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Abstract—We study the problem of dynamic resource allo-
cation to clustered Web applications. We extend application
server middleware with the ability to automatically decide the
size of application clusters and their placement on physical
machines. Unlike existing solutions, which focus on maximizing
resource utilization and may unfairly treat some applications,
the approach introduced in this paper considers the satisfaction
of each application with a particular resource allocation and
attempts to at least equally satisfy all applications. We model
satisfaction using utility functions, mapping CPU resource al-
location to the performance of an application relative to its
objective. The demonstrated online placement technique aims
at equalizing the utility value across all applications while also
satisfying operational constraints, preventing the over-allocation
of memory, and minimizing the number of placement changes.
We have implemented our technique in a leading commercial
middleware product. Using this real-life testbed and a simulation
we demonstrate the benefit of the utility-driven technique as
compared to other state-of-the-art techniques.

I. INTRODUCTION

Modern-day data centers can host a large number of

clustered web applications and comprise a large number of

heterogeneous machines. To manage application performance,

the data centers use admission control, flow control, load

balancing, and application placement mechanisms, which are

controlled using a variety of policies. Due to the increasing

size and heterogeneity of datacenters, customers demand that

these policies be fine grained, automatic, and dynamic. To

fully automate performance management for such complex

environments several challenging issues must be solved, which

include understanding and modeling workload characteristics

with respect to resource usage, workload forecasting, perfor-

mance modeling, optimizing resource allocation, controlling

the overhead of management actions, and observing opera-

tional policies that are not easily captured within a single

optimization objective.

This paper studies the problem of dynamic application

placement to fairly maximize application performance. We

study this problem in the context of a larger system that

achieves fully automatic management of web application per-

formance by combining dynamic application placement with

flow control, and load balancing.

The system leverages properties of modern application

server middleware [1] that provides transparent application

replication via clustering and request routing, session and

transaction state management, and application server quiesce

mechanisms. Thanks of the existence of these services and

their resilience to dynamic configuration changes, we can

concentrate on the problem on dynamic replica placement

without having to explicitly address these critical issues. The

system also takes advantage of recent advances in fields of

resource usage profiling for web applications [2] and perfor-

mance modeling and overload protection [3].

The application placement component is an online controller

that periodically adjusts application placement based on appli-

cation resource requirements while trying to maximize certain

objective functions and observe some operational policies.

Prior approaches to the problem [4], [5], [6], [7], including our

prior research on this topic [8] express resource requirements

directly, in terms of actual capacity requirement, and attempt to

maximize the sum of satisfied demand across all applications.

As we show in this paper, such problem formulation leads to

unfair treatment of some applications, and in some cases to

application starvation. The technique proposed in this paper

expresses resource requirement in the form of a utility func-

tion which encodes application satisfaction from a particular

allocation. The utility function is derived based on observed

workload intensity, resource usage profile, and performance

objective. The optimization objective is to maximize the

minimum utility value among all applications. This results in

resource allocation that provides fair treatment to applications

but requires both more involved interactions among system

components and more involved optimization techniques.

The primary contribution of this paper is an online place-

ment technique which achieves fair resource allocation with

respect to non-linear performance-based utility functions. We

have implemented the proposed approach on top of a leading

middleware platform. Using the implemented system as well

as a randomized simulation study, we show the benefits of our

approach compared to prior techniques.

This paper is structured as follows. In Section II we present

the architecture of our resource management system. Sec-
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tion III presents the algorithms used in the present evaluation.

In Section IV we evaluate our system through experimentation.

Related work is discussed in Section V. We conclude the paper

in Section VI.

II. SYSTEM ARCHITECTURE

Figure 1 shows the architecture of a system we consider in

this paper—the system being managed consists of a number

of heterogeneous server machines, which we refer to as nodes.

Dynamic web applications are installed into dynamic clusters.

Each dynamic cluster can have multiple web applications

installed in it (Figure 1 combines dynamic clusters with

applications for clarity). Each dynamic cluster is configured

with a set of eligible nodes — nodes eligible to host instances

of that dynamic cluster. When an instance of a dynamic cluster

is running, all web applications installed in that dynamic

cluster can be served by that instance. Each dynamic cluster

can run on multiple nodes, and each node can run instances

of multiple dynamic clusters. Web applications and dynamic

clusters also have various administrator-configured constraints.

Requests (shown in Figure 1 as dotted lines) arrive first at

the Flow Controller, where they are classified according to

their URI pattern as belonging to one of several configured

flows. Then they are placed in a queue corresponding to its

flow. Requests are dispatched from queues using a weighted-

fair scheduling discipline, whose dispatching weights and

concurrency limits are determined automatically as discussed

in [3]. A dispatched request passes through the Load Balancer

which selects the instance where the request should be sent.

After a requesed is processed, the response passes back to the

client via the same components. Neither the Flow Controller

nor the Load Balancer are able to start or stop instances—

they take the current state of the system as a given. As

requests are served by the instances, Sensors on each node are

observing the behaviour of the instances. Sensor data is shown

in Figure 1 as dashed lines. Information about the throughput

and CPU usage of each instance is provided by these Sensors

to the Application CPU Profiler, is discussed in Section II-A.
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Fig. 1. Architecture of the system

Also monitoring the nodes and the instances are several

other components, to which we now turn. The Executor is

using its own set of Sensors to monitor which nodes are

available, which instances are running. This information is all

provided by the underlying middleware layer, these Sensors

are able to simply subscribe to the relevant information. Using

these Sensors, the Executor is able to create a ‘map’ of

the current system. This map does not include request flow,

it simply includes which instances are running upon which

nodes.

The Executor provides this map of the system to the

Application Placement Controller, which uses it to drive

its decision making—see Section III. For the purposes of

this discussion, the Application Placement Controller can be

regarded as taking an input map (the current system) and

producing an output map (the desired system).

The output map is returned to the Executor, which deter-

mines if any changes need to be made to the system to make

it conformant with the output map. The changes that might be

made are limited to starting and stopping instances. If changes

are needed, the Executor drives the Effecters to make those

changes—like the Sensors, the Effecters are provided by the

underlying middleware layer.

Other information that the Application Placement Controller

requires in order to make its decisions comes from other

components also shown on Figure 1. The Background Profiler

uses the Sensors to observe the amount of CPU and memory

on each node that is being used by processes other than the in-

stances. This information is provided to the Available Capacity

Estimator, which combines it with information obtained from

the Sensors concerning the amount of memory and normalized

CPU cycles that each node has. Separately, the Application

Memory Profiler uses the Sensors to observe the memory

utilization of instances.

A. Characterising application resource usage

Our system is concerned with managing two kinds of re-

sources: memory and CPU. Even though applications consume

other resources, memory and CPU are typical sources of

bottleneck for enterprise applications and therefore resources

like disk I/O and network bandwidth are of a lesser concern.

Nevertheless, the system discussed in this paper can be ex-

tended to address these kinds of resources.

Our system derives memory and CPU usage estimates for

all managed applications based on online data. We characterize

the CPU usage of an application using work factor, α, which

represents the normalized number of cycles consumed on

average by a request of an application. Work factor is defined

using multi-linear regression model discussed in [2].

Characterizing memory usage is a more challenging prob-

lem as, due to effects of heap management in Java virtual

machine as well as caching, memory usage by an application

tends to reveal its historical rather than current requirement.

Therefore, we do not attempt to derive a per-request memory

consumption. Instead, for each application, we derive a per-

instance memory requirement, γ, as a high watermark of

physical memory usage for this application over a certain

period of time.
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B. Characterizing workload intensity

Typical enterprise web applications involve a set of client

sessions that involve a sequence of web requests. Workload

intensity is determined by the number of open sessions and

client think time between consequtive web requests. We model

this behavior for each flow using a closed queuing network

model with a client population of Cf and think time Tf .

Flow Controller estimates model parameters by tuning them

to fit recently observed system behavior based on measured

application throughput, number in the system, service time,

and end-to-end response time. The details of the model are

described in [9].

C. Placement algorithms

Previous application placement techniques define appli-

cation demand in terms of CPU capacity and attempt to

maximize the amount of satisfied demand. The approach

in [8] combines demand-based placement with utility-based

management by having a flow controller compute the desired

CPU power distribution across applications that yields the

greatest system utility. This computation is agnostic to memory

and other constraints and only ensures that the sum of all

desired CPU allocations does not exceed the total capacity of

machines. Placement controller is responsible for computing

placement that delivers the desired CPU power distribution.

This necessarily may lead to suboptimal results, when the

optimal load distribution cannot be delivered by any correct

placement due to constraints. When optimal allocation cannot

be delivered, the technique may penalize arbitrary applications,

regardless of their performance impact.

This paper introduces a placement technique that is driven

by application utility. Thus theoretically it provides a better

solution for maximizing application performance. This comes

at a cost of higher complexity, as the optimization objective

is non-linear, and a more complex design, as more complex

information must be exchanged between controllers. This

additional complexity would not be justified if the resultant

improvement in application performance was not significant

or concerned only a small set of scenarios. In Section IV

we show the opposite. The new desing leand to a significant

improvement in application performance in a wide range of

scenarios.

D. Estimating application utility

In our system, a user can associate a response time goal,

τf and importance level, if with each flow. The importance

level is an integer value which is greater than or equal to

1 and controls the system behavior when the response time

goal cannot be met. Based on the observed response time for

an application, tf we evaluate the system performance with

respect to the flow satisfaction using utility function uf , which

is defined as follows [3].

uf (tf ) =

{
τf−tf

τf
if tf ≤ τf

τf−tf

if τf
otherwise

(1)

The importance level decides the slope of the utility function

degradation when the response time exceeds its goal. For

less important flows (those with a higher importance level)

the value utility function degrades slower with the increasing

distance between the response time and its goal.

For the purpose of resource allocation we need to formulate

the utility function as a function of allocated CPU capacity,

ωf , that is uf (ωf ) = uf (tf (ωf )). Hence, we need to be able to

express response time as a function of allocated CPU capacity.

It turns out that it is mathematically easier to express the

opposite relationship: the amount of CPU power needed to

achieve a particular utility. For a value of the utility function

u∗f we will express its corresponding response time as tf (u
∗

f ),
which is defined by inversing Eq. 1. Given client population

Cf and client think time Tf , we can obtain the throughput

corresponding to u∗f as follows.

λf (u
∗

f ) =
Cf

tf (u∗f ) + Tf

(2)

Given the average number of CPU cycles consumed by

each request of the flow, αf , we can easily obtain the amount

of CPU power needed to achieve u∗f by multiplying αf and

λf (u
∗

f ).

ωf (u
∗

f ) =

⎧⎨
⎩

αf Cf

τf (1−u∗

f
)+Tf

if u∗f > 0
αf Cf

τf (1−if u∗

f
)+Tf

otherwise
(3)

Assuming that the flow controller equalizes the utility

among flows belonging to the same application, as it is the case

with the controller described in [9], we can now express the

CPU requirement of an application (ωm) as a function of the

utility for this application, u∗m, as a sum over all application

flows. To obtain um(ωm), we sample ωm(u
∗

m) for various

values of u∗m and from the obtained datapoints, we extrapolate

um(ωm).

III. ALGORITHM DESCRIPTION

In this section we present the algorithm adopted by the

placement controller.

We are given a set of machines, N = {1, . . . , N} and a set

of applications M = {1, . . . , M}. We use n and m to index

into the sets of machines and applications, respectively. With

each machine n we associate its memory and CPU capacities,

Γn and Ωn. Both values measure only the capacity available to

workload controlled by placement controller. Capacity used by

other workloads is subtracted prior to invoking the algorithm.

With each application, we associate its load independent

demand, γm that represents the amount of memory consumed

by this application whenever it is started on a machine. CPU

requirements of applications are given in the form of utility

functions defined in Section II-D.

We use symbol I to denote a placement matrix of ap-

plications on machines. Cell Im,n represents the number of

instances of application m on machine n. We use symbol L

to represent a load placement matrix. Cell Lm,n denotes the

amount of CPU speed consumed by all instances of application

m on machine n. Given application utility function from
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Section II-D, we can express it also as a function of L,

um(L) = um(
∑

n Lm,n).
We define load placement utility function U(L) =

(um1
(L), . . . , umM

(L)), where applications inside the vector

are ordered according to increasing umk
(L). Utility U(L) =

(um1
(L), . . . , umM

(L)) is greater than utility U(L′) =
(um′

1
(L′), . . . , um′

M
(L′)) if there exists k such that umk

(L) >

um′

k
(L′) and for all l < k, uml

(L) = um′

l
(L′). This induces

a lexicographic order of utility vectors.

Given an instance placement, all controllers in the system

try to find the best possible load distribution. Hence, utility

of instance placement is U(I) = maxL U(L), where load

distribution defined by any considered L does not violate any

system constraints. The objective of placement controller is to

find I that maximizes U(I). In addition, the algorithm tries to

minimize the number of placement changes, which are time-

consuming and CPU-intensive.

Considering the form taken by the utility function, our

problem formulation is an extension of maxmin criterion

and differs from it by explicitly stating that after maxmin
objective can no longer be improved (because the lowest utility

application cannot be allocated any more resources), the sys-

tem should continue improving the utility of other applications.

While finding the optimal placement, the controller observes a

number of constraints, such as resource constraints, collocation

constraints and application pinning, amongst others.

The placement algorithm proceeds in three phases: de-

mand capping, placement calculation, and maximizing load

distribution. Demand capping constraints the amount of CPU

capacity that may be allocated to an application, which is

used by placement calculation. The phase of maximizing load

distribution takes placement obtained by placement calculation

phase and calculates the best corresponding load distribution.

The basic algorithm, as described above, is surrounded by

the Placement control loop, which resides within the Executor

in Figure 1. This is designed to have the Application Placement

Controller periodically inspect the system to determine if

placement changes are now required to better satisfy the

changing extant load. The period of this loop is configurable

and can be interrupted when the configuration of the system

is changed.

The placement change problem is known to be NP-hard and

heuristics must be used to solve it. Based on our prior study

focusing on the placement problem with a linear optimization

objective [6], we identified several heuristics that are applica-

ble also in the placement problem with non-linear optimization

objective.

The outline of the placement change phase is based on

the algorithm in [6]. The placement change phase is executed

several times, each time being referred to as a ‘round’. Each

round invokes the placement change method, which makes a

single new placement suggestion starting from the placement

suggestion provided by the previous round execution. We

perform up to 10 rounds or break out before if no improvement

in placement utility is observed at the end of a round.

The placement change method first iterates over nodes. For

each node, it iterates over all instances placed on this node and

attempts to remove them one by one, thus generating a set of

configurations whose cardinality is linear in the number of

instances placed on the node. For each such configuration it

iterates over all applications whose satisfied demand is less

than the limit calculated in the capping phase, attempting

to place new instances on the node as permitted by the

constraints (see Section III). The placement change method

has been modified in serveral aspects with respect to the

version described in [6]. The most important change is the

fact that using utility-based heuristics to decide the order in

which nodes and applications instances are visited helps us

introducing a number of optimizations and shortcuts in the

algorithm that reduce the complexity of our calculations.

IV. EXPERIMENTS AND RESULTS

In this section, we experimentally evaluate our approach

using both real system measurements and a simulation.

A. Testbed results

In this section we describe an experiment we carry out

to illustrate the benefit of placement technique introduced in

this paper, using the real system implementation described

in section II, and integrating it with WebSphere Extended

Deployment [1] application server middleware. We deploy

three applications, A1, A2, and A3 in a system composed

of four homogeneous nodes. Applications are identical with

respect to their per-request CPU requirements and each request

involves the same amount of computation interleaved with

sleep time that simulates applications backend activity. We

configure only one flow in each application, thereby making an

application the smallest unit of management for the purpose of

this experiment. Neither allocation restrictions nor collocation

restrictions are defined, but placements are still subject to

resource constraints, such as available memory of the nodes.

Property Node 1 Node 2 Node 3

Effective total CPU capacity[MHz] 3800 3800 3800
Effective Memory capacity[MB] 2500 2500 2500

Property Application 1 and 2 Application 3

Memory demand[MB] 1200 1800
Response time goal [ms] 1200 350
Importance 50 50

TABLE I
TESTBED CHARACTERISTICS

We run the experiments on a cluster of IBM xSeries 335

servers, each containing 2 2.4GHz Intel Xeon processors with

hyperthreading enabled. All the servers are connected through

a switched gigagbit Ethernet network and run Linux 2.6.

The properties for the nodes and applications used in our

experiments are shown in table I. Each node is able to support

roughly 38 concurrent sessions of either application at a

time, before overload protection becomes necessary. The base

service time of each application is about 240 ms, which makes

the response time goal for A3 rather aggressive. Also, notice

that A1 and A2 use 40% of the memory capacity of a node
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each, while A3 uses 75%. Hence, A1 and A2 can both fit

on a node, but neither of them can be placed together with

A3. We configure such memory requirements by configuring a

corresponding maxHeapSize value on application server JVM.
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Fig. 2. Aggregated CPU demand

1) Baseline experiment: Before experimenting with place-

ment algorithm we baseline the system to observe the amount

of CPU demand imposed by each application. We set all

applications in manual mode, thus preventing any placement

changes. We also configure memory requirements of applica-

tions such that all applications can be placed together on a

node. Then we start an instance of each application on every

node.

We choose total workload intensity so as not to overload

the system. Then we vary the number of client sessions for

applications within this limit.
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Fig. 3. Response time

Figure 2 shows the amount of CPU demand imposed on the

system throughout the experiment. After a warm-up period, we

start 95, 10, and 35 client sessions for A1, A2, A3, respectively

(point A in Figure 2). This setting gives us a total number of

client sessions of 140, which is slightly below the total that

may be satisfied by our four-node system, 152. At point B,

we increase the number of client sessions for A3 by 10 and

correspondingly decrease the number of session for A1 by

10. At point D, we further increase the load for A3 by 20

clients and decrease load for A1 by the same amount. Finally,

at point E, we further increase load for A3 by 19 clients, and

correspondingly decrease the load for A1. Since throughout

the experiment the system is never overloaded, the CPU usage

observed across all nodes for each application gives us the

CPU demand of this application.

-1

-0.5

 0

 0.5

 1

U
til

ity

Application 1

A B C D E F

-1

-0.5

 0

 0.5

 1

U
til

ity

Application 2

A B C D E F

-1

-0.5

 0

 0.5

 1

0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000

U
til

ity

Time (s)

Application 3

A B C D E F

Fig. 4. Utility

2) Utility-based placement experiment: In the second ex-

periment, we enable dynamic placement of applications and

configure the applications as specified in Table I. We configure

initial placement such that A1 and A2 are both placed on

three nodes, and A3 occupies one node. We run the same

workload scenario as in the baseline experiment. Figures 3

and 4 show observed response time for applications and their

corresponding utility value. Figure 5 shows CPU capacity

allocated to each application. In phase A-B of the experiment,

workload distribution is such that with the existing placement,

all application CPU demands are satisfied and response time

goals are met. Utility values of applications are different

as a result of them having different goals. When workload

changes at point B, A3 cannot be satisfied by a single node

on which it is running. Its response time increases and it

starts to violate the goal. At the same time, A1 experiences

very good performance relative to its goal. At this point, it

is reasonable to consider making a placement change that

would remove A1 and A2 from one node and give this node

to A1. The decision is made at point C. There is a rather long

delay between the time workload has changed to the time

placement changes. This time is used by the controllers to

accumulate enough statistics to build performance models for

the new workload conditions. After the change is executed,

within 2-3 minutes, response time for A1 returns to normal,

while response time for A1 and A2 increases. Given the high

goal for the latter applications, their utility is very moderately

affected by this change. At point E, we further increase load

for A3 and decrease it for A1. We experience a similar
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change in performance as at point B. This time placement

decision is done earlier, at point F. However, due to imprecise

models, the decision is quickly reversed back, and remade

again in the consecutive cycles of placement algorithm. This

is clearly the evidence of instability, which in real deployments

of our controller is avoided by introducing a stabilization delay

after each placement change. In this experiment, we have not

exercised this stabilization interval. In the final placement, A3

is allocated three nodes, and A1 and A2 share a single node.

After the last placement change is completed, the response

time for all applications is within the configured goal.
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3) Comparison of utility-driven and demand-based tech-

niques: Let us examine the demand values obtained in the

baseline experiment (Figure 2) and consider what demand-

based algorithm would do when presented with these inputs.

In phase A-B, the demand of all applications can clearly be

satisfied using the initial placement, hence no changes would

happen. In phase B-C, the demand of A3 cannot be satisfied

by a single node. The demand-based algorithm should now

look at the offered demand of the applications, which is about

1.05 nodes (4000MHz) for A3 and 2.23 nodes (8500MHz)

for A1 and A2 combined. Clearly, when 4 nodes are avail-

able, satisfied demand is maximized (at 3.23 nodes) with the

current placement, even though in the current placement A3

is missing the goal. In phase D-E, the demand of A3 is

1.58 nodes (6000MHz) and the total for A1 and A2 is 1.82

nodes (7000MHz). At this time, the demand-based algorithm

transfers a node from A1 and A2 to A3. In the last phase

of the test, the load for A3 is 2.1 nodes (8000MHz) and for

A1 and A2 it is 1.31 nodes (5000MHz). Again, to maximize

satisfied demand, it is better to leave placement unchanged, as

this will result in satisfied demand of 3.31 nodes as opposed to

3.1 nodes if a change happened. Clearly, from the performance

perspective, this is not the right decision.

B. Simulation results

In this section, we evaluate the effectiveness of our place-

ment algorithm when subject to a number of different work-

load conditions and when managing a large number of nodes

and applications. For each application we generate a realis-

tic and randomized workload across 300 placement control

cycles, which results in a varying CPU demand. The memory

demand is uniform across applications for each simulation run.
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Fig. 6. Maximizing minimum utility across applications

We focus our study on three different evaluation criteria for

the algorithm: evaluation of the algorithm’s ability to achieve

its objectives (maximization of the minimum utility across ap-

plications and minimization of placement changes), evaluation

of the sensitivity of the algorithm to the different parameters

present in the placement problem, and evaluation of the quality

of the placement decisions made by the algorithm. At each

step we compare our algorithm with a state-of-the-art dynamic

application placement algorithm, described in [8], that differs

with respect to our approach in that it tries to maximize the

satisfied demand in the system.

To provide utility functions for the simulation, we have im-

plemented a utility function generator that produces a realistic

curve (directly comparable with those generated by the Flow

Controller in the real system) whose shape is controlled by

maximum utility value and CPU allocation required to reach

this maximum point. In our simulations, a new maximum

CPU allocation is generated for each application at each

control cycle and the corresponding utility function updated.

These utility functions are directly fed into the utility-based

algorithm.

1) Evaluation criterion: minimum utility: First, we evaluate

the capability of the algorithm to maximize the minimum

utility across applications. We simulate a slighlty overloaded

system, composed of 100 nodes and 20 applications. A system

is overloaded if the total amount of demand needed to maxi-

mize the utility of all applications is greater than the total CPU

capacity of the system. Each application, on average, requires

an allocation equivalent to 5.5 nodes to be fully satisfied.

Given this scenario, we run three simulations, each producing

the same per-application CPU demand, but using different

application memory demands each time. In the first simulation,

we use applications that require little memory, resulting in a

configuration where up to 6 application instances can be placed
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on the same node. For the second simulation, we use medium

applications, resulting in a configuration where 2 instances

at maximum can be placed on the same node. Finally, in

our third simulation we simulate applications large enough

to ensure that only one instance can be placed on each node.

Increasing the memory demand of the application instances

also increases the hardness of the problem. The summary of

the results obtained in this experiment is shown in Figure 6,

where our algorithm is referred to as ‘Utility-based’ and the

algorithm described in [8] is referred to as ‘Demand-based’.

The utility values shown in the figure correspond to the lowest

utility observed across applications at each control cycle.

This experiment shows that our utility-driven algorithm

consistently achieves an overall minimum utility higher than

the value obtained by the demand-based algorithm. In partic-

ular, the harder the problem input becomes, the bigger the

difference between the two algorithms is. The results obtained

for this experiment also indicate that our algorithm has low

sensitivity to the problem hardness, shown by the fact that the

minimum utility achieved across applications is very similar

given three different memory fragmentation scenarios.
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2) Evaluation criterion: number of placement changes:

In our second experiment we evaluate the capability of our

algorithm to minimize the number of placement changes

over time. A placement change incurs a significant cost in

terms of resources and time and it is thus desirable that

placement algorithm keep the number of placement changes

to a minimum. Such changes should occur only when the

benefit that they introduce in terms of utility improvement

and fairness is significant. For this experiment, we compare

our utility-driven algorithm with the demand-based placement

algorithm described in [8], when subjected to a particularly

hard scenario. We simulate a system composed of 100 nodes

and 200 applications. Each application instance requires half

of the memory capacity of a node to be placed, so we can

place a only 200 instances. With respect to the CPU demands,

we consider three different scenarios: first, when no overload

is present in the system; second, when overload is only present

in some stages of the test; and third, when the system is always

overloaded.

Figure 8 shows that the minimum utility achieved by the

utility-driven algorithm is slightly worse than the obtained

by the demand-driven algorithm when the system is not

overloaded or only partially overloaded, but clearly better

when the system is completely overloaded. This is because

our algorithm is driven by utilities, while the demand-based

algorithm tries to maximize the satisfied demand for all appli-

cations. This tight scenario forces the demand-based algorithm

to make many placement changes because the severe memory

constraints make the problem challenging. Our algorithm,

instead, decides that because the utility improvement from

making any changes is so low, no changes should be made

after the initial placement. Notice that, at some points, the

demand-based algorithm makes up to 400 placement changes,

which means that it is effectively stopping all instances and

starting them in different places, chasing a better one-to-one

combination of applications sharing nodes that helps it to

improve the overall satisfied demand. In addition, the average

utility charts demonstrate that although the minimum utility

achieved by our algorithm is lower than the result obtained for

the demand-based algorithm, the average utility value achieved

across applications is very close for the two algorithms. These

results confirm that our utility-driven algorithm is achieving

its second objective of minimizing placement changes even in

hard placement problems.
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3) Evaluation criterion: optimality: Ideally, we would like

to compare our technique to an optimal, even if very complex,

algorithm. Unfortunately, implementing such an algorithm

is extremely difficult, and the execution is extremely slow,

preventing us from running any useful experiments. Therefore,

we implemented a heuristic algorithm which ignores all but

CPU and memory capacity constraints, and does not aim to

minimize the number of placement changes. Consequently, we

can design a heuristic that achieves a better result in terms of

maximizing the minumum utility.
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We compared this heuristic with our algorithm in 13 differ-

ent representative scenarios. The results obtained after these

tests is that the minimum utility achieved by our algorithm

is, in average, in the range of the 95% to the 110% of the

minimum utility achieved by the heuristic discussed above.

V. RELATED WORK

The problem of dynamically allocating server resources

to applications has been extensively studied. The algorithm

proposed by Kimbrel et al. [8], [4] is the closest to our work.

With our experiments we demonstrate that a utility-driven

system can overcome a demand-based approach in terms of

application satisfaction fairness.

A popular approach to dynamic server provisioning is to

allocate full machines to applications as needed [10], which

does not allow applications to share machines. In contrast, our

placement controller allows this sharing and is optimized for

it. The algorithm proposed in [7] allows applications to share

machines, but it does not change the number of instances of an

application, does not minimize placement changes, and only

considers one bottleneck resource. In contrast to our work,

none of them is directed by high-level objectives.

Placement problems have also been studied in the optimiza-

tion literature, including bin packing, multiple knapsack, and

multi-dimensional knapsack problems [11]. The special case of

our problem with uniform memory requirements was studied

in [12], and some approximation algorithms were proposed.

The optimization problem that we consider presents a non-

linear optimization objective while previous approaches [8],

[4] to the same problem use linear optimization objectives.

Meta-scheduling algorithms for grid and parallel computing

also deal with the placement problem [13], but in our case we

are not concerned about communication overheads between

application servers because this is not a key point in the

management of dynamic web applications.

Using utility functions to represent high-level application

objectives is a practical and effective way to manage such ob-

jectives. It has been described as useful way of designing and

implementing self-managed autonomic systems [14]. This way

users and system administrators can be isolated from the IT

low-level metrics and allowing them to express satisfaction of

users and service level based on their high-level criteria [15],

[16]. The utility functions used in our system are based on the

work described in [9].

VI. CONCLUSIONS AND FUTURE WORK

In this paper we present a system that automatically al-

located resource to clustered web applications. It is based

on a utility-driven application placement algorithm to achieve

equalized satisfaction across applications. Additionally it min-

imizes the number of placement changes necessary to achieve

its goals. The system has been implemented and integrated

with a commercial application server middleware, what pro-

vides the support for executing placement decisions. Our

system is driven by high-level application goals and takes into

account the application satisfaction with how well the goals are

met. We are not aware of any comparable implementation. We

have demonstrated, both using a real-system experiment and

a simulation, that this approach improves satisfaction fairness

across applications compared to existing state-of-the-art solu-

tions. We have also demonstrated that the system consistently

achieves its goals independently of the workload conditions

and the system configuration. As described in [17] we have

begun to implement a system that applies our technique to

manage virtual machines according to the SLA requirements

of workloads hosted by them.
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