjectness map. We implement a 2-stage

detection the same as Faster-RCNN. In a typical 2-stage object

detector, the 1st stage is a region proposal network (RPN) that

generates a large number of region proposals. For instance, a

feature map of size H×W could generate H×W ×A, where

A is the number of anchors determined by the chosen anchor

size and scale. The number of region proposals grows rapidly



with the increasing size of the feature map. For instance, in a

VGG-16 structure, from Conv5 3 to Conv3 3 the size of the

feature map increases 16 times. If we combine results from 3

layers, the number of target of RPNs would be 21×H×W ×

A. We combine objectness and saliency map prediction task

in the first stage RPN by using same image representations

and 3 independent headers for RPN, objectness and saliency

prediction.

Given a region proposal output I ∈ RHW×A×5 from

the RPN and a visual attention map M ∈ RHW , where

I[:, :, 0] contains the objectness score and I[:, :, 1 : 3] contains

bounding box regression information. We use the following

equation to filter region proposals.

Ifilter = I[S∗[f(M,D), :]] (1)

Where S∗ = argmaxj(Ii,j,0, n), S
∗ ∈ RHW×n. S∗ contains

an index of top n results iterated over Ij . f(·) returns the index

of Mi if M meets some condition D. [·] is a selecting operation

based on the index computed. We filter region proposals by

only taking the n highest objectness scores and then further

filter the proposals that meet condition D. The condition of D

is the elements of M bigger or smaller than a given threshold.

In our experiments this threshold is set to 0.4. The details

can be seen in the experiment section IV-B2. In the second

stage, object bounding boxes regression and classification, we

use filtered RPs and ground-truth labels to train the detection

modules.

D. Attention for tracking

In this paper, a tracking-by-detection framework is em-

ployed to track detected object in the scene using a modified

sequential Monte Carlo probability hypothesis density (PHD)

filter utilising the attention maps generated by the detection

module. The subjectness or objectness maps assist the tracker

to correct the predicted position of the targets during detection

failure. The states and measurements of the objects at kth

frame can be represented as:

Xk =
[

xi
k,left, y

i
k,top, , x

i
k,right, y

i
k,bottom

]

, i = 1, ..., N (2)

Zk =
[

z
j
k

]

, j = 1, ...,M (3)

In equation 2 and 3, N and M denote number of detected

targets and measurements and in the kth frame respectively.

Posterior probability density of the targets are computed using

a set of weighted random samples.
{

w
(i)
k , X

(i)
k

}N

i=1
and is

given as follows:

Dk(x, y) ≈

N
∑

i=1

w
(i)
k δ(X −X

(i)
k ) (4)

where w
(i)
k represents the expected weights of the target X

(i)
k

In the standard particle-PHD filter, it is difficult to guide

the particles to the region of interest as they are scattered

and due to the absence of a state correction step, the error

between the actual measurement and estimated measurements

is not minimized and can lead to failure in posterior estimation.

Similar to the approach mentioned in [23] we use Kalman

Gain to minimize the error between the estimated and actual

measurements. This correction mechanism will guide validated

particles in the particle-PHD filter to converge towards the re-

gion of higher likelihood of the observed measurements. This

mechanism helps the tracker in approximating the posterior

estimations at each time step. In the proposed filter, Kalman

gain along with the visual cues is used to compute the inter-

frame displacement of the objects to facilitate the particle

distribution and re-sampling process. The modified particle-

PHD filter is summarised as follows:

1) Initialisation:

At time k=0, instead of using bernoulli and poisson

processes of object birth process to initialize the PHD

Dk|k, we have adapted multi-peak Gaussian distribution

by a number of particles with associated randomised

weights
{

w
(i)
k , X

(i)
k

}N

i=1
.

At time k ≥ 1, particle approximation of the density

function and Kalman gain parameters are obtained by

making use of previous prediction and update results.

2) Particle State Prediction and weight computation: State

estimation is performed based on the weighted IoU and

distance metric computed on the temporal histogram

extracted by utilising the track history along with the

visual attention cues. After computing prior state of the

objects, the particle with the maximum weight is taken

as the final predicted position of the target

3) Particle State Update: We have followed the same state

update step incorporating IoU and histogram distance

metric. Kalman filter parameters are also updated.

4) Particle Resampling: We have considered the motion

cues during the resampling process, which assists the

PHD filter in localising the density function along the

motion of the target. Residual re-sampling strategy is

applied in North, South, West and East directions of the

particle position with most of particles distributed in the

direction of the motion of the target.

5) Refining and update using visual attention cues: This

addition correction mechanism is applied along with

the Kalman correction. The predicted box position is

scanned for the presence of any attention map for re-

taining prediction during the detection/prediction failure

or when the object is leaving the field of view of the

camera. Area of Intersection of the attention map region

over predicted box position gives us the occupancy and if

the computed occupancy measure is less than 30% of the

area of the predicted box then we ignore the prediction

and a correction is made based on the attention cues. The

density function and Kalman parameters are based on

the corrected target position and used for re-distributing

the particles in the next frame.

Data Association of the detected objects between the frames

is done using the Hungarian assignment algorithm with two

equally weighted measures: Intersection over Union (IoU)



Fig. 5. multi-peak Gaussian particle distribution based on object motion

of the bounding box, and an HSV color histogram of the

objects. The histogram is generated by concatenating the Hue

channel with 50 bin normalisation and the saturation channel

with 60 bin normalisation. Bhattacharyya distance is computed

between previous frame track results and the current detected

objects for data association. The current detection is assigned

to the track that has minimum cost value and when the

detection module fails to detect a previously detected object

for two consecutive frames then the tacker will terminate the

track.

(a) KITTI: 0016 (b) KITTI: 0020

(c) DeTRAC:MVI-39371 (d) DeTRAC:MVI-40851 (e) DeTRAC:MVI-40851

Fig. 6. Examples of Multiple Object Tracking using subjective hierarchy
model with objectiveness mask on KITTI Dataset

IV. EXPERIMENTS

A. Datasets

To train the object detection model, we have used the

KITTI [30] object detection benchmark dataset, which consists

of 7,481 training images and 7,518 test images. To evaluate

the object tracking pipeline, we have used the KITTI object

tracking benchmarks consisting of 21 training sequences and

29 test sequences. Apart from KITTI we also trained and

tested our model on DETRAC [31], which is a vehicle focused

dataset. In KITTI, since the ground-truth annotation of testing

set is not publicly available, we use the training/validation

split as in [32]. For DETRAC detection, we downsample the

training and testing set 10 times, and use 55% of training set

for training and the remainder as a validation set. For detection

the results are reported using the testing set. For the DETRAC

dataset, tracking results are reported on the testing set without

downsampling.

B. Attention and Detection

To train the proposed multi-task learning neural network,

we implement the model in PyTorch. All models are trained

on a NVIDIA GTX1080Ti. The gradients are updated using

standard Stochastic Gradient Descent with momentum 0.9.

Initial learning rate is set to 0.001 and the learning rate is

decreasing 10 times every 10 epochs. All models are trained

with 30 epochs. All the results in detection are reported

with Average Precision using IoU=0.7. Anchor boxes are

generated using size of 4, 8, 16 and 32 and ratios of 0.5,

1, 2. Figure 6 shows example of detection results on KITTI

and DETRAC. Attention guided region proposal filtering are

applied according to the description in section III-C. During

training Ifilter = Ifilter1 + Ifilter2 where Ifilter1 is filtered

using n = 4, D is M ≥ 0.4 and Ifilter2 is filtered using

n = 2, D is M < 0.4.

1) Hierarchical Attention Map: In the experiment, we have

observed that it is possible to use shared backbone weights for

object detection, objectness map generation and saliency map

generation. Figure 7 and 8 shows example images of both

the saliency map and objectness map generated using joint

representation from different layers of a VGG16 network. Both

visual attention maps restored the shape of either the ground

truth objectness mask or output of saliency map teacher.

(a) Input Image (b) Saliency Map SalGAN

(c) Saliency Map conv5 3 (d) Saliency Map conv4 3

(e) Saliency Map conv3 3 (f) Saliency Map combines using max
pooling

Fig. 7. Examples of Generated of Saliency map from different convolutional
layers.

2) Visual Attention in Detection: Table I shows the perfor-

mance using VGG16 Conv5 3 features with RPN, ROIAlign

pooling and visual attention maps generator trained using

KITTI dataset. During training, all output from RPNs are used

to generate region proposals. Results are reported with top

1 RPs in attention maps. We can observe that using all RPs

performs better than using attention maps for almost all classes

except for “Cyclist”. Considering only about 1% of all RPs

are used after we applied attention guided region proposal

filtering, the performance is very close to the detection results

using all RPs. The speed of using the attention map increased

about 10% from about 20 FPS to about 22 FPS. In Table I, we



(a) Input Image (b) Objectness Map

(c) conv5 3 (d) conv4 3

(e) conv3 3 (f) combined using max pooling

Fig. 8. Generated objectness map examples from different convolutional
layers

noticed that saliency map filtering achieved better performance

than All RPs and objectness map. It is reasonable to hypothe-

size that during saliency aided filtering, we are increasing rank

of the objectness score for “Cyclist” by eliminating too many

similar RPs that contain vehicles.

Table II shows a detector trained using hierarchical features

and jointly trained using objectness and saliency map as targets

using DETRAC dataset. The similar performance between

attention filtered RPs and all RPs is observed. We also tested

our detector on the whole testing set using original frame rate

using the code provided. The result is reported in row All∗.

This detection performance is currently standing at around

tenth position on the public leaderboard. The results from row

3-6 listed in Tabel II are reported using reduced testing data

with 10 times reduced frame rate.

Table III shows the results using models that exploit hier-

archical features. The models are reported with two training

settings: “All RPs” is trained with all anchors while “Ran-

doms RPs” randomly choses among all anchors, objectness

map and saliency filtered region proposals. For each training

setting, five testing settings are reported. During inference,

each feature on a feature map could generate A anchors and

thus the same amount of region proposals are created and

attention guidance filters these proposals. For features with

high saliency and/or objectness M ≥ 0.4, we choose the

top 1 (n = 1) proposals with highest objectness scores, for

objectness map (“OM1”) and for saliency map (“SM1”). We

also tested the top 4 (n = 4) proposals with highest scores

and they are reported under “OM4” and “SM4”. If attention

maps are used during training for features with high saliency

and/or objectness M ≥ 0.4, the top 4 (n = 4) proposals with

highest objectness scores are selected and for features with

low saliency and/or objectness M < 0.4, the top 2 (n = 2)

proposals with highest objectness scores are selected.

For attention guided filtering in detection, we can observe

that the number of region proposals coming from RPN are

significantly reduced. The percentage of proposals that are

used for detection are reported in “% of RPs”. In Table III,

interestingly only a very small percentage of region proposals

are contributing to the final detection. In the case of the

objectness map with top 4 proposals for each feature, about

3.4% of all RPs or about 10% of features on a feature map are

needed in order to achieve similar performance that uses all

RPs. In the case of saliency map, about 4% of all RPs or about

12% of features are needed to achieve similar performance to

that which uses all RPs. It seems that in KITTI, the saliency

map is performing better than the objectness map. As for the

number of proposals, increasing from top 1 proposals for each

feature to top 4 does increase the performance, but continuing

to increase n does not further improve performance. For some

classes such as Car, using saliency map filtering outperforms

using all RPs. If we compare with published State-of-the-

Art results on KITTI dataset [29], [32], [33], we are in line

with or outperform these approaches. These methods were top

methods on the KITTI 2D detection benchmark website by the

time we submitted the paper.

C. Results for tracking

Fig. 9. Computation analysis for choosing number of particles for tracking

Choosing the number of particles for the particle-PHD filter

is determined based on the computation time and accuracy

metric. The computation time complexity graph, obtained

by varying the number of particles required to successfully

keep of the object for each frame, is shown in Fig. 9. The

MOTA and MOTP metrics shows that the performance of

the tracker module was similar with max difference of ≈

0.5%. From further experiments and analysis we decided to

set the number of particles to be 100. Overall performance

of the pipeline using the particle-PHD filter with different

configuration, making uses of the visual attention cues on all

the sequences, are presented in Table IV and V. From the

obtained results on cars, we conclude that the performance

of the tracker module using objectness and subjectness maps

from the subjectness visual attentions are comparable, with

very minimal differences. False Alarm Rate (FAR) and ID

change values on the baseline is less when compared to other

proposed configurations. A similar trend is observed in the

case of pedestrians. For the DETRAC dataset, the evaluation

results are compared with the leader board results published

by UA-DETRAC in Table V.



TABLE I
PERFORMANCE ON KITTI USING MODEL WITHOUT HIERARCHICAL FEATURES TRAINED WITH ALL REGION PROPOSALS. TESTING IS CONDUCTED WITH

TOP 1 RPS IN OBJECTNESS MAP, SALIENCY MAP TO FILTER RPS AND ALL RPS.

Objectness Map Saliency Map All RPs
E M H mAP E M H mAP E M H mAP

Car 90.54 90.09 80.83 80.16 90.58 90.18 80.88 80.45 90.59 90.21 80.93 80.54

Cyclist 70.50 59.62 58.15 57.31 73.04 65.01 58.93 58.58 73.22 65.29 63.10 58.26

Pedestrian 67.45 58.15 50.28 49.68 67.68 58.00 50.31 49.91 70.89 58.61 54.39 52.31

All 80.32 76.66 71.59 69.41 90.54 81.52 77.74 71.64 82.06 78.12 74.23 71.94

RPs(%) 1.11% 0.91% 100%

TABLE II
PERFORMANCE ON DETRAC USING MODEL WITH HIERARCHICAL FEATURES TRAINED WITH ALL REGION PROPOSALS. TESTED WITH ALL AND

ATTENTION FILTERED RPS. ALL∗ IS RESULTS ACHIEVED USING OFFICIAL TESTING DATA AND CODE WITH ALL RPS.

All E M H Cloudy Night Rainy Sunny RPs

All∗ 71.50 90.23 77.62 57.81 81.39 69.19 58.19 85.55 100%

All 70.98 90.02 79.30 60.00 80.03 70.99 60.69 80.74 100%

OM1 70.98 90.02 79.25 53.12 80.04 70.94 60.64 80.75 1.59%

SM1 70.89 89.84 79.13 59.81 80.04 71.06 60.21 80.73 1.10%

OM4 70.97 90.01 79.22 59.41 80.05 70.79 60.65 80.75 6.36%

SM4 70.86 89.79 79.02 59.56 80.03 70.88 60.21 80.71 4.39%

TABLE III
DETECTION PERFORMANCE OF HIERARCHICAL MODEL WITH VISUAL ATTENTION TRAINED ON KITTI DATASET.

Training All RPs Random RPs(OM, SM, All)
Testing OM1 SM1 OM4 SM4 All OM1 SM1 OM4 SM4 All

Car

E 90.91 90.91 90.91 90.91 90.91 90.90 90.90 90.90 90.90 90.90
M 90.79 90.79 90.79 90.79 90.80 90.79 90.79 90.80 90.80 90.80
H 89.81 89.93 90.11 90.12 90.11 89.09 89.85 90.06 90.14 90.06

mAP 81.48 81.49 81.54 88.95 88.97 81.46 81.48 87.66 89.22 88.84

Pedestrian

E 70.08 75.57 77.78 78.23 77.73 70.01 74.65 77.75 78.40 78.11
M 60.69 60.98 67.50 69.05 67.76 60.82 61.26 68.72 69.20 69.03
H 52.50 52.64 67.50 60.48 59.60 52.55 56.49 60.13 60.67 60.35

mAP 52.38 52.43 58.82 60.07 59.00 52.28 52.55 59.60 60.05 60.10

% of RPs 0.86% 1.06% 3.44% 4.23% 100% 0.86% 1.05% 3.44% 4.19% 100%

V. CONCLUSIONS

In the paper, we describe an object detector and a tracker

that take full advantage of visual attention cues for improved

processing efficiency. We used knowledge distillation to train

a detector that can simultaneously generate objectness and

saliency maps using joint image representation to exploit

the representation learning capability of deep neural nets.

The detector also uses hierarchical features for detection and

attention map generation. To investigate the possibility of

using the visual attention cues to generate efficient region

proposals, we use attention maps as guidance to filter out

the region proposals that are not in important/salient regions.

Multiple object tracking using a modified sequential Monte

Carlo probability hypothesis density (PHD) filter is explored

utilising the visual attention map during particle resampling

and distribution process while tracking. We conducted exper-

iments on KITTI and DETRAC and they show that about

10% of the total area of features maps are contributing to the

detection of objects. If we choose region proposals that have

the highest objectness score from each feature, we can achieve

similar performance using only about 1% of RPs comparing

with using all RPs. The experiments show that attention maps

could be a very good heuristic to select region of interest and

generate region proposals for effective object detection.
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