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Abstract

We consider challenges associated with application domains in which a large number

of distributed, networked sensors must perform a sensing task repeatedly over time.

For the tasks we consider, there are three signi�cant challenges to address. First,

nodes have resource constraints imposed by their �nite power supply, which motivates

computations that are energy-conserving. Second, for the applications we describe,

the utility derived from a sensing task may vary depending on the placement and size

of the set of nodes who participate, which often involves complex objective functions

for nodes to target. Finally, nodes must attempt to realize these global objectives

with only local information. We present a model for such applications, in which we

de�ne appropriate global objectives based on utility functions and specify a cost model

for energy consumption. Then, for an important class of utility functions, we present

distributed algorithms which attempt to maximize the utility derived from the sensor

network over its lifetime. The algorithms and experimental results we present enable

nodes to adaptively change their roles over time and use dynamic recon�guration of

routes to load balance energy consumption in the network.

�This work was partially supported by NSF research grant ANIR-9986397.
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1 Introduction

Networks of small, inexpensive, low-power sensors are widely expected to provide cost-e�ective
solutions for applications ranging from environment monitoring to collection of visual data for
the purposes of scene reconstruction, to motion tracking and motion detection. Among the most
signi�cant challenges in gathering data from these wireless, ad-hoc sensor networks arises from
the array of decisions that individual nodes must make with only local information. In particular,
nodes are initially expected to form a connected ad-hoc network over which to communicate and are
subsequently expected to run distributed algorithms to route around faults, while simultaneously
performing sensing tasks and managing both local and global energy consumption.

For these reasons, there has been relatively limited discussion to date about applications
which have �rm guarantees about collection and delivery of sensory data over the sensor network.
Instead, typically a best-e�ort service model is either explicitly or implicitly assumed, meaning that
sensors are expected to perform sensing operations and route data to the destinations as best they
can. Of course, issues such as node failure and network partition may temporarily or permanently
short-circuit these plans. In this paper, we argue that for many interesting applications of wireless
sensor networks, even a best-e�ort service model may in fact be too stringent. While having a
node perform a sensory operation or route a message containing sensory data may be bene�cial
to the application, the bene�t must be measured as a function of the cost. In economic terms,
the opportunity cost associated with performing a particular activity may be large, which, if it
outweighs the bene�t of performing the activity, warrants perfoming another alternative activity.
In the context of sensor networks, nodes may act either as sensors, or as routers, or both. Since
both activities are bene�cial, but energy-consuming, a node's choice of role is essential to achieving
the objectives we specify. We argue for a model in which sensor nodes are allowed to make these
choices, rather than adopt a best-e�ort mentality.

In the model we develop, the cost of an action is relatively easy to quantify, as we focus on
managing energy consumption, and we measure costs in those terms. However, the distributed
nature of nodes in our networks implies that they do not have global information. This further
implies that it is unrealistic to expect nodes to accurately assess either the opportunity costs, or the
relative bene�ts of a particular decision. Instead, we adopt a model in which nodes make heuristic
assessments based on available information, which is often local in nature. This model is driven by
objective functions which maximize the utility of a sensor network over the lifetime of the network.

To motivate the nature of the issues we consider more fully, we describe the underlying as-
sumptions we make about the sensor domains we consider:

� The topology of the network connecting the sensor nodes can change frequently, either due to
mobility, energy considerations, or permanent node failure.

� Sensory data must be routed to a wired base station adjoining the sensor network before it
can be accessed by the end-user.

� Nodes are homogeneous and are powered by a �nite, non-rechargeable energy supply.

� Remote deployment or cost considerations make human intervention infeasible; nodes are
simply expected to continue collecting data until they exhaust their power supply.

� Conserving power to maximize the uptime of the network is essential.
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In environments such as this, for the objectives we seek to address, computation in large-scale
sensor networks will require scalable coordination amongst sensors to accomplish the desired tasks
[6], In most circumstances, the sensors must coordinate to achieve one or more global objectives, but
yet must do so with only local information. Distributed algorithms to achieve global objectives using
local information have been widely studied in the context of classical networking problems (see for
example [1, 2]). In this paper we consider global objective functions motivated by speci�c sensor
network applications which are driven by utility functions, �rst studied in a networking context by
Shenker [18]. Developing solutions which achieve these objectives are constrained in two primary
ways: by the locality imposed by the distributed nature of the model, and by a resource constraint,
namely the �nite energy supply at sensor nodes. Our work develops a general model in which to
study such problems and presents algorithmic results and experimental work in progress for a class
of these problems.

The paper is organized as follows. We start by summarizing the related work in the context of
power-aware routing and computation in sensor networks. Section 3 speci�es the model which we
advocate, from basic issues of the topological layout to a detailed description of the utility functions
and objective functions which drive our work, to a description of the bene�ts of aggregation.
Section 4 presents the power-aware routing algorithms and heuristics we prescribe for a class of
relatively simple motivating applications. In Section 5, we present our experimental results for
these algorithms, using performance analysis to assess the success of our algorithm with respect to
load balancing, energy consumption and total utility. Finally, we conclude the paper in Section 6.

2 Related Work

The main objective of our work is to motivate the design of algorithms for sensor networks which
dynamically load-balances sensing and routing tasks to maximize the utility of the network in
energy-constrained environments. While the objective functions and algorithms we propose are
novel, they connect to a substantial body of work on ad-hoc routing protocols, fault tolerance, and
energy conservation in sensor networks, which we survey here.

One aspect of our work leverages o� of the considerable body of literature which has focused
on improving adaptive routing protocols for communication in ad-hoc networks [20, 5, 10, 9, 19, 17].
In general, these protocols provide improved fault-tolerance and support for mobility, for example
by establishing a routing backbone which can be updated dynamically by distributed algorithms
which monitor the frequently changing network topology [20]. Another set of routing protocols
speci�cally addresses the issue of power consumption [7, 21, 19] in ad-hoc sensor networks. These
protocols concern themselves with issues of fault-tolerance and mobility, but also extend their
models to address issues of power consumption in energy-constrained environments.

The concept of sensor fusion, or actively aggregating data from multiple heterogeneous sensory
domains, has been used in [14, 8, 9], among others. Sensor fusion can also be applied in the
context of aggregating homogeneous sensory information from multiple sensors. As an example,
the Low-Energy Adaptive Clustering Hierarchy (LEACH) protocol [8] uses this form of sensor
fusion to compress datasets within the network, reducing the energy dissipated during the resulting
transmission. One application-speci�c example they describe is beamforming algorithms, which
combine a set of acoustic signals into a single signal without loss of relevant information. Our
work applies the same general principle in advocating application-speci�c data aggregation as a
technique for conserving energy.
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Finally, there are several sensor network e�orts which attempt to load balance energy-consuming
tasks in the network. LEACH [8] performs load balancing by randomized timesharing of the re-
sponsibility (and cost) of long-distance transmissions needed to o�oad sensory data to a remote
base station. The applications we describe motivate a di�erent form of load-balancing, which we
achieve not by distributing transmission cost, but by distributing the sensing responsibilities. This
approach to node specialization is somewhat similar to the idea of device modes in [7]. In that
approach, the role of a node is determined as a function only of a node's current power levels,
whereas we determine a node's role by considering the marginal cost and marginal bene�t of a
particular change in its assignment.

3 Model

In this section, we begin by motivating the various aspects of our model by outlining the details of
problem requirements for an application from the realm of environment monitoring. Our description
of the model follows in three subsections, the �rst describing the basic notation and assumptions
about the network, the second describing constraints imposed by the sensory applications of interest,
and the last describing the objective functions we seek to optimize.

3.1 A Motivating Example

Consider the problem of monitoring toxicity levels in an area in which hazardous materials are used
and hazardous waste is produced. Due to the nature of the environment, the logistics and cost of
deploying sensors, the deployment of sensors is a one-time operation; therefore, human intervention
after the sensors have been deployed is not an option. To relay information o� of the network,
the sensors which are deployed are equipped with wireless communication devices with which they
may communicate data to an adjoining base station. In the course of transmitting data, nodes can
aggregate data collected at various sensors into summaries to reduce messaging overhead. In the
best case, message size would be independent of the aggregation level.

Power consumption is perhaps the most signi�cant consideration in this example, since we as-
sume that the sensors do not have a renewable energy supply. Likewise, the sensors are collectively
expected to monitor the environment for as long as possible, so they must preserve their energy
reserves. We assume that both the sensing (or data gathering) operations and the transmission of
data through the network incur non-negligible costs. As the number of nodes which relay a datum
of sensory information increase, the total utility also increases, but we assume diminishing marginal
returns, i.e. the bene�t of an additional node's participation becomes less and less signi�cant. The
tension introduced between the goal of data gathering over large time intervals and that of recov-
ering detailed, precise sensory information motivates a utility-driven approach to the distributed
management of the sensor network.

3.2 Network Model

We start with the basic de�nitions and assumptions describing the networked environment in which
our sensors operate. In many cases, these assumptions can be relaxed or altered without substan-
tially changing the underlying model which we develop. We begin by assuming that all nodes
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communicate over a homogeneous wireless medium. Using the de�nitions provided in [20] and
elsewhere, we de�ne the neighborhood of a node u to be all the nodes that are both within u's
transmission range and that are operational. We assume that communication among nodes is
commutative, i.e. if node u can receive transmissions from node v, then node v also can receive
transmissions from node u. All transmissions from any node v are isotropic, that is, they are omni-
directional and they reach all nodes in the neighborhood of v. For simplicity, we also assume that
transmissions are perfectly scheduled, so that no one node's transmission interferes with another,
thereby avoiding collisions [4]. Furthermore, to conserve power, we assume that nodes power down
temporarily when they overhear the beginning of a transmission for which they are not the intended
receiver. While we will generally assume that the nodes forming our ad hoc network are stationary
for the algorithms we develop, this assumption is not an inherent limitation of our model.

We represent our network as an undirected graph G = (V;E), where V is the set of all nodes,
including the base stations. E is the set of edges in the network de�ned as follows, where d(u; v) is
the distance between nodes u and v.

E = f(u; v) j u; v 2 V and d(u; v) � R and u; v are operationalg

This graph is similar to a unit graph [3, 11, 21], in which all nodes' transmission ranges are equal.
See Figure 1 for an example. The neighborhood of a node u is denoted by the set

N(u) = fv j (u; v) 2 Eg:

All nodes in our network are homogeneous1 and have the following properties.

1. Each node i has a unique identi�er, idi, which serves as its address for all transmissions
intended for it.

2. Each node i has a �xed, �nite, and non-replenishable reserve of energy which we denote by pi.

3. To achieve isotropy, each node has a �xed communication radius, R, which delimits its range
of the transmission.

In our basic model, a single wired base station, through which all information is relayed o� of the
sensor network, has a di�erent set of special properties. For clarity, we assume this node has id = 0,
an in�nite reserve of energy p0 = 1, and a fault rate f0 = 0. With some additional notational
complexity, our model and techniques can easily be generalized to scenarios in which multiple base
stations are present. Figure 1 depicts a layout of nodes within the con�nes of the outer circle, with
the communication range of two sensor nodes depicted by the two inner circles.

As nodes fail due to battery depletion, or permanent failure and restart after temporary
failures, the corresponding network graph changes. In particular, V and E provide a dynamically
changing re
ection of the state of the nodes and the possible communication among pairs of nodes,
respectively.

3.3 Sensing Model

We describe the sensing model we use in our network. We present the di�erent costs associated
with each operation. We explain our notion of node specialization, a node role-based mechanism
that adapts to changes in the network, loosely similar to the idea of device modes in [7].

1Except in the case of base stations which we describe further on.
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B = base station
= sensor

B

Figure 1: Sensors Distributed Uniformly at Random on a Unit Circle

3.3.1 Specialization

Network topology changes are frequent in ad-hoc networks. In our case of static networks, changes
occur to the virtual topology as nodes fail terminally and deplete their energy. Such networks
warrant the use of adaptive and fault-tolerant routing algorithms [5, 13, 17]. We propose to com-
plement the role of adaptive algorithms with nodes that adapt their role, or specialize, as a response
to changes not only in the virtual topology of the network but also to node power levels. In general,
we classify the typical roles of a sensor node as follows.

� Routing Only: Due to large opportunity costs from a node's position in the topology or due
to its current low energy levels, a node refrains from sensing in favor of routing data now and
at future timesteps.

� Sensing Only: Nodes with no active children in the topology and who decide to sense operate
in this mode.

� Routing/Sensing: Nodes whose energy reserves are suÆcient to perform sensing as well as
routing may do so.

� Idle: Nodes with no active children in the topology and who decide not to sense are idle and
consume no energy.

3.3.2 Costs

We assign costs to the di�erent operations performed by a node as follows.

� Let cs be the cost associated with a single sensing operation. A sensing operation consists of
a single probe of the environment in which a node collects experimental data amounting to a
sensory task.
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� Let ct be the cost to transmit a �xed-size message containing the result of a sensory compu-
tation to a node's neighborhood.

� Let cr be the reception cost, which is incurred when a node receives a �xed-size transmission
for which it is the intended receiver. (We disregard the cost associated with \listening" for
transmissions as it is substantially smaller than transmission and reception costs [7].)

� Let ca be the �xed aggregation cost. That is, the cost of applying the computation to the
sensed data and the collected data. In many contexts, this computation is denoted as sensor
fusion.

In our model, the ratio cs
ct
, or the sense-to-transmit ratio, plays a signi�cant role as it captures

the relative importance of the two most important roles of nodes in the network in terms of energy
consumption.

3.3.3 Aggregation

For many applications, it is not a requirement that the sensory data accumulated by the nodes of
the network must be transmitted in full �delity to the base station. In the monitoring example,
nodes can transmit a minimal amount of information to convey the fact that very little has changed
in their subtree since the last measurement and the toxicity levels all remain nominal. Or, when
toxicity levels remain low, it might be suÆcient to report an average measure over the subtree, rather
than the value at each leaf. In these circumstances, the amount of work, in terms of messaging
complexity, remains �xed at all levels of the tree, thus consumes substantially less power than full
reporting. For these applications, we assume that data is aggregated at each node with a �xed
aggregation cost before it is transmitted upstream in the network. That is, each node collects data
from its children in the tree, performs its own sensing (when applicable), applies the computation
to both sets of data before transmitting the result to its parent. Use of aggregation allows for better
scalability, since it does not su�er from message implosion inherent in the monitoring example just
described or in the case of deploying thousands of small sensors in disaster areas [6].

3.4 Utility Functions and Objective Functions

We associate each sensor domain with a monotonically non-decreasing utility function which maps
the number of nodes participating in a sensory computation to a real value which quantitatively
measures the utility derived from output from a subset of sensors of that size. Shenker [18] motivated
the use of utility functions in quantitatively modeling a user's relative preference for a real-time
stream encoded at varying levels of �delity. Our motivation is similar { the user is the consumer
of the output of the sensor network and the varying levels of �delity correspond to increasingly
detailed sensory output levels. Therefore we model the utility derived from a consumer of our
sensor network resources by a monotone function

U : S ! [0; 1];

which, for a network graph G = (V;E), maps the sensing subset S � V , the set of all nodes in the
graph that are sensing, to a real-valued interval. It is worth noting that for most applications, not all
subsets of sensors of a given size are created equal { in many circumstances, having a geographically
distributed set of reporting sensors is essential. Addressing such spatial considerations is beyond
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the scope of the algorithmic and experimental work we present in this paper, but we will mention
that these considerations could easily be modeled by a more general (and non-monotonic) utility
function mapping all possible subsets of nodes to values:

U : S� ! [0; 1];

where S� denotes the power set of S.

We base our approach on the observation that not all nodes need to contribute data to the
computation and, therefore, nodes can conserve their energy so that data aggregation may be
performed over longer periods of time. As in [18], for simplicity, we will mainly concern ourselves
with the qualitative aspects of our utility function. For many applications, it is not necessary to have
the most highly optimized output at a given timestep, instead, we take advantage of opportunities
to trade o� the utility derived from a computation against the amount of power consumed. We
discuss two general types of curves for modeling utility functions (also described in [18]) and as
diagrammed in Figure 2. First consider the utility curve to be represented by the step function on
the left hand side of Figure 2. In this all-or-nothing case, useful data fusion is only possible when
and only when the number of nodes participating in the sensing operation is at least as large as
the threshold set by the function. In a more forgiving scenario, our utility function might resemble
the inelastic curve on the right hand side of Figure 2, where we can have some freedom in tuning
the number of participating nodes to vary energy consumption in the network. This second curve
has three regimes: when a very small number of nodes participate, the user derives little utility;
at a certain threshold, the utility quickly increases dramatically; and then beyond a �nal in
ection
point, there are diminishing marginal returns and utility increases only very slowly. In both of
these scenarios, ideally one would like to operate at the beginning of the third regime, just beyond
the knee of the curve, to maximize utility relative to power consumption.

utility

 nodes participating

utility

 nodes participating

Figure 2: Utility functions: Step function and inelastic utility function
.

In many applications of ad hoc networks, the objective is not simply to perform a small
number of high quality sensing operations, but rather to complete a large number of computations
over longer timescales. In this context, fusing data from the maximum number of sensors is a
short-sighted approach in a power-constrained environment. In this work, we motivate maximizing
the utility of sensory operations over the duration of the network uptime.

The objective function which we propose is one in which we maximize the sum, over the
lifetime of the sensor network, of the utility of computations at intermediate timesteps. This

8



objective re
ects a natural goal { that of maximizing the total aggregated utility of the network
over time. It would of course be possible to formulate other similar objectives in this framework.
More formally, let us de�ne those vertices which elect to perform a sensing operation at any time
t as the sensing subset St � V . Similarly, we denote those vertices which elect to transmit data at
any time t as the transmitting subset Rt � V . By our model, it follows that St � Rt, moreover, Rt

must be established in such a way that enables all nodes in the sensing subset to route their data to
the base station. With this formalization now in place, our objective function is the optimization
problem:

maximize
X

t

U(St)

given the constraints:
X

t

X

i2St

cs +
X

t

X

i2Rt

ct + (di � 1)cr + ca � pi (1)

8t : Rt induces a connected subgraph of G spanning St and v0 (2)

The �rst constraint of this formulation uses the cost model de�ned earlier to ensure that nodes
cannot consume more power than they have available, where di denotes the degree of node i in the
subgraph induced by Rt. The second constraint ensures that the data collected from all nodes who
get credit for participating in the sensing subset at time t actually gets routed to the base station.

This long-term strategy can be realized only through a combination of careful power manage-
ment combined with distributed coordination on the part of the nodes in the sensor network in
choosing their roles over time. We present algorithms for doing so in the next section.

4 Adaptive, Energy-EÆcient Algorithms for Utility Maximization

Our algorithm exhibits several desirable properties for routing protocols as proposed by [6, 12].

� Loop-freedom: All routing and communication is performed over a logical spanning tree of
the network

� Localization: Our algorithm is distributed and message exchanges among nodes are localized
in that they take place within neighborhoods.

� Non-proactivity: Route computations are recomputed on an as-needed basis using a lazy
evaluation approach.

The algorithm runs in two main stages, a setup stage in which the ad hoc network is established
by distributedly building a spanning tree over the operational nodes; and a processing stage, in
which the distributed algorithm performs its core duty of choosing roles, sensing and routing and
handling faults by recon�guring the tree (whenever possible).

Sensors in our algorithm take advantage primarily of local information, such as the network
topology in their neighborhood, their remaining energy level and their depth in the spanning tree.
As a consequence of computation on the tree, internal nodes which act as routers have the ability
to learn a limited amount of information about their subtree. For example, we will assume that
during the course of aggregation, a node can and will learn the magnitude of the set of nodes which
are currently performing a sensing role in its subtree.
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4.1 Notation and Terminology

We use a discrete time model to describe the operation of our algorithm in simple terms. The
algorithm operates in a sequence of distributed rounds, where each round consists of a sequence of
substeps performed at all nodes as de�ned below. The substeps themselves are performed asyn-
chronously, in particular some nodes may be idle while others are actively engaged in computation.
A node may remain idle during a substep and incurs no energy cost if its role dictates that it need
not perform the operation associated with that substep. For the following discussion, leaf nodes are
those nodes which have established the sensing role, but do not route data. The remaining nodes
are internal nodes, who route data, and may undertake the role of sensing as well.

The substeps are de�ned as follows:

� Sensing substep: A node gathers sensory information from the environment and its energy
reserve is depleted by the associated amount.2

� Receiving substep: Each internal node waits until it has received transmissions from each
of its active children.

� Aggregation substep: Internal nodes aggregate the sensory data from their children, along
with their own data, consuming a constant amount of power;

� Transmission substep: The raw sensory data collected by a leaf node, or the aggregated
data produced at an internal node, is transmitted upstream, incurring a constant cost;

� Feedback substep (Rare): In the event that recon�guration is necessary, a constant-size
message may be broadcast down the tree.

We say that an internal node completes a full round when it does work during each of the substeps
(i.e. specializes as a router/sensor). The amount of energy that node i consumes during such a
round is

Ei
full;n = cs + n � cr + ca + ct

where n is the number of children that sent transmissions to this node during the second substep.
When a node's specialization is that of a router only then the amount of energy it consumes during
a round is

Ei
route;n = n � cr + ca + ct

A node completes a leaf round when it only senses and transmits its own data, thus consuming

Ei
leaf = cs + ct

4.2 Network Initialization

The algorithm distributedly constructs a spanning tree rooted at the base station in the style of [15].
The algorithm is described as follows. Initially, all the nodes are idle except for the base station.

2This substep may consume a signi�cant quantity of time, as sensory information may be gathered over much

larger time scales than that required to route the data to the base station
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Every newly-activated node transmits an active ping, which is a short message consisting of a pair
of values (id; d), where id is the unique identi�er of the transmitting node and d is the distance,
in hops, of that node from the root node. For example, the base station always transmits the pair
(0; 0) since its id is always 0 and it is situated at a distance of 0 hops from the root (itself). Any idle
node that is functioning properly and within range of the issuing node, registers the issuing node
as its parent and notes its distance plus one. Once an idle node receives an active ping it becomes
active. Any active node that receives subsequent active pings from any node, compares the new
ping pair (idnew; dnew) with its current registered pair (idreg; dreg). If dnew < dreg, then it discards
its old pair and stores the new pair. Formally, given the representative graph G = (V;E) on nodes
reachable from the base station of the sensor network, the algorithm constructs a spanning tree3

T = (V 0; E0), where V 0 � V is a set that includes all the operational nodes that are on a path
starting at the base station, where E0 � E is the set of all edges in the minimum spanning tree.

4.3 Fault Tolerance: Inheriting Orphaned Subtrees

A node can fail permanently due to power depletion. When a node fails permanently it is no longer
part of the network. If that node happens to be a leaf then other nodes will eventually adjust
their roles appropriately in a manner we describe momentarily to restore an acceptable level of
computation as dictated by the utility function. Otherwise, the failure of an internal node results
in the partition of the network tree. In such a case, its children, themselves roots of other subtrees,
become orphans. These roots need to reconnect their orphaned subtrees to the main network.
Formally, let G = (V;E) be the representative graph of a network, and T = (V;E0), E0 � E a
spanning tree over G. When an internal node u 2 V fails, the network is partitioned into the
primary partition P � V , which includes the base station v0 2 P , and secondary partitions (also
spanning trees) Si � V �P , whose roots vSi are orphans. Each orphan vSi transmits a search ping
message, indicating that it is looking for a parent. The message is received by all the nodes in the
orphan's neighborhood, N(vSi). The set of prospective parents for the orphan can be described as

H(u) = fv j v 2 P and v 2 N(u)g;

where the prospective parent v must be in the neighborhood of u and must be in the primary
partition P (and not in any secondary partition). Any parent who is able and willing to \adopt"
the orphaned node will send back a message indicating so. The orphan then chooses the willing
parent at minimum depth in the tree.

4.4 Selecting Roles: Maintaining a Sensing and Routing Invariant

With the spanning tree and fault tolerance mechanisms in place, we are ready to de�ne the special-
ization mechanism whereby nodes select roles. As described earlier, nodes who have not depleted
their energy supply choose one of four roles at any given timestep.4 Nodes at the periphery of the
network, who cannot communicate with the base station cost-e�ectively, are idle. Nodes are at the
leaves of the communication tree established for a given timestep are sensing only. The remaining
nodes act as routers, but may also decide to act as sensors. To streamline this decision process and
to conserve energy near the base station, our sensor network maintains the following invariant:

3All trees constructed over unit graphs are minimum spanning trees
4Nodes which have depleted their energy are removed from the graph.
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Invariant: In the communication tree spanning all active nodes, no node acting as a router
and a sensor may be an ancestor of a node acting only as a router.

It is easy to see that a consequence of this invariant is that nodes form four concentric regions
according to their roles as depicted in Figure 3.

B = base station
= sensor

B

IDLE

SENSING

ROUTING

     S & R

Figure 3: Graphical Depiction of the Specialization Invariant

The remaining question is for nodes to determine their role. In our approach, each node
determines its role as follows. Node i computes a random value, 0 < ri � 1. The pseudo-code for
the algorithm is given in Figure 4. Ntot is the threshold set by the utility function, and is known to
all nodes. Ncurr is the number of nodes that performed sensing in the previous round; if this value
di�ers from Ntot, then it is propagated down the tree during the feedback substep. Nidle is the
number of nodes that are part of the spanning tree but were idle in the previous round; this value is
also propagated down the tree during the feedback step. If additional nodes need to sense, that is
if Ntot > Ncurr, then node i probabilistically chooses to complement its current role with a sensing
operation, if and only if it does not violate the invariant. Similarly, if Ncurr > Ntot then node i
probabilistically chooses to throttle back its role to just routing, if its current role was sensing and
routing, or to idle, if its current role was to sense, without violating the invariant. The probabilistic
computations made by the nodes are given in Figure 4.

5 Experimental Results

We now describe preliminary results obtained in a discrete event simulation of the algorithms
described in the preceding section. In this simulation, we uniformly generate N nodes on a unit-
radius circle at random and we position the base station in the center of the circle, as was depicted
in Figure 1. We then �x the relative costs of sensing, transmitting and receiving relative to the
initial power at each node. We also �x the transmission range R = 0:2. In our experiments, we
consider the 0/1 utility step function, setting the threshold as a function of N , i.e. a setting of N=4
implies that full utility is derived when and only when at least N=4 nodes act as sensors. Future
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Routing-Alg()

role := idle;
repeat

generate ri;
if Ntot > Ncurr then /* Need to increase sensors */

� := Ntot�Ncurr

Nidle
;

if ri < � then
if leaf then

role := sense;
/* Maintain the invariant */

else if all children are sensing then
role := sense and route;

else /* Need to reduce sensors */

� := Ncurr�Ntot

Ncurr
;

if ri < � then
if leaf then

role := idle;
else

role := route;
until power is depleted

Figure 4: The Adaptive Routing Algorithm at Node i

work considers the e�ects of weakening the stringent requirement imposed by a step function, for
example as depicted in the utility function on the right hand side of Figure 2. The utility function
is known to all nodes, and we set the algorithm's target number of participating nodes T to exactly
the threshold value speci�ed above.5

5.1 Achieving the Objective

In Figure 5, we present a histogram of the number of nodes participating over time using the al-
gorithms described in the preceding section performance averaging over 100 trial topologies with
N = 200, a target N=4 = 50, a sense-to-transmit ratio cs

ct
= 4, a transmit-to-receive ratio ct

cr
= 2

and a power supply p at each node capable of 125 sensory operations. As the histogram indicates,
the overwhelming majority of timesteps had participation levels exactly at the target level. The
exceptions arose during initialization, in which large numbers of nodes may participate unnecessar-
ily, during recon�guration, when we may brie
y slip below the threshold, and during termination,
when an insuÆcient number of nodes participate.

5One could also consider introducing a margin of error between the utility threshold and the target value, but our

preliminary results suggest this does not introduce a signi�cant e�ect.
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Figure 5: Distribution of Node Participation Over Time

Heuristic Lifetime Total Utility Total Energy Consumed Utility/Energy

NAIVE 92.98 62.3 22039.3 .002827

SIMPLE UTIL 349.633 64.855 15418.01 .004206

SPEC INV 216 104.87 14505.54 .00723

Figure 6: Comparison of Heuristics

5.2 Success Relative to Alternative Approaches

In Figure 6, we present a comparison between the performance of three algorithms averaging over
150 trial topologies for N = 200, a sense-to-transmit ratio cs

ct
= 4, a transmit-to-receive ratio

ct
cr
= 2 and a power supply p at each node capable of 125 sensory operations. NAIVE is a simple

naive, best-e�ort algorithm. The second algorithm, SIMPLE UTIL, is utility-aware and always
tries to operate at the threshold set by the utility function6. Finally, SPEC INV is the full
algorithm described in the previous section. Over these trials, we measure the average lifetime of
the network, the average total utility derived, the average total energy consumed, and the cost of
utility per unit energy. Algorithms which are successful in this context are those which derive the
highest utility while consuming the minimum amount of energy; Table 6 shows that SPEC INV,
the full algorithm, achieves the highest such ratio.

6 Conclusion

We have explored objective functions for computations over wireless sensor networks in which it
is neither a requirement, nor a desired goal, to have all nodes participate in the capacity of both
a sensor and a router at all timesteps. Economic considerations, especially resource constraints

6We assume that this algorithm knows how to exactly achieve the threshold by as we make the number of nodes

sensing available to all the participants in the tree
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and the prevalence of network faults, motivate objective functions which give substantial freedom
in letting nodes choose their role over time. In a sense, this is a departure from the traditional
best-e�ort service model that underlies much of the design philosophy of standard internetworking
protocols. In a best-e�ort model, nodes attempt to optimize the utilization of resources in the
present without regard to future cost. But in sensor networks, energy considerations force nodes
to take a longer term view, optimizing their resource utilization over an uncertain future.

In our work, we model application-level 
exibility with utility functions, which are capable
of succinctly and quantitatively expressing a measure of service that the sensor network provides.
With the goal of optimizing the total utility derived over time, the distributed algorithms we
present for this model enable nodes to successfully discount current gains in lieu of future rewards;
thereby highly optimizing their consumption of energy over time. Our work in progress explores
the numerous directions and questions raised by this study.
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