
Utilitarian Performance Isolation in Shared SSDs

Bryan S. Kim

Seoul National University

Abstract

This paper proposes a utilitarian performance isolation

(UPI) scheme for shared SSD settings. UPI exploits

SSD’s abundant parallelism to maximize the utility of all

tenants while providing performance isolation. Our ap-

proach is in contrast to static resource partitioning tech-

niques that bind parallelism, isolation, and capacity al-

together. We demonstrate that our proposed scheme re-

duces the 99th percentile response time by 38.5% for a

latency-critical workload, and the average response time

by 16.1% for a high-throughput workload compared to

the static approaches.

1 Introduction

Thanks to its low latency, collectively massively paral-

lelism, and high density, SSDs are now critical com-

ponents in today’s large storage systems from cloud

services to high-performance computing environments.

However, SSDs exhibit substantial performance insta-

bilities and variations due to background management

tasks [6, 13, 15, 21]. These problems are further exacer-

bated in shared storages, where multiple tenants interfere

with each other [8, 11, 12, 20], causing a so-called noisy

neighbor effect.

To curtail the effects of inter-tenant I/O interferences,

the current trend is to configure the SSD into multiple

isolated regions [3, 10, 20]. By partitioning it internally

and assigning each tenant a separate region, either at

the channel-level or chip-level, each would be physically

isolated and the workload of one tenant would not de-

grade the performance of another. However, statically

partitioning internal resources can be detrimental across

multiple dimensions. First, only a fraction of the phys-

ical storage space can be used for each tenant. Second,

the average performance suffers by limiting the overall

parallelism. Lastly, the quality of service (QoS) degrades

on highly contended flash resources as the load cannot be
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Figure 1: Normalized average read response times of seven

workloads with different degrees of parallelism.

effectively distributed.

Figure 1 illustrates the effect of parallelism on the

average read performance across seven workloads from

Microsoft production servers [14]. Each runs alone, but

by reducing the number of flash memory channels and

chips available in the SSD from 4(channels)x4(chips per

channel) to 1x2, workloads such as DAP-PS, LM-TBE, and

RAD-BE experience over a two-fold increase in the aver-

age read response time.

In this paper, we make an argument for allocating re-

sources dynamically by considering the utility of each

tenant to exploit the abundant parallelism in the SSD and

to mitigate the effects of I/O interferences. Our intu-

ition is that SSDs can leverage its unique characteristics

to make data placements that satisfy both performance

isolation and improved efficiency without the overheads

associated with load balancing and data relocation. For

SSDs, the load can be balanced by controlling where the

data will be written, and data relocation is natural with

the use of internal management tasks such as garbage

collection, wear leveling, and read scrubbing.

To that end, we propose a utilitarian performance

isolation (UPI) scheme where tenant writes are striped

across disjoint sets of flash memory chips to reduce I/O

interference, reads are serviced from wherever the data

is located, and data is relocated among one set to an-

other when necessary. Our preliminary results show

that UPI reduces the 99% QoS by 38.5% for a latency-

critical tenant, and the average response time by 16.1%

for a throughput-oriented one compared to the static ap-

proaches.



Underutilized parallelism High GC overhead

Lack of read parallelism

flash chip 0 flash chip 1 flash chip 2 flash chip 3

flash chip 4 flash chip 5 flash chip 6 flash chip 7

(a) Static partitioning of resources.

Reduced GC overhead

Altruistic sharing of parallelism High degree of read parallelism

flash chip 0 flash chip 1 flash chip 2 flash chip 3

flash chip 4 flash chip 5 flash chip 6 flash chip 7

(b) Dynamic allocation in UPI.

Figure 2: Example of three tenants (blue , red , and green ) sharing an SSD. Figure 2a illustrates static resource allocation

according to capacity. Figure 2b shows how UPI allocates based on workload demand.

2 Related Work

• Mitigating the effects of garbage collection in SSDs.

Resource contention between host request handling

and background management tasks (such as garbage

collection) has been pointed out as the main source of

performance degradation in SSDs. ttFlash [21] uses

a RAID-like parity scheme to reduce garbage collec-

tion (GC)-induced slowdowns; QoSFC [15] dynam-

ically manages SSD tasks to maintain a stable per-

formance state; and RL-assisted GC [13] schedules

GC by predicting host’s idle time with reinforcement

learning. These techniques reduce the effects of back-

ground tasks in SSDs and complement our proposed

scheme for reducing inter-tenant interferences.

• Static resource partitioning in SSDs. By dedicat-

ing separate flash memory channels or chips to each

tenant, statically partitioned SSDs aim to provide de-

terministic I/O. This approach was first proposed in

vFlash [20] and more recently has culminated to the

proposal of NVMe sets [3]. FlashBlox [10] manages

asymmetric wears across isolated regions by swapping

the entire data between channels in coarse time gran-

ularities. However, partitioning resources for isolation

is a double-edged sword as it also slashes the inherent

parallelism in the device, and each isolated region may

become underutilized or overcrowded.

• Data lifetime tagging in SSDs. Grouping data of

similar lifetime reduces the number of valid page

copies during GC, and thus improves its overall effi-

ciency [5, 9]. Multi-stream [12] first proposed an in-

terface for the host to tag data with similar lifetimes,

and this has been included as directives in the NVM

Express specification [2]. The effectiveness of multi-

streaming has been demonstrated across multiple do-

mains such as key-value store [12], virtualized stor-

age [16], high-performance computing [8], and file

system [18]. However, its performance improvements

stem from the increased overall efficiency of GC, and

it does not directly address performance isolation in

shared SSD settings.

• Data placement in storage arrays. Several studies in-

vestigate optimal data placement in large storage ar-

rays so that each tenant receives its fair share of I/O re-

sources [7,17,19,22]. While these techniques consider

data relocation and load balancing as performance

overheads, SSDs present unique opportunities—out-

of-place update and existing internal need for data

relocation—that make it intuitive to handle data place-

ment and relocation within the device.

3 Utilitarian Performance Isolation

The proposed utilitarian performance isolation (UPI)

scheme decouples resources to perform write (allocated

chips) and resources to store data (allocated blocks). We

follow the multi-stream model [12, 16] and allow data

from only one tenant to be written to each flash memory

block. Thus, at any given point in time, each block is

associated with only one tenant, or is unused (holds no

valid data).

Each tenant is allocated a set of flash memory chips

for writing data. We call this the allocation set St of a

tenant t. Allocation sets are mutually exclusive and col-

lectively exhaustive. A tenant writes data to chips of its

allocation set, but may not write to a chip in another ten-

ant’s set, even if there is an unused block. Allocation

sets dynamically change over time, reacting to the work-

load demands and state of the SSD. Reads, on the other

hand, are serviced from wherever the data is located, re-

gardless of sets. SSD internal management tasks such as

garbage collection (GC) may read a tenant’s data located

anywhere and write them across its own set.

Figure 2 illustrates the static partitioning and our pro-



posed UPI scheme. In this scenario, the SSD is shared

among three tenants (blue , red , and green ). The

blue tenant requires large capacity but infrequently ac-

cesses the device, the red is a write-intensive application,

and the green’s read requests are QoS-sensitive. In Fig-

ure 2a, the flash memory chips are divided among the

three tenants according to capacity. This results in under-

utilized chips for the region assigned to the blue tenant,

high GC overhead for the red, and limited parallelism

for the green. On the other hand, in Figure 2b, each ten-

ant’s allocation is based on its dynamic workload char-

acteristics. Blue altruistically shares its parallelism with

other tenants, the red benefits from the increased write

throughput and reduced GC overhead, and the green en-

joys the increased degree of parallelism and isolated per-

formance for its read accesses.

Allocation sets thus must be carefully assigned for

performance isolation while maximizing the overall par-

allelism. Intuitively, a throughput-oriented workload

should have a larger allocation set to meet its demands,

but this may harm the performance of other tenants read-

ing from those chips. On the other hand, a QoS-sensitive

tenant prefers to have its data isolated from others, but

this limits the overall utilization, both in terms of capac-

ity and parallelism. We first explain the utility function

that establishes a figure of merit, and then describe the

set allocation and data relocation policies.

3.1 Utility Function

A utility of a tenant is high when its reads experience

less traffic. Util(t,S) is the utility of tenant t given the

allocation set S, and is defined as follows:

Util(t,S) =

chips

∑
c

Nr(t,c)

chips

∑
c

(
Nr(t,c)

1−Tra f f ic(c,S)
)

(1)

Where Nr(t,c) is the number of expected reads from ten-

ant t to chip c, and Tra f f ic(c,S) is the expected traffic

intensity of chip c given the allocation set S. For Nr, we

use the number of observed reads in the past to estimate

future reads. The denominator of the utility function is a

weighted sum of reads, where the weight models the de-

lay in an M/M/1 queue. Thus, the utility of a tenant ap-

proaches 1 (maximum) as the traffic from which it reads

approaches 0 (idle).

Tra f f ic(c,S) ranges from 0 to 1 and indicates the

overall busyness of the chip, and is computed as below:

Tra f f ic(c,S) =

tenants

∑
t

(Nr(t,c) · τr +Np(t,c,S) · τp)

Timewindow
(2)

Where τr is the flash memory read latency and τp is the

program latency. Erase latency is ignored as it becomes

negligible with a large number of pages per block. While

we expect the number of reads in the future Nr to be sim-

ilar to that of the number of observed reads, the number

of expected programs Np also depends on the allocation

set S and the write amplification factor WAF , and is esti-

mated as follows:

Np(t,c,S) =







Nw(t) ·WAF(t)

|St |
if c ∈ St

0 otherwise

(3)

Where Nw is the number of programs due to tenant’s host

writes (excluding GC programs). Because GC activities

can be sporadic causing wide variations in observation,

we compute the number of expected programs based on

Nw and WAF (approximated by the number of valid page

copies during GC). We then normalize Np by the size of

the tenant’s allocation set |St | as writes are striped across

chips in its set.

3.2 Set Allocation

Our objective is to find an allocation set S that minimizes

the max-min ratio of utility across all tenants. This prob-

lem is difficult as it can be reduced to an NP-complete

partition problem (with variables instead of fixed inte-

gers).

Instead, we approximate the solution by transferring

one chip from the allocation set of the tenant with the

maximum utility to that of the minimum. The rationale

is because increasing the set size improves the utility of

the tenant in the following ways. First, writes of the ten-

ant are spread across a larger number of chips, reducing

the traffic intensities. Second, reads are no longer af-

fected by writes of other tenants. To prevent thrashing

of chips between sets, the transfer is only made when the

expected utility of a tenant losing a chip is at least as high

as the current utility of the tenant gaining it. Further-

more, the chip with the least number of observed reads is

transferred to reduce the inter-tenant I/O interferences.

Through set allocation, a chip that once belonged to a

set of one tenant may belong to that of another. How-

ever, this does not mean that all the data must be relo-

cated immediately. In UPI, resources to perform writes

and resources to store data are decoupled, and data of

one tenant may remain on the chip of another tenant, or

relocate to its allocation set over time.

3.3 Data Relocation

SSDs internally handle data relocation to reclaim space

(garbage collection), to provide data integrity (read



Table 1: SSD configuration.

Parameter Value Parameter Value

# of channels 3 Read latency 50µs

# of chips/channel 4 Program latency 500µs

# of planes/chip 2 Erase latency 5ms

# of blocks/plane 1024 Data transfer rate 400MB/s

# of pages/block 512 Physical capacity 192GB

Page size 16KB Logical capacity 150GB

scrubbing), and to prolong storage lifetime (wear level-

ing). We enhance these existing mechanisms to handle

data relocation for performance isolation.

This can be achieved by considering the number of

reads for a block if the chip belongs to another tenant.

By taking into account the number of reads in the victim

selection’s cost-benefit analysis, frequently read data is

relocated back to its set, isolating its data from other I/O

activities. Infrequently accessed cold data may remain in

another set and need not be actively moved.

4 Evaluation

4.1 Experimental Setup

We implement the proposed UPI scheme on top of the

DiskSim environment [1] by enhancing its SSD exten-

sion [4]. We construct a modest SSD with 3 channels

and 4 chips per channel, and a 150GB logical and 192GB

physical capacity (28% over-provisioned). Table 1 sum-

marizes the SSD configuration used in our experiments.

Host request handling operates in a non-blocking manner

to fully utilize the underlying parallelism, and garbage

collection (GC) acts as the mechanism for data reloca-

tion among sets. Host writes and GC data are written to

different blocks as a means to separate hot and cold data.

We use a simple priority scheduler at the flash memory

subsystem: host requests have precedence over GC re-

quests.

We use three workloads, DAS-AS, DTRS, and LM-TBE

from Microsoft production server traces [14] to model

three tenants with distinct access patterns. DAS-AS has

the lowest throughput, but has the highest read-to-write

ratio—this is the tenant that wants to be isolated. On the

other hand, DTRS is a relatively random workload with

bursts of writes and high GC overheads, and LM-TBE se-

quentially accesses the device with high intensity—these

represent tenants that cause I/O interferences. The work-

load characteristics are summarized in Table 2.

All workloads run to completion (about 24 hours), and

the address of each request is modified to fit into a 50GB

range for each tenant. Prior to replaying the traces, data

is randomly written to physical locations in each tenant’s

allocation set to emulate a pre-conditioned state.

Table 2: Tenant’s workload characteristics.

DAS-AS DTRS LM-TBE

Num. of writes (m) 0.1 5.8 9.2

Num. of reads (m) 1.3 12.0 34.7

Avg. wr. size (KB) 7.2 31.9 61.9

Avg. rd. size (KB) 31.5 21.8 53.2

Peak write IOPS 53.2 408.8 589.1

Peak read IOPS 89.9 745.3 4173.8

4.2 Preliminary Results

UPI is evaluated against two static allocation schemes:

Partitioned dedicates separate chips to each tenant and

completely isolates performance.

Unified shares all resources among tenants to maximize

utilization and parallelism.

Figure 3 compares the performance of UPI against the

Partitioned and Unified scheme. We first investigate the

average performance shown in Figure 3a. Compared to

the Partitioned scheme, UPI reduces the average read re-

sponse time for LM-TBE, a throughput-oriented tenant,

by 16.1%. The Unified scheme achieves similar an im-

provement with a 13.8% reduction. The average per-

formance of UPI for DAS-AS is slightly worse than the

Partitioned scheme, as the low write intensity of DAS-AS

compacts its data to a smaller set. For the 99% QoS per-

formance of reads in Figure 3b, UPI improves by 38.5%

for DAS-AS, a latency-sensitive tenant, compared to the

Unified scheme. For the same workload, we also observe

that the Partitioned scheme improves by 47.7% for the

99% QoS figure.

Although the Partitioned scheme achieves perfect iso-

lation for DAS-AS, this comes at a cost of performance

degradation for LM-TBE in both the average response

time and QoS figure. On the other hand, the Unified

scheme performs well for LM-TBE, as it dominates the

overall traffic across all chips, but this severely degrades

the QoS performance for DAS-AS. Our proposed UPI

scheme finds a balance between the two extremes: it

achieves better average performance for high-throughput

tenants compared to the Partitioned scheme, and better

QoS performance for latency-critical tenants compared
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(b) 99% QoS figure.

Figure 3: Performance of the Partitioned, the Unified, and UPI.
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Figure 4: Response time CDFs for Unified, Partitioned, and

UPI under workloads DAS-AS and LM-TBE.

to the Unified. This property of UPI can also be observed

in the response time CDFs in Figure 4.

We microscopically examine the performance of the

Partitioned scheme and UPI in Figure 5. Figure 5a shows

the average read response time sampled every 5 seconds

during a 600-second window, approximately 17 hours

into the workload (when LM-TBE starts to increase its

write bandwidth). The performance of the Partitioned

scheme in Figure 5b is affected by this, resulting in the

overall increase in response time. On the other hand, UPI

in Figure 5c dynamically increases the allocation set for

LM-TBE to balance the traffic across chips, thus achieving

better performance.
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Figure 5: Increase in LM-TBE write bandwidth (Figure 5a)

causes performance degradation for the Partitioned scheme

(Figure 5b). In comparison, UPI (Figure 5c) is less affected

by this.

4.3 Discussions

In this work, UPI considers all tenants equally, but the

utility function in Equation 1 can be fine-tuned to pro-

vide differentiated services among tenants. By taking an

exponent to 1−Tra f f ic(c,S), we can modify the degree

in which traffic intensities affect its utility, thereby pro-

viding asymmetric performances to tenants.

Similarly, UPI can tradeoff between the average and

tail latency performance. By applying another exponent

value to Nr(t,c) of both the numerator and the denomi-

nator, the utility function can shift its focus between the

common case and the rare.

By relaxing the mutually exclusive and collectively

exhaustive property of allocation sets, UPI can cover

other allocation policies. For example, one such policy

can exclude a particular chip from any set to only allow

reads to be serviced from it.

Furthermore, the data relocation policy can be ad-

justed between eager (stronger isolation) and lazy (bet-

ter efficiency). By scaling down the degree in which

the number of reads for a block affects the victim selec-

tion, only heavily-read data in another tenant’s set will

be moved. Scaling it up will cause data to be relocated

aggressively, albeit at a cost of higher GC overhead.

5 Conclusion

In this paper, we presented a utilitarian performance iso-

lation (UPI) scheme for multiple tenants sharing a single

SSD. UPI considers the utility of each tenant and dynam-

ically allocates resources so that the inherent parallelism

of SSDs can be fully exploited all the while mitigating

the effects of inter-tenant I/O interferences. Our prelim-

inary results are promising, with UPI reducing the 99%

QoS performance by 38.5% for a latency-sensitive work-

load, and the average performance by 16.1% for a high-

throughput workload. Our design can be extended in sev-

eral directions, such as providing asymmetric services to

tenants and exploring the tradeoff between the average

and tail latency performance.
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