
Utility-Based Cache Partitioning

Moinuddin K. Qureshi Yale N. Patt

High Performance Systems Group
Department of Electrical and Computer Engineering

The University of Texas at Austin
Austin, Texas 78712-0240

TR-HPS-2006-009
September 25, 2006

This page is intentionally left blank

2

Utility-Based Cache Partitioning

Moinuddin K. Qureshi Yale N. Patt

Electrical and Computer Engineering
The University of Texas at Austin
{moin, patt}@hps.utexas.edu

Abstract
This paper investigates the problem of partitioning a shared cache between multiple concurrently executing ap-

plications. The commonly used LRU policy implicitly partitions a shared cache on a demand basis, giving more
cache resources to the application that has a high demand and fewer cache resources to the application that has a low
demand. However, a higher demand for cache resources does not always correlate with a higher performance from
additional cache resources. It is beneficial for performance to invest cache resources in the application that benefits
more from the cache resources rather than in the application that has more demand for the cache resources.

This paper proposes utility-based cache partitioning (UCP), a low-overhead, runtime mechanism that partitions a
shared cache between multiple applications depending on the reduction in cache misses that each application is likely
to obtain for a given amount of cache resources. The proposed mechanism monitors each application at runtime
using a novel, cost-effective, hardware circuit that requires less than 2kB of storage. The information collected by
the monitoring circuits is used by a partitioning algorithm to decide the amount of cache resources allocated to each
application. Our evaluation, with 20 multiprogrammed workloads, shows that UCP improves performance of a dual-
core system by up to 23% and on average 11% over LRU-based cache partitioning.

1 Introduction

Modern processors contain multiple cores which enables them to concurrently execute multiple applications (or

threads) on a single chip. As the number of cores on a chip increases, the pressure on the memory system to sus-

tain the memory requirements of all the concurrently executing applications (or threads) increases. One of the keys

to obtaining high performance from multicore architectures is to manage the largest level on-chip cache efficiently so

that off-chip accesses are reduced. This paper investigates the problem of partitioning the shared largest-level on-chip

cache among multiple competing applications.

Traditional design for on-chip cache uses the LRU (or an approximation of LRU) policy for replacement decisions.

The LRU policy implicitly partitions a shared cache among the competing applications on a demand1 basis, giving

more cache resources to the application that has a high demand and fewer cache resources to the application that has a

low demand. However, the benefit (in terms of reduction in misses or improvement in performance) that an application

gets from cache resources may not directly correlate with its demand for cache resource. For example, a streaming

application can access a large number of unique cache blocks but these blocks are unlikely to be reused again if the

working set of the application is greater than the cache size. Although such an application has a high demand, devoting

a large amount of cache will not improve its performance. Thus, it makes sense to partition the cache based on how

much the application is likely to benefit from the cache rather than the application’s demand for the cache.

1Demand is determined by the number of unique cache blocks accessed in a given interval [6]. Consider two applications A and B sharing a
fully-associative cache containing N blocks. Then with LRU replacement, the number of cache blocks that each application receives is decided by
the number of unique blocks accessed by each application in the last N unique accesses to the cache. If UA is the number of unique blocks accessed
by application A in the last N unique accesses to the cache, then application A will receive UA cache blocks out of the N blocks in the cache.

1

0 2 4 6 8 10 12 14 16
0

1

2

3

4

5

M
is

se
s P

er
 1

00
0

In
st

ru
ct

io
ns

 (M
PK

I)

(a)

equake
vpr

LRU

UTIL

0 2 4 6 8 10 12 14 16
0

1

2

3

4

5

6

C
yc

le
s P

er
 In

st
ru

ct
io

n
(C

PI
)

(b)

equake
vpr

LRUUTIL

LRU UTIL

Figure 1: (a) MPKI and (b) CPI as cache size is varied when vpr and equake are executed separately. The horizontal
axis shows the number of ways allocated from a 16-way 1MB cache (remaining ways are turned off).

We explain the problem with LRU-based partitioning with a numerical example. Figure 1(a) shows the number of

misses for two SPEC benchmarks, vpr and equake, as the cache size is varied, when each one is run separately. We

vary the cache size by changing the number of ways and keeping the number of sets constant. The baseline L2 cache

in our experiments is 16-way, 1MB in size and contains 1024 sets (other parameters of the experiment are described in

Section 4). For vpr, the number of misses reduce monotonically as the cache size is increased from 1 way to 16 ways.

For equake, the number of misses decrease as the number of allocated ways increase from 1 to 3, but increasing the

cache size by more than 3 ways does not decrease misses. Thus, equake has no benefit or utility for cache resources in

excess of three ways.

When vpr and equake are run together on a dual-core system, sharing the baseline 1MB 16-way cache, the LRU

policy allocates, on average, 7 ways to equake and 9 ways to vpr. If cache partitioning was based on utility (UTIL) of

cache resources, then equake would get only 3 ways and vpr would get the remaining 13 ways. Decreasing the cache

resources devoted to equake from 7 ways to 3 ways does not increase its misses but increasing the cache resources

devoted to vpr from 9 ways to 13 ways reduces its misses. As shown in Figure 1(b), partitioning the cache based on

utility information can potentially reduce the CPI of vpr from 2 to 1.5 without affecting the CPI of equake, improving

the overall performance of the dual-core system.

To partition the cache based on application’s utility for the cache resource, we propose Utility-Based Cache Parti-

tioning (UCP). An important component of UCP is the monitoring circuits that can obtain the information about utility

of cache resource for all the competing applications at runtime. For the UCP scheme to be practical, it is important

that the utility monitoring (UMON) circuits are not hardware-intensive or power-hungry. Section 3 describes a novel,

low-overhead, UMON circuit that requires a storage overhead of only 1920B (less than 0.2% area of the baseline

1MB cache). The information collected by UMON is used by a partitioning algorithm to decide the amount of cache

allocated to each competing application. Our evaluation in Section 5 shows that UCP outperforms LRU, improving

the performance of a dual-core system by up to 23%, and on average 11%.

The number of possible partitions increases exponentially with the number of applications sharing the cache. It

becomes impractical for the partitioning algorithm to find the best partition by evaluating every possible partition, when

a large number of applications share a highly associative cache. In Section 6, we propose the Lookahead Algorithm as

a scalable alternative to evaluating all the possible partitions for partitioning decisions.

2

2 Motivation and Background

Caches improve performance by reducing the number of main memory accesses. Thus, the utility of cache resources

for an application can be directly correlated to the change in the number of misses or improvement in performance of

the application when the cache size is varied. Figure 2 shows the misses and CPI for some of the SPEC benchmarks.

0 2 4 6 8 10 12 14 16
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

applu

C
PI

M
PK

I

0

2

4

6

8

10

12

14

16

18

20

MPKI
CPI

0 2 4 6 8 10 12 14 16
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

gap
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0 2 4 6 8 10 12 14 16
0

5

10

15

20

25

30

35

40

45

50

mcf
0

20

40

60

80

100

120

140

160

180

200

0 2 4 6 8 10 12 14 16
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

swim
0

5

10

15

20

25

30

35

40

45

50

0 2 4 6 8 10 12 14 16
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

wupwise
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0 2 4 6 8 10 12 14 16
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

ammp
0

2

4

6

8

10

12

14

16

18

20

0 2 4 6 8 10 12 14 16
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

apsi
0

2

4

6

8

10

12

14

16

18

20

0 2 4 6 8 10 12 14 16
0.0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

3.0

galgel
0

3

6

9

12

15

18

21

24

27

30

0 2 4 6 8 10 12 14 16
0.0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

3.0

parser
0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10 12 14 16
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

twolf
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

0 2 4 6 8 10 12 14 16
0

1

2

3

4

5

6

7

8

9

10

crafty
0

2

4

6

8

10

12

14

16

18

20

0 2 4 6 8 10 12 14 16
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

fma3d
0

2

4

6

8

10

12

14

16

18

20

0 2 4 6 8 10 12 14 16
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

gzip
0

2

4

6

8

10

12

14

16

18

20

0 2 4 6 8 10 12 14 16
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

mesa
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0 2 4 6 8 10 12 14 16
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

perlbmk
0

2

4

6

8

10

12

14

16

18

20

Figure 2: MPKI and CPI for SPEC benchmarks as the cache size is varied. The horizontal axis shows the number of
ways allocated from a 16-way 1MB cache (the remaining ways are turned off). The graphs for vpr and equake are
shown in Figure 1, and the graph for art is shown in Figure 11.

The utility of cache resource varies widely across applications. The 15 applications are classified into three cat-

egories based on how much each of them benefits as the cache size is increased from 1 way to 16 ways (keeping

the number of sets constant). The first row contains benchmarks that do not benefit significantly as the cache size is

increased from 1 way to 16 ways. We say such applications have low utility. These benchmarks either have a large

number of compulsory misses (e.g. gap) or have a data set larger than the cache size2 (e.g. mcf). Benchmarks in the

second row continue to benefit as the cache size is increased from 1 way to 16 ways. We say such applications have

high utility. Benchmarks in the third row benefit significantly as the cache size is increased from 1 way to 8 ways.

These benchmarks have a small working set that fits in a small size cache, therefore, giving them more than 8 ways

does not significantly improve their performance. We say such applications have saturating utility.

2Applications with low utility can show a large reduction in misses when the cache size is increased such that the dataset fits in the cache.
For example, Figure 11 shows that the MPKI of art does not decrease when the cache size is increased from 1 way to 8 ways (0.5MB). However,
increasing the size to 24 ways (1.5MB) reduces MPKI by a factor of 5. In such cases, the curve of MPKI vs. cache size resembles a step function.

3

If two applications having low utility (e.g. mcf and applu) are executed together, then their performance is not

sensitive to the amount of cache available to each application. Similarly, when two applications of saturating utility

are executed together, then the cache can support the working set of both applications. However, when an application

with saturating utility is run with an application with low utility then the cache may not hold the working set of the

application with saturating utility. Similarly, when an application with high utility is run with any other application,

its performance is highly sensitive to the amount of cache available to it. In such cases, it is important to partition the

cache judiciously by taking utility information into account.

Figure 2 shows that in most cases,3 reduction in misses correlates with reduction in CPI. Thus, we can use the

information about reduction in misses to make cache partitioning decisions. To include utility information in parti-

tioning decisions, we provide a quantitative definition of utility for cache resources for a given application. Since

cache is allocated only on a way basis in our studies, we define utility on a way granularity. If missa and missb are

the number of misses that an application incurs when it receives a and b ways respectively (a < b), then the utility

(U b
a) of increasing the number of ways from a to b is:

U b
a = missa − missb (1)

Section 3 describes cost-effective monitoring circuits that can estimate the utility (U) information for an application

at run-time, along with the framework, the partitioning algorithm, and the replacement scheme for UCP.

3 Utility-Based Cache Partitioning

3.1 Framework

Figure 3 shows the framework to support UCP between two applications that execute together on a dual-core system.

One of the two applications execute on CORE1 and the other on CORE2. Each core is assigned a utility monitoring

(UMON) circuit that tracks the utility information of the application executing on it. The UMON circuit is separated

from the shared cache, which allows the UMON circuit to obtain utility information about an application for all the

ways in the cache, independent of the contention from the application executing on the other core. The partitioning

algorithm uses the information collected by the UMON to decide the number of ways to allocate to each core. The

replacement engine of the shared cache is augmented to support the partitions allocated by the partitioning algorithm.

MAIN MEMORY

SHARED
L2 CACHE

UMON2UMON1

CORE1 CORE2
DCACHE DCACHE

ICACHEICACHE

PARTITIONING
ALGORITHM

Figure 3: Framework for Utility-Based Cache Partitioning. Newly added structures are shaded. (Figure not to scale)
3When eight ways are allocated to swim, it sees a huge reduction in misses. However, this reduction in misses does not translate into a substantial

reduction in CPI. This happens because a set of accesses with high memory-level parallelism (MLP) now fits in the cache which reduces the average
MLP and increases the average mlp-based cost[14] of each miss.

4

3.2 Utility Monitors (UMON)

Monitoring the utility information of an application requires a mechanism that tracks the number of misses for all

possible number of ways. To compute the utility information for the baseline 16-way cache, the monitoring circuit is

required to track misses for all the sixteen cases, ranging from when only 1 way is allocated to the application to when

all 16 ways are allocated to the application. A straight-forward, but expensive, method to obtain this information is

to have sixteen tag directories, each having the same number of sets as the shared cache, but each having a different

number of ways ranging from 1 way to 16 ways (note that data lines are not required to estimate hit-miss information).

Although this scheme can track utility information for any replacement scheme implemented in the shared cache, the

hardware overhead of multiple directories makes this scheme impractical. Fortunately, the baseline LRU policy obeys

the stack property [12], which means that an access that hits in a LRU managed cache containing N ways is guaranteed

to also hit if the cache had more than N ways (the number of sets being constant). This means even with a single tag

directory containing sixteen ways, it is possible to compute the hit-miss information about all the cases when the cache

contains from one way through sixteen ways. To see how the stack algorithm provides utility information, consider

the example of a four way set-associative cache shown in Figure 4(a).

N
um

be
r o

f M
is

se
s

COUNTERS
HIT

TAG
DIRECTORY

3 4

(a) (b)

21

30
40
50
60
70

20
LRUMRU

 more recent

CTR CTR
POS 2

CTR
POS 3POS 0

CTR
POS 1

CTR POS 0
CTR POS 1
CTR POS 2
CTR POS 3

MISSES = 25

ValueHIT COUNTER

10
15
20
30

Num. ways per set

Figure 4: (a) Hit counters for each recency position. (b) Tracking utility information with stack property.

Each set has four counters for obtaining the hit counts for each of the four recency positions ranging from MRU

to LRU. The position next to MRU in the recency position is referred as position 1 and the next position as position

2. If a cache access results in a hit, the counter corresponding to the hit-causing recency position is incremented. The

counters then represent the number of misses saved by each recency position. Figure 4(b) shows an example in which

out of the 100 accesses to the cache, 25 miss, 30 hit in MRU, 20 hit in position 1, 15 hit in position 2, and the remaining

10 hit in the LRU position. Then, if the cache size is reduced from four ways to three ways, the misses increase from

25 to 35. Further reducing the cache size to two ways, increases the number of misses to 50. And with only one way

the cache incurs 70 misses. Thus, given information about misses in a cache that has a large number of ways, it is

possible to obtain the information about misses for a cache with smaller number of ways.

The UMON circuit tracks the utility of each way using an Auxiliary Tag Directory (ATD) and hit counters. The

ATD has the same associativity as the main tag directory of the shared cache and uses the LRU policy for replacement

decisions. Figure 5 (a) shows a UMON that contains the hit counters for each set in the cache. We call this organization

as UMON-local. Although, UMON-local can perform partitioning on a per-set basis, it requires a huge overhead

5

because of the extra tag entry and hit counter for each line in the cache. The hardware overhead of the hit counters

in UMON-local can be reduced by having one group of hit counters for all the sets in the cache. This configuration,

shown in Figure 5(b), is called UMON-global. UMON-global enforces a uniform partition for all the sets in the cache.

Compared to UMON-local, UMON-global reduces the number of hit counters required to implement UMON by a

factor of number of sets in the cache. However, the number of tag entries required to implement UMON still remains

equal to the number of lines in the cache.

SET A

SETB

SETC

MRU LRU

MRU LRU

SETA

SETD

LRUMRU

ATD
ATD

(a) UMON−LOCAL (b) UMON−GLOBAL (c) UMON−DSS

LEGEND

SETA
SETB
SETC
SETD

SETC

Represents tag entry in the Auxilary Tag Directory (ATD)

Represents hit counter for a recency position

Shows association of recency position to counter

Figure 5: (a) UMON-local (b) UMON-global (c) UMON implemented with dynamic set sampling (DSS).

3.3 Reducing Storage Overhead Using DSS

The number of UMON circuits in the system is equal to the number of cores. For the UMON circuit to be practical, it is

important that it requires low hardware overhead. UMON-global requires an extra tag entry for each line in the cache.

If each tag entry is 4 bytes then the UMON overhead per cache line is 8 bytes for a two-core system and 16 bytes

for a four-core system. Considering that the baseline cache is 64 byte in size, the overhead of UMON-global is still

substantial. To reduce the overhead of UMON, we use Dynamic Set Sampling (DSS) [14]. The key idea behind DSS

is that the behavior of the cache can be approximated by sampling only a few sets. We can use DSS to approximate

the hit counter information of UMON-global by sampling few sets in the cache. Figure 5(c) shows the UMON circuit

with Dynamic Set Sampling (UMON-DSS). The ATD in UMON-DSS contains ATD entries only for two sets A and

C instead of all the four sets in the cache. An important question is that how many sampled sets are required for

UMON-DSS to approximate the performance of UMON-global? We derive analytical bounds4 for UMON-DSS in the

next section and in Section 5.4, we compare the performance of UMON-DSS with UMON-global.

4DSS was used in [14] to choose between two replacement policies. Thus, it was used to approximated a global decision which had a binary
value (one of the two replacement policy) by using the binary decisions obtained on the sampled sets. We are interested in approximating the global
partitioning decision which is a discrete value (how many ways to allocate) by using the hit counter information of the sampled sets. Therefore the
bounds derived in [14] are not applicable to our mechanism.

6

3.4 Analytical Model for Dynamic Set Sampling

Let there be two applications A and B competing for a cache containing S sets. Let a(i) denote the number of ways

that application A receives for a given set i, if the partitioning is done on a per-set basis. Then if a(i) does not vary

across sets then even with a single set UMON-DSS can approximate UMON-global. However, a(i) may vary across

sets. The number of ways allocated to application A by UMON-global (ug) can be approximated as the average of all

a(i), assuming that UMON-global gives equal importance to all the sets. Thus,

ug =

S∑

i=1

a(i)/S (2)

Let n be the number of randomly selected sets sampled by UMON-DSS. Let us be the number of ways allocated to

application A by UMON-DSS. We are interested in bounding the value of |us − ug| to some threshold ε. If σ2 is the

variance in the values of a(i) across all the sets, then by Chebyshev’s inequality [16]:

P (|us − ug | ≥ ε) ≤ σ2/(n · ε2) (3)

For bounding us to within one way of ug, ε = 1.

P (us is at least one way from ug) ≤ σ2/n (4)

P (us is within one way from ug) > 1 − (σ2/n) (5)

0 8 16 24 32 40
Number of Sampled Sets

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Sa
m

pl
ed

 m
ea

n
w

ith
in

 1
 w

ay
 o

f g
lo

ba
l m

ea
n

variance = 0.5
variance = 1
variance = 2
variance = 3L

ow
er

 B
ou

nd
 o

n
Pr

ob
ab

ili
ty

 o
f

Figure 6: Bounds on Number of Sampled Sets

As Chebyshev’s inequality considers only variance without making any assumption about the distribution of the

data, the bounds obtained from Chebyshev’s inequality are pessimistic5[16]. Figure 6 shows the lower bound provided

by Chebyshev’s inequality as the number of sampled sets is varied, for different values of variance. For most of the

workloads studied, the value of variance (σ2) is less than 3, indicating that even with the pessimistic bounds, as few as

32 sets are sufficient for UMON-DSS to approximate UMON-global. We compare UMON-DSS to UMON-global in

5In general, much tighter bounds can be obtained if the mean and the distribution of the sampled data are known [16].

7

Section 5.4. Unless stated otherwise, we use 32 sets for UMON-DSS. The sampled sets for UMON-DSS are chosen

using the simple static policy [14], which means set 0 and every 33rd set is selected. For the remainder of the paper

UMON by default means UMON-DSS.

3.5 Partitioning Algorithm

The partitioning algorithm reads the hit counters from all the UMON circuits of each of the competing applications.

The partitioning algorithm tries to minimize the total number of misses incurred by all the applications. The utility

information in the hit counters directly correlates with the reduction in misses for a given application when given a

fixed number of ways. Thus, reducing the most number of misses is equivalent to maximizing the combined utility.

If A and B are two applications with utility functions UA and UB respectively, then for partitioning decisions, the

combined utility (Utot) of A and B is computed for all possible partitions for the baseline 16-way cache:

Utot(a) = UAi
1 + UB(16−i)

1 ... For i = 1 to (16 − 1) (6)

The partition that gives the maximum value for Utot is selected. In our studies, we guarantee that the partitioning

algorithm gives at least one way to each application. We invoke the partitioning algorithm once every five million

cycles (a design choice based on simulation results). After each partitioning interval, the hit counters in all UMONs

are halved. This allows the UMON to retain past information while giving importance to recent information.

3.6 Changes to Replacement Policy

To incorporate the decisions made by the partitioning algorithm, the baseline LRU policy is augmented to enable way

partitioning [3][19][8]. To implement way partitioning, we add a bit to the tag-store entry of each block to identify

the core which installed the block in the cache. On a cache miss, the replacement engine counts the number of cache

blocks that belong to the miss-causing application in the set. If this number is less than the number of blocks allocated

to the application, then the LRU block among all the blocks that do not belong to the application is evicted. Otherwise,

the LRU block among all the blocks of the miss-causing application is evicted.

If the number of ways allocated to an application is increased by the partitioning algorithm, then these added ways

are consumed by the application only on cache misses. This gradual change of partitions allows the cache to retain the

cache blocks till they are required by the application that is allocated the cache space.

4 Experimental Methodology

4.1 Configuration

Table 1 shows the parameters of the baseline configuration used in our experiments. We use an in-house simulator that

models the alpha ISA. The processor core is 8-wide issue, out-of-order, with 128-entry reservation station. The first-

level instruction cache and data cache are private to the processor core. The processor parameters are kept constant

in our study. This allows us to use a fast event-driven processor model to reduce simulation time. Because our study

deals with the memory system we model the memory system in detail. DRAM bank conflicts and bus queuing delays

8

are modeled. The baseline L2 cache is shared among all the processor cores and uses LRU replacement. Thus, the L2

cache gets partitioned among all the competing cores on a demand basis.

Table 1: Base configuration.
Processor 8 wide, out-of-order, with 128 entry reservation station;
core 64 kB hybrid branch predictor with 4k-entry BTB

minimum branch misprediction penalty of 15 cycles.
L1 Icache and Dcache :16kB, 64B line-size, 4-way, LRU.
The L1 caches are private to each core.

Unified 1MB, 64B line-size, 16-way with LRU replacement,
Shared 15-cycle hit, 32-entry MSHR, 128-entry store buffer.
L2 Cache L2 cache is shared among all the cores
Memory 32 DRAM banks; 400-cycle access latency;

bank conflicts modeled; maximum 32 outstanding requests
Bus 16B-wide split-transaction bus at 4:1 frequency ratio.

queueing delays modeled

4.2 Metrics

There are several metrics to quantify the performance of a system in which multiple applications execute concurrently.

We discuss the three metrics commonly used in the literature: weighted speedup, sum of IPCs, and harmonic mean

of normalized IPCs. Let IPCi be the IPC of the ith application when it concurrently executes with other applications

and SingleIPCi be the IPC of the same application when it executes in isolation. Then, for a system in which N

threads execute concurrently, the three metrics are given by:

Weighted Speedup =
∑

(IPCi/SingleIPCi) (7)

IPCsum =
∑

IPCi (8)

IPCnorm hmean = N/
∑

(SingleIPCi/IPCi) (9)

The Weighted Speedup metric indicates reduction in execution time. The IPCsum metric indicates the throughput

of the system but it can be unfair to a low IPC application. The IPCnorm hmean metric balances both fairness

and performance [11]. We will use Weighted Speedup as the metric for quantifying the performance of multicore

configurations throughout the paper. Evaluation with the IPCsum and IPCnorm hmean metric will also be discussed

for some of the key results in the paper.

4.3 Benchmarks

We use benchmarks from the SPEC CPU2000 suite for our studies. A representative slice of 250M instructions is

obtained for each benchmark using a tool that we developed using the Simpoint methodology [13]. Two separate

benchmarks are combined to form one multiprogrammed workload that can be run on a dual-core system. To include

a wide variety of multiprogrammed workload in our study, we classify the multiprogrammed workloads into five

categories. Workloads with Weighted Speedup for the baseline configuration between 1 and 1.2 are classified as Type

A, between 1.2 and 1.4 as Type B, between 1.4 and 1.6 as Type C, between 1.6 and 1.8 as Type D, and between 1.8 and

2 as Type E. A suite containing 20 workloads is created by using four workloads from each of the five categories.

9

Simulation for a dual-core system is continued until both benchmarks in the multiprogrammed workload execute

at least 250M instructions each. If a benchmark finishes the stipulated 250M instruction before the other benchmark

finishes 250M instruction, it is restarted so that the two benchmarks continue to compete for the L2 cache throughout

the simulation. Table 2 shows the classification based on baseline weighted speedup (BaseWS), Misses Per 1000

Instruction (MPKI) and Cycles Per Instruction (CPI) for the baseline dual-core configuration for all the 20 workloads.

The benchmark names for ammp (amp), swim (swm), perlbmk (perl), and wupwise (wup) are abbreviated.

Table 2: Workload Summary
Category Workload MPKI MPKI CPI CPI
(BaseWS) Bmk1-Bmk2 Bmk1 Bmk2 Bmk1 Bmk2

galgel-vpr 11.84 8.41 1.25 2.55
TYPE A galgel-twolf 11.46 11.44 1.20 3.51
(1.0-1.2) amp-galgel 6.91 10.62 1.74 1.21

apsi-galgel 3.08 10.82 1.14 1.19
twolf-vpr 8.76 6.22 2.81 2.06

TYPE B apsi-twolf 2.05 7.51 0.93 2.61
(1.2-1.4) amp-art 6.73 43.73 1.72 4.90

apsi-art 2.91 43.12 1.12 4.76
apsi-swm 2.71 22.98 1.05 2.89

TYPE C amp-applu 6.71 13.76 1.69 1.28
(1.4-1.6) swm-twolf 22.98 10.64 2.73 3.26

art-parser 42.75 3.48 4.52 1.33
equake-vpr 18.33 5.74 4.57 1.97

TYPE D vpr-wup 5.40 2.25 1.89 0.72
(1.6-1.8) gzip-twolf 1.61 5.36 0.84 2.17

art-crafty 41.10 0.63 4.33 0.96
fma3d-swm 4.62 23.53 0.51 2.94

TYPE E mcf-applu 134 13.76 28.5 1.27
(1.8-2.0) gap-mesa 1.66 0.62 0.41 0.35

crafty-perl 0.14 0.04 0.81 0.44

5 Results and Analysis

5.1 Performance on Weighted Speedup Metric

We compare the performance of UCP to two partitioning schemes: LRU and Half-and-Half. The Half-and-Half

scheme statically partitions the cache equally among the two competing applications. The disadvantage of the Half-

and-Half scheme over LRU is that it cannot change the partition in response to the varying demands of competing

applications. However, it also has the advantage of performance isolation, which means that the performance of an

application does not degrade substantially when it executes concurrently with a badly behaving application. Figure 7

shows the weighted speedup of the three partitioning schemes. The bar labeled gmean represents the geometric mean

of the individual weighted-speedup of all the 20 workloads.

LRU performs better than Half-and-Half for some workloads and for some Half-and-Half performs better than

LRU. For most workloads, UCP outperforms the best-performing scheme out of the other two schemes. On average,

UCP improves performance by 10.96% over the baseline LRU policy, increasing the geometric mean weighted speedup

from 1.46 to 1.62.

The Type A category contains workloads where both benchmarks in the workload have high utility and high

10

1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0

W
ei

gh
te

d
Sp

ee
du

p
(w

ith
 tw

o
co

re
s)

LRU
Half-and-Half
UCP

TYPE A TYPE B TYPE C TYPE D TYPE E

ga
lge

l-v
pr

ga
lge

l-t
wolf

am
p-g

alg
el

ap
si-

ga
lge

l

tw
olf

-vp
r

ap
si-

tw
olf

am
p-a

rt

ap
si-

art

ap
si-

sw
m

am
p-a

pp
lu

sw
m-tw

olf

art
-pa

rse
r

eq
ua

ke
-vp

r

vp
r-w

up

gz
ip-

tw
olf

art
-cr

aft
y

fm
a3

d-s
wm

mcf-
ap

plu

ga
p-m

esa

cra
fty

-pe
rl

gm
ea

n

Figure 7: Performance of LRU, Half-and-Half, and UCP.

demand for the L2 cache. Therefore, the baseline LRU policy has a value of weighed speedup that is almost half of

the ideal value of 2. Partitioning the cache based on utility, rather than demand, improves performance noticeably. For

example, UCP increases the weighted speedup for the workload galgel-twolf from 1.04 to 1.28.

The Type C category contains workloads where one benchmark has high utility and the other has low utility. In

such cases, UCP allocates most of the cache resource to the application with high utility, thus improving the overall

performance. For example, for amp-applu, UCP allocates 14 or more ways out of the 16 ways to amp, improving the

weighted speedup from 1.49 to 1.83.

When both benchmarks in the workload have low utility (e.g. mcf-applu), the performance of each benchmark

in the workload is not sensitive to the amount of cache available to it, so the weighted speedup is close to ideal.

Similarly, if the cache can accommodate the working set of both benchmarks in the workload, the weighted speedup

for that workload is close to ideal. Such workloads are included in the Type E category. As the weighted speedup of

these workloads is close to the ideal, UCP does not change performance significantly.

For twolf-vpr, crafty-perl, and gzip-twolf , UCP reduces performance marginally compared to LRU. This happens

because UCP allocates partitions once every partition interval (5M cycles in our experiments), so it is unable to respond

to the phase changes that occur at a finer granularity. On the other hand, LRU can respond to such fine-grained change

in behavior of the applications by changing the partitions potentially at every access. The LRU policy also has the

advantage of doing the partitioning on a per-set basis depending on the demand on the individual set. On the other

hand, the proposed UCP policy globally allocates a uniform partition for all the sets in the cache, sacrificing fine-

grained, per-set, control for reduced overhead.

11

5.2 Performance on Throughput Metric

Figure 8 compares the performance of the baseline LRU policy to the proposed UCP policy for the throughput metric,

IPCsum. To show the change in the IPC of the individual benchmark of each workload, the graph is drawn as

a stacked bar graph. The IPC of the first benchmark that appears in the name of the workload is labeled as IPC-

Benchmark1. The IPC of the other benchmark is labeled as IPC-Benchmark2. For example, for the workload galgel-

vpr, IPC-Benchmark1 shows the IPC of galgel and IPC-Benchmark2 shows the IPC of vpr. The bar labeled hmean

represents the harmonic mean of the IPCsum of all the 20 workloads.

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25
2.50
2.75
3.00

In
st

ru
ct

io
ns

 p
er

 C
yc

le

IPC-Benchmark1
IPC-Benchmark2

a b

(a) LRU (b) UCP

5.3 3.54 3.51

ga
lge

l-v
pr

ga
lge

l-t
wolf

am
p-g

alg
el

ap
si-

ga
lge

l

tw
olf

-vp
r

ap
si-

tw
olf

am
p-a

rt

ap
si-

art

ap
si-

sw
m

am
p-a

pp
lu

sw
m-tw

olf

art
-pa

rse
r

eq
ua

ke
-vp

r

vp
r-w

up

gz
ip-

tw
olf

art
-cr

aft
y

fm
a3

d-s
wm

mcf-
ap

plu

ga
p-m

esa

cra
fty

-pe
rl

hm
ea

n

Figure 8: LRU (left bar) vs. UCP (right bar) on throughput metric.

For 15 out of the 20 workloads, UCP improves the IPCsum compared to the LRU policy. UCP can improve

performance by improving the IPC of one benchmark in the workload without affecting the IPC of the other benchmark

in the workload. Examples of such workloads are apsi-swm and equake-vpr. UCP can also improve the aggregate IPC

by marginally reducing the IPC of one benchmark and significantly improving the IPC for the other benchmark.

Examples include apsi-galgel and amp-art. For the IPCsum metric, UCP reduces performance on two workloads,

gzip-twolf and crafty-perl. On average, UCP improves the performance on the throughput metric by 16.8%, increasing

the harmonic mean IPCsum of the system from 1.21 to 1.41.

5.3 Evaluation on Fairness Metric

A dynamic partitioning mechanism may improve the overall performance of the system at the expense of severely

degrading the performance of one of the applications. The harmonic mean of the normalized IPCs is shown to consider

both fairness and performance [11]. Figure 9 shows the performance of LRU, Half-and-Half, and UCP for this metric.

The bar labeled gmean is the geometric mean over all the 20 workloads. UCP improves the average on this metric by

11% increasing the gmean from 0.71 to 0.79. Note that more improvement in this metric can be obtained by modifying

the partitioning algorithm to directly favor fairness.

12

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

H
m

ea
n

of
 N

or
m

al
iz

ed
 IP

C
 LRU

Half and Half
UTIL

ga
lge

l-v
pr

ga
lge

l-t
wolf

am
p-g

alg
el

ap
si-

ga
lge

l

tw
olf

-vp
r

ap
si-

tw
olf

am
p-a

rt

ap
si-

art

ap
si-

sw
m

am
p-a

pp
lu

sw
m-tw

olf

art
-pa

rse
r

eq
ua

ke
-vp

r

vp
r-w

up

gz
ip-

tw
olf

art
-cr

aft
y

fm
a3

d-s
wm

mcf-
ap

plu

ga
p-m

esa

cra
fty

-pe
rl

gm
ea

n

Figure 9: LRU, Half-and-Half, and UCP on fairness metric.

5.4 Effect of Varying the Number of Sampled Sets

We use 32 sets for each of the UMON circuit in the default UCP configuration. This section analyzes the sensitivity of

the UCP mechanism to the number of sampled sets in the UMON. Figure 10 compares the performance of four UCP

configurations: the first samples 8 sets, the second samples 16 sets, the third is the default UCP configuration with 32

sampled sets, and the last is the UMON-global configuration which contains all the sets.

1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0

W
ei

gh
te

d
Sp

ee
du

p
(w

ith
 tw

o
co

re
s)

8 sets sampled
16 sets sampled
32 sets sampled
All sets

ga
lge

l-v
pr

ga
lge

l-t
wolf

am
p-g

alg
el

ap
si-

ga
lge

l

tw
olf

-vp
r

ap
si-

tw
olf

am
p-a

rt

ap
si-

art

ap
si-

sw
m

am
p-a

pp
lu

sw
m-tw

olf

art
-pa

rse
r

eq
ua

ke
-vp

r

vp
r-w

up

gz
ip-

tw
olf

art
-cr

aft
y

fm
a3

d-s
wm

mcf-
ap

plu

ga
p-m

esa

cra
fty

-pe
rl

gm
ea

n

Figure 10: Effect of Number of Sampled Sets on UCP.

For all workloads, the default UCP configuration with 32 sampled sets performs similar to UMON-global (All

sets). The performance of the workload galgel-twolf reduces if the number of sampled sets is reduced to 8. For other

13

workloads, the performance of UCP is relatively insensitive to the number of sampled sets (for sampled sets ≥ 8).

This is consistent with the lower bounds derived with the analytical model presented in Section 3.4. This result is

particularly useful result as it means that default UCP configuration with only 32 sets performs similar to the UMON-

global configuration without requiring the huge hardware overhead associated with the UMON-global configuration.

This reduced overhead makes the UCP scheme practical. The next section quantifies the hardware overhead of UCP.

5.5 Hardware Overhead of UCP

The major source of hardware overhead of UCP is the UMON circuit. Table 3 details the storage overhead of UMON

containing 32 sampled sets, assuming a 40-bit physical address space. Each UMON requires 1920 B of storage

overhead (less than 0.2% of the area of the baseline 1MB cache), indicating that for the baseline dual-core configuration

UCP requires less than 0.4% of storage overhead for implementing the UMON circuits. The low overhead for UMON

means that the UCP scheme is cost-effective even if the number of core increases (e.g. UMON overhead of less than

1% with four cores). The storage overhead of UMON can further be reduced by using partial tags in the ATD. In

addition to the storage bits, each UMON also contains an adder for incrementing the hit counters and a shifter to halve

the hit counters after each partitioning interval.

Table 3: Storage Overhead of a UMON circuit with 32 Sets
Size of each ATD entry (1 valid bit + 24-bit tag + 4-bit LRU) 29 bits
Total number of ATD entries per sampled set (1/way * 16) 16
ATD overhead per sampled set (29 bits/way * 16 ways) 58 B
Total ATD overhead (32 sampled sets * 58 B/set) 1856 B
Overhead of hit counters (16 counters * 4B each) 64 B
Total UMON overhead (1856B + 64B) 1920 B
Area of baseline L2 cache (64kB tags + 1MB data) 1088 kB
% increase in L2 area due to 1 UMON (1920B/1088kB) 0.17%

Implementing way-partitioning on a dual-core system requires a bit in each tag-store entry to identify which of

the two cores installed the line in the cache. The partitioning algorithm contains a comparator circuit and requires

negligible storage. Note that none of the structures or operations required by UCP is in the critical path, resource-

intensive, complex, or power hungry.

6 Scalable Partitioning Algorithm

We assumed that the partitioning algorithm is able to find the partition of maximum utility by computing the combined

utility of all the applications for every possible partition. This is not a problem when there are only two applications,

as an N-way cache can be way-partitioned among two applications in only N+1 ways. However, the number of

possible partitions increases exponentially as the number of competing applications, making it impractical to evaluate

every possible partition. For example, a 32-way cache can be shared by four applications in 6, 545 ways, and by

8 applications in 15, 380, 937 ways. Finding an optimal solution to the partitioning problem has been shown to be

NP-hard [15]. In this section we develop a partitioning algorithm that has a worst-case time complexity of N 2/2.

14

6.1 Background

Our algorithm is derived from the greedy algorithm proposed in [17]. The greedy algorithm is shown in Algorithm 1.

Algorithm 1 Greedy Algorithm

balance = N /* Num blocks to be allocated */
allocations[i] = 0 for each competing application i

while(balance) do:
foreach application i, do: /* get utility for next 1 block */

alloc = allocations[i]
Unext[i] = get util value(i, alloc, alloc+1)

winner = application with maximum value of Unext
allocations[winner]++
balance = balance-1

return allocations

get util value(p, a, b):
U = change in misses for application p when the number
of blocks assigned to it increases from a to b
return U

In each iteration, one block6 is assigned to the application that has the maximum utility for that block. The

iteration continues till all the blocks are assigned. This algorithm is shown to be optimal if the utility curves for all the

competing applications are convex [17]. However, when the utility curves are non-convex, the greedy algorithm can

have pathological behavior. Figure 11 shows example of two benchmarks, art and galgel, that has non-convex utility

curve. Art shows no reduction in misses until it is assigned at least 8 blocks and after that it shows huge reduction in

misses. As the greedy algorithm considers the gain from only the immediate one block it will not assign any blocks

to art (unless the utility of that block for even the other application is zero). To address this shortcoming of the greedy

algorithm, Suh et. al [19] propose to also invoke the greedy algorithm for each combination of the non-convex points

of all applications. However, the number of times the greedy algorithm is invoked increases with the number of

combinations on non-convex points of all the applications. Figure 11 shows that an application (galgel) can have as

many as 15 non convex points, indicating that the number of combinations of non-convex points of all the competing

applications can be very large. To avoid the time complexity, [19] suggests that the greedy algorithm be invoked only

for some number of randomly chosen combination of non-convex points. However, for a given number of trials, the

likelihood that randomization will yield the optimum partition reduces as the number of combinations increase.

6.2 The Lookahead Algorithm

We define marginal utility (MU) as the utility U per unit cache resource. If missa and missb are the number of misses

that an application incurs when it receives a and b blocks respectively, then the marginal utility, MU b
a of increasing

the blocks from a to b is defined as:

MU b
a = (missa − missb)/(b − a) = U b

a/(b − a) (10)
6We use the term blocks instead of ways because the greedy algorithm was used in [17] to decide the number of cache blocks that each application

receives in a fully associative cache. However, the explanation can also be thought of as assigning ways in a set-associative cache.

15

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Num. ways allocated from a 32-way 2MB cache

0

1

2

3

4

5

6

M
is

se
s P

er
 1

00
0

In
st

ru
ct

io
ns

art
galgel

(Remaining ways are turned off)

Figure 11: Benchmarks with non-convex utility curves

The basic problem with the greedy algorithm is that it considers the marginal utility of only the immediate block,

and thus fails to see potentially high gains after the first block if there is no gain from the first block. If the algorithm

could also take into account the gains from far ahead, then it could make better partitioning decisions. We propose the

Lookahead Algorithm, which considers the marginal utility for all possible number of blocks that the application can

receive. The pseudo code for the Lookahead algorithm is shown in Algorithm 2.

Algorithm 2 Lookahead Algorithm

balance = N /* Num blocks to be allocated */
allocations[i] = 0 for each competing application i

while(balance) do:
foreach application i, do: /* get max marginal utility */

alloc = allocations[i]
max mu[i] = get max mu(i, alloc, balance)
blocks req[i] = min blocks to get max mu[i] for i

winner = application with maximum value of max mu
allocations[winner] += blocks req[winner]
balance – = blocks req[winner]

return allocations

get max mu(p, alloc, balance):
max mu = 0
for(ii=1; ii<=balance; ii++) do:

mu = get mu value(p, alloc, alloc+ii)
if(mu > max mu) max mu = mu

return max mu
get mu value(p, a, b):

U = change in misses for application p when the number
of blocks assigned to it increases from a to b
return U/(b-a)

In each iteration, the maximum marginal utility (max mu) and the minimum number of blocks at which the max mu

occurs is calculated for each application. The application with highest value for max mu is assigned the number of

blocks it needs to obtain max mu. Ties for highest value of max mu are broken arbitrarily. The iterations are repeated

16

until all blocks are assigned. The lookahead algorithm can assign a different number of blocks in each iteration and is

guaranteed to terminate as at least one block is assigned in each iteration. For applications with convex utility function,

the maximum value of marginal utility occurs for the first block. Therefore, if all the applications have convex utility

function, then the lookahead algorithm behaves identical to the greedy algorithm, which is proved to be optimal for

convex functions.

The step for obtaining the value of max mu for each of the application is executed in parallel by the UMON

circuits. Calculating the max mu for an application if it could get up to N blocks takes N operations of add-divide-

compare each. As the blocks are allocated, the number of blocks that an application can receive in an iteration reduces.

In the worst case only one block is allocated in every iteration. Then, even in the worst case, the time required for the

lookahead algorithm to allocate N blocks is: N +(N −1)+ (N − 2)+ ...+1 = N(N −1)/2 ≈ N 2/2 operations. In

our studies, cache is assigned on a way granularity instead of a block granularity. Therefore, the value of N is equal to

the associativity of cache. Thus, for partitioning a 32-way cache the lookahead algorithm will require a maximum time

of 512 operations (recall that we perform partitioning once every 5M cycles). In our experiments, we ensure that both

the greedy algorithm and the lookahead algorithm allocates at least one way to each of the competing applications.

6.3 Result for Partitioning Algorithms

We evaluate the partitioning algorithms on a quad-core system in which four applications share a 2MB 32-way cache.

As there are four cores, the ideal value for weighted speedup is 4. Figure 12 shows the weighted speedup for the

LRU policy, and the UCP policy with the three partitioning algorithms - greedy, lookahead, and EvalAll. The EvalAll

algorithm evaluates all the possible partitions to find the best partition. The greedy algorithm works well when all the

benchmarks in the workload have convex utility curves (mix1) or when the cache is big enough to support the working

set of majority of the benchmarks in the workload (mix2). However, for workloads that contain benchmarks with non

convex utility curves (mix3 and mix4), the greedy algorithm does not perform as well as the EvalAll algorithm. The

lookahead algorithm performs similar to the EvalAll algorithm without requiring the associated time complexity.

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

W
ei

gh
te

d
Sp

ee
du

p
(w

ith
 fo

ur
 c

or
es

)

LRU
UCP (Greedy)
UCP (Lookahead)
UCP (EvalAll)

mix1
(gap-applu-apsi-gzip)

mix2
(swm-galgel-mesa-perl)

mix3
(mcf-applu-art-vortex)

mix4
(art-mcf-equake-wup)

Figure 12: Comparison of Partitioning Algorithms

17

7 Related Work

7.1 Related Work in Cache Partitioning

Stone et al. [17] investigated optimal (static) partitioning of cache memory between two or more applications when the

information about change in misses for varying cache size is available for each of the competing application. However,

such information is hard to obtain statically for all applications as it may depend on the input set of the application.

The objective of our study is to dynamically partition the cache by computing this information at runtime. Moreover,

as shown in in Appendix A, dynamic partitioning can adapt to the time-varying phase behavior of the competing

applications, which makes it possible for dynamic partitioning to out perform even the best static partitioning.

Dynamic partitioning of shared cache was first investigated by Suh et al. [18][19]. [19] describes a low-overhead

scheme that uses recency position of the hits for the lines in the cache to estimate the utility of the cache for each

application. However, obtaining the utility information from main cache has the following shortcomings: (1) The

number of lines in each set for which the utility information can be obtained for a given application is also dependent

on the other application. (2) The recency position at which the application gets a hit is also affected by the other

application, which means that the utility information computed for an application is dependent on (and polluted by)

the concurrently executing application. UCP avoids these problems by separating the monitoring circuit from the main

cache so that the utility information of the application is independent of other concurrently executing applications.

Figure 13 compares UCP to a scheme that uses in-cache information for estimating utility information.

1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0

W
ei

gh
te

d
Sp

ee
du

p
(w

ith
 tw

o
co

re
s)

LRU
In-Cache
UCP

ga
lge

l-v
pr

ga
lge

l-t
wolf

am
p-g

alg
el

ap
si-

ga
lge

l

tw
olf

-vp
r

ap
si-

tw
olf

am
p-a

rt

ap
si-

art

ap
si-

sw
m

am
p-a

pp
lu

sw
m-tw

olf

art
-pa

rse
r

eq
ua

ke
-vp

r

vp
r-w

up

gz
ip-

tw
olf

art
-cr

aft
y

fm
a3

d-s
wm

mcf-
ap

plu

ga
p-m

esa

cra
fty

-pe
rl

gm
ea

n

Figure 13: UCP vs. an In-cache monitoring scheme.

The in-cache scheme provides 4% average improvement compared to the 11% average improvement of UCP.

Thus, seperating the monitoring circuit from the main cache is important to obtain high performance from dynamic

partitioning. However, doing this by having extra tags for each cache line incurs prohibitive hardware overhead. Our

18

proposal makes it practical to compute the utility information for an application, independent of other competing

applications, without requiring huge hardware overhead.

Mechanisms for enabling Quality of Service (QoS) in multicore and multithreaded architectures are discussed

in [8]. It emphasizes that factors such as priority, locality, and latency sensitivity should be considered in dividing

the cache among competing applications. It also describes different mechanisms to facilitate static and dynamic

partitioning of cache between competing applications. However, the design of intelligent partitioning policies to use

these mechanisms is left as an open research topic.

Recently, Hsu et al. [7] studied different policies, including a utilitarian policy, for partitioning a shared cache

between competing applications. However, they analyzed these policies using best offline parameters and mechanisms

for obtaining these parameters at runtime is left for future work.

7.2 Related Work in Cache Organization

Liu et al. [10] investigated cache organizations for CMPs. They proposed Shared Processor-Based Split L2 Caches, in

which the number of private banks allocated to each competing application is decided statically using profile informa-

tion. However, it may be impractical to profile all the applications that execute concurrently. Our mechanism avoids

profiling by computing the utility information at run-time using cost-effective utility monitors.

Recent proposals [4][2] have looked at dynamic mechanisms to obtain the hit latency of a private cache while

approximating the capacity benefits of a shared cache. Our work differs from these in that it focuses on increasing the

capacity benefits of a shared cache. It can be combined with these proposals to obtain both improved capacity and

improved latency from a cache organization.

7.3 Related Work in Memory Allocation

In the operating systems domain, Zhou et al. [21] looked at page allocation for competing applications using miss ratio

curve. The objective of both their study and our study is the same, however, their study deals with the allocation of

physical memory, which is fully associative, whereas, our study deals with the allocation of on-chip caches, which are

set-associative. The hardware solution proposed in [21] stores an extra tag entry for each page in a separate hardware

structure for each competing application. While this may be cost-effective in paging domain (approximately 4B per

4kB page), keeping multiple tags for each cache line for on-chip caches is hardware-intensive and power-hungry. For

example, if four applications share a cache and each tag-entry is 4B, then the storage required per cache line is 16B

(which is a 25% overhead for a 64B cache line), rendering the scheme impractical for on-chip caches. Fortunately,

on-chip caches are set-associative which makes them amenable to dynamic set sampling (DSS). Our mechanism uses

DSS to propose a cost-effective partitioning framework which requires less than 1% storage overhead.

7.4 Related work in SMT

Several proposals [20][1][5] have looked at policies for dynamic partitioning of processor resources such as reorder

buffer entries, execution bandwidth, and physical register file between the applications that concurrently execute on

19

an SMT processor. However, none of these proposals discuss the problem of partitioning the last-level cache among

the competing applications. Although, we evaluated UCP for CMP processors, ideas presented in this paper are also

applicable for SMT processors. Our work can be combined with these proposals to do to a unified allocation of both

memory resources and processor resources for competing applications on an SMT processor.

8 Concluding Remarks

Traditional designs for a shared cache use LRU replacement which partitions the cache among competing applications

on a demand basis. The application that accesses more unique lines in a given interval gets more cache than an

application that accesses fewer unique lines in that interval. However, the benefit (reduction in misses) that applications

get for a given amount of cache resources may not correlate with the demand. This paper proposes Utility-Based Cache

Partitioning (UCP) to divide the cache among competing applications based on the benefit (utility) of cache resource

for each application and makes the following contributions:

1. It proposes a low hardware overhead, utility monitoring circuit to estimate the utility of the cache resources for

each application. Our evaluation shows that UCP outperforms LRU on dual-core system by up to 23% and on

average 11%, while requiring less than 1% storage overhead.

2. It proposes the Lookahead Algorithm, as a scalable alternative to evaluating every possible partition for parti-

tioning decisions when there are a large number of applications sharing a highly associative cache.

We considered the problem of cache partitioning among the demand streams of competing applications. The

UMON circuits can be extended to compute utility information for prefetched data, which can help in partitioning the

cache among multiple demand and prefetch streams. The UMON circuits can also be modified to estimate CPI, which

can help in providing quality of service guarantees. The proposed framework can also be used to implement execution-

time fairness [9] without requiring any profile information. This paper investigated UCP only for multiprogrammed

workloads. For multithreaded workloads, UCP can take into account both the variation in utility of private and shared

data, as well as the variation in utility of private data of competing threads. Exploring these extensions is a part of our

future work.

Acknowledgments

Special thanks to Aamer Jaleel for continued discussion and feedback throughout this work. We also thank Ala

Alameldeen, Lee Baugh, Ravi Iyer, Aashish Phansalkar, Srikant Srinivasan, Craig Zilles, the HPS group, and the

anonymous reviewers for their comments and feedback. This work was supported by gifts from IBM, Intel, and the

Cockrell Foundation. Moinuddin Qureshi was supported by an IBM PhD fellowship during this work.

20

References
[1] F. J. Cazorla et al. Dynamically controlled resource allocation in SMT processors. In MICRO-37, 2004.

[2] J. Chang and G. S. Sohi. Cooperative caching for chip multiprocessors. In ISCA-33, 2006.

[3] D. Chiou. Extending the reach of microprocessors: column and curious caching. PhD thesis, Massachusetts Institute of
Technology.

[4] Z. Chishti et al. Optimizing replication, communication, and capacity allocation in CMPs. In ISCA-32, 2005.

[5] S. Choi and D. Yeung. Learning-based SMT processor resource distribution via hill-climbing. In ISCA-33, 2006.

[6] P. J. Denning. The working set model for program behavior. Communications of the ACM, 11(5), 1968.

[7] L. R. Hsu et al. Communist, utilitarian, and capitalist cache policies on CMPs: caches as a shared resource. In PACT-15,
2006.

[8] R. Iyer. CQoS: a framework for enabling QoS in shared caches of CMP platforms. In ICS-18, 2004.

[9] S. Kim et al. Fair cache sharing and partitioning in a chip multiprocessor architecture. In PACT-13, 2004.

[10] C. Liu et al. Organizing the last line of defense before hitting the memory wall for CMPs. In HPCA-10, 2004.

[11] K. Luo et al. Balancing throughput and fairness in SMT processors. In ISPASS, 2001.

[12] R. L. Mattson et al. Evaluation techniques in storage hierarchies. IBM Journal of Research and Development, 9, 1970.

[13] E. Perelman et al. Using SimPoint for accurate and efficient simulation. ACM SIGMETRICS Performance Evaluation Review,
2003.

[14] M. K. Qureshi et al. A case for MLP-aware cache replacement. In ISCA-33, 2006.

[15] R. Rajkumar et al. A resource allocation model for QoS management. In the 18th IEEE Real-Time Systems Symposium, 1997.

[16] S. Ross. A First Course in Probability. Prentice Hall, 2001.

[17] H. S. Stone et al. Optimal partitioning of cache memory. IEEE Transactions on Computers., 41(9), 1992.

[18] G. E. Suh et al. A new memory monitoring scheme for memory-aware scheduling and partitioning. In HPCA-8, 2002.

[19] G. E. Suh et al. Dynamic partitioning of shared cache memory. Journal of Supercomputing, 28(1), 2004.

[20] D. M. Tullsen and J. A. Brown. Handling long-latency loads in a simultaneous multithreading processor. In MICRO-34, 2001.

[21] P. Zhou et al. Dynamic tracking of page miss ratio curve for memory management. In ASPLOS XI, 2004.

21

Appendix A : Phase-Based Adaptation of UCP

The utility of cache resources for an application can vary over time. The dynamic partitioning of UCP allows it to

adapt to the time-varying phase behavior of the competing applications. The variation in utility for cache resources of

an application may not correlate with its variation in demand for cache resources. We analyze the time varying phase

behavior of the workload swim-twolf by comparing UCP and LRU to a partitioning scheme that statically allocates a

fixed number of ways to each competing application. Figure 14(a) shows the MPKI of swim for the static partitioning

scheme as the number of ways devoted to swim is varied.

0 2 4 6 8 10 12 14 16
Num ways allocated to Swim (remaining to Twolf)

0

5

10

15

20

25

30

35

40

45

50

 M
is

se
s P

er
 1

00
0

In
st

ru
ct

io
ns

 (M
PK

I)
 fo

r
Sw

im

(a)

STATIC

UCP (AVG) LRU (AVG)

0 10 20 30 40 50 60 70 80

time (x10 Million cycles)

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

N
um

 w
ay

s a
llo

ca
te

d
to

 S
w

im
 (o

ut
 o

f 1
6

w
ay

s)

(b)

LRU
UCP

Figure 14: (a)Variation in MPKI as the number of ways allocated to swim is changed statically. (b)The average number
of ways dynamically allocated to swim when it is executed with twolf by the LRU policy and UCP policy.

With static partitioning, devoting less than 9 ways to swim increases its MPKI considerably. When swim and

twolf are executed together, the baseline LRU policy allocates, on average7, 10.5 ways to swim, whereas, the UCP

policy allocates, on average, only 3.3 ways to swim. However, the MPKI of swim with the UCP policy (23.7) remains

similar that with the LRU policy (22.98). This happens because UCP allocates ways to swim only in phases when the

allocated ways are likely to reduce the misses. Figure 14(b) shows the number of ways allocated to swim over time

by LRU and UCP. LRU consistently allocates 10 or more ways to swim throughout the simulation. UCP allocates

9 ways to swim only between 230M and 320M cycles of simulation, and three or fewer ways otherwise. As swim

receives cache resources in the phase when not having them would increase MPKI considerably, the number of misses

for swim does not increase compared to the LRU policy. Reducing the average number of ways of swim from 10.5 to

3.3 allows twolf to have 12.7 ways instead of 5.5 ways. This reduces the MPKI of twolf from 10.64 to 5.18.

7The average number of ways allocated to an application by the LRU policy is measured by sampling the cache every 2M cycles. The number
of lines present in the cache for the given application is counted and this number is divided by the number of sets in the cache.

22

