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Abstract
Experimental conjoint choice analysis is among the most fre-
quently used methods for measuring and analyzing con-
sumer preferences. The data from such experiments have
been typically analyzed with the Multinomial Logit (MNL)
model. However, there are several problems associated with
the standard MNL model because it is based on the assump-
tion that the error terms of the underlying random utilities
are independent across alternatives, choice sets, and subjects.
The Multinomial Probit model (MNP) is well known to al-
leviate this assumption of independence of the error terms.
Accounting for covariances in utilities in modeling choice
experiments with the MNP is important because variation of
the coefficients in the choice model may occur due to context
effects. Previous research has shown that subjects’ utilities
for alternatives depend on the choice context, that is, the par-
ticular set of alternatives evaluated. Simonson and Tversky’s
tradeoff contrast principle describes the effect of the choice
context on attribute importance and patterns of choice. They
distinguish local contrast effects, which are caused by the al-
ternatives in the offered set only, and background contrast ef-
fects,which are due to the influence of alternatives previously
considered in choice experiments. These effects are hypoth-
esized to cause correlations in the utilities of alternatives
within and across choice sets, respectively.

The purpose of this study is to develop an MNP model for
conjoint choice experiments. This model is important for a
more detailed study of choice patterns in those experiments.
In developing the MNP model for conjoint choice experi-
ments, several hurdles need to be taken related to the iden-
tification of the model and to the prediction of holdout pro-
files. To overcome those problems, we propose a random
coefficients (RC) model that assumes a multivariate normal
distribution of the regression coefficients with a rank one
factor structure on the covariance matrix of these regression
coefficients. The parameters in this covariance matrix can be
used to identify which attributes and levels of attributes are

potentional sources of dependencies between the alterna-
tives and choice sets in a conjoint choice experiment. We
present several versions of this model. Moreover, for each of
these models we allow utilities to be either correlated or in-
dependent across choice sets. The Independent Probit (IP)
model is used as a benchmark. Given the dimensionality of
the integrations involved in computing the choice probabil-
ities, the models are estimated with simulated likelihood,
where simulations are used to approximate the integrals in-
volved in the choice probabilities.

We apply and compare the models in two conjoint choice
experiments. In both applications, the random coefficients
MNP model that allows choices in different choice sets to be
correlated (RC) displays superior fit and predictive validity
compared with all other models. We hypothesize that the
difference in fit occurs because the RC model accommodates
correlations among choice sets that are caused by back-
ground contrast effects, whereas the model that treats choice
sets as independent (iRC) accounts for local contrast effects
only. The iRC model shows superior model fit compared
with the IP model, but its predictions are worse than those
of the IP model. We find differences in the importance of
local and background contrast effects for choice sets contain-
ing different numbers of alternatives: The background con-
trast effect may be stronger for smaller choice sets, whereas
the local contrast effect may be stronger for bigger choice
sets.

We illustrate the differences in simulated market shares
that are obtained from the RC, iRC, and IP models in three
hypothetical situations: product modification, product line
extension, and the introduction of a me-too brand. In all of
those situations, substantially different market shares are
predicted by the three models, which illustrates the extent to
which erroneous predictions may be obtained from the mis-
specified iRC and IP models.
(Conjoint Choice Experiments;Multinomial Probit;Random Taste
Variation; Random Utility)
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1. Introduction
Experimental conjoint choice analysis is among the
most frequently used methods for measuring and an-
alyzing consumer preferences. In particular, it has
been applied with great success in the fields of new
product design (Louviere and Woodworth 1983),
product optimization (Green and Krieger 1993), and
the evaluation of competitive sets (Mahajan, Green,
and Goldberg 1982; Louviere and Woodworth 1983).
Conjoint choice experimentation involves the design of
product profiles on the basis of product attributes spec-
ified at certain levels and requires respondents to re-
peatedly choose one alternative from different sets of
profiles offered to them. The 0/1 choice data arising
from such conjoint choice experiments have been typ-
ically analyzed with the Multinomial Logit (MNL)
model (e.g., Louviere and Woodworth 1983; Elrod,
Louviere, and Davey 1992). In their Journal ofMarketing
Research editorial on conjoint analysis, Carroll and
Green (1995) point to some of the advantages of ex-
perimental choice analysis as compared to conven-
tional conjoint analysis. There are no differences in re-
sponse scales between individuals, choice tasks are
more realistic than ranking or rating tasks, respon-
dents can evaluate a larger number of profiles, choice
probabilities can be directly estimated, and ad hoc and
potentially incorrect assumptions to design choice sim-
ulators are avoided (cf. Louviere 1988; Cohen 1997).

There are several problems associated with the stan-
dard MNL model used to analyze the choice experi-
ments, however. First, it does not deal with consumer
heterogeneity (cf. Allenby, Arora, and Ginter 1995;
Carroll andGreen 1995; Chintagunta andHonoré 1996;
Cohen 1997; Keane 1997). In addition, problems arise
because it is derived from random utility maximiza-
tion, based on the assumption that the error terms are
independent across alternatives, choice sets, and sub-
jects (e.g., McFadden 1976; Hausman and Wise 1978;
Currim 1982; Kamakura and Srivastava 1984). This
leads to the property of Independence of Irrelevant Al-
ternatives (IIA), where little is known about its validity
in conjoint choice experiments (Carroll and Green
1995).

It is well known that the Multinomial Probit model
(MNP) relaxes the assumption of independence of the
error terms in random utility models (e.g., Daganzo

1979; Kamakura 1989; Chintagunta 1992) and thereby
alleviates IIA. In the conjoint choice context, the MNP
model offers the major advantage of allowing corre-
lations among the random utilities of alternatives
within choice sets and among the repeated choices that
consumers make from the multiple-choice sets. We
will show that the MNP model accounts for hetero-
geneity in the coefficients occurring due to context ef-
fects in conjoint choice experiments.

Heterogeneity of the coefficients of the choice model
across the population of consumers may cause utilities
to be correlated (cf. Daganzo 1979). Estimating models
at the individual level, or including consumer charac-
teristics in the model, cannot be recommended as gen-
eral solutions to that problem (Vriens, Wedel, and
Wilms 1996). The finite mixture approach to modeling
heterogeneity in choice experiments (DeSarbo,
Ramaswamy, and Cohen 1995) has been criticized by
some authors (Allenby and Lenk 1994; Allenby and
Ginter 1995), who argue that tastes follow a continuous
distribution over the population rather than a discrete
one, or that the assumption of within-segment homo-
geneity in finite mixture models may result in a loss of
predictive performance because predictions are re-
stricted to be a convex combination of segment-level
parameters (Lenk, DeSarbo, Green, and Young 1996).
The issue of the appropriateness of discrete or contin-
uous parametric representations is, however, largely
empirical. In this paper we opt for a continuous rep-
resentation. The MNP model allows heterogeneity or
random taste variation to be included by assuming a
continuous distribution of the attribute-level coeffi-
cients across the population (e.g., Hausman and Wise
1978; Papatla 1996). Chintagunta and Honoré (1996)
concluded from their study that allowing for such het-
erogeneity constitutes a major improvement in both
the fit and the substantive implications derived from
discrete choice models. However, with sufficient sup-
port points, a discrete approach should approximate a
continuous distribution quite well.

A problem that seems to have received limited at-
tention in the experimental choice modeling literature
is that of heterogeneity in the coefficients of the choice
model due to context effects. Empirical evidence has
accumulated indicating that subjects’ utilities for alter-
natives depend on the choice context (e.g., Huber,
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Payne, and Puto 1982; Simonson and Tversky 1992;
Nowlis and Simonson 1997), where “context” is de-
fined as the particular set of alternatives evaluated.
These studies have shown that the tradeoff of attrib-
utes, reflected in the importance subjects attach to
them, vary according to the choice context. Since the
design of experimental choice analysis involves only a
subset of all possible profiles (constructed by fractional
factorial designs) and choice sets that vary in compo-
sition (constructed by blocking designs), context effects
are likely to occur in those experiments. Simonson and
Tversky (1992) proposed the tradeoff contrast princi-
ple to describe the effect of the choice context on attri-
bute importance and patterns of choice. They distin-
guished local contrast effects and background contrast
effects. Local contrast effects are caused by the alter-
natives in the offered set only, while background con-
trast effects are due to the influence of alternatives pre-
viously considered. Local contrast effects may occur in
a conjoint choice experiment due to the composition of
a particular choice set in terms of the attribute levels
of the profiles, affecting attribute importance, inducing
correlations among the utilities of profiles in the choice
set, and leading to a violation of IIA (Simonson and
Tversky 1992). Background contrast effects may occur
in conjoint choice experiments if the attribute impor-
tance of profiles in a particular choice set is influenced
by tradeoffs among profiles in previous choice sets.
This leads to covariance among the random utilities of
alternatives in different choice sets and violates the as-
sumption of independence of choices among alterna-
tives in different sets in MNL models. More specific
context effects hypotheses have been formulated, such
as substitution, dominance, attraction, and compro-
mise effects (Tversky 1972, Huber, Payne, and Puto
1982; Huber and Puto 1983; Simonson 1989; Simonson
and Tversky 1992). A discussion of these effects is,
however, beyond the scope of the present paper.

In § 2 we develop theMNPmodel for conjoint choice
experiments. It accounts for covariances among the al-
ternatives and choice sets potentially caused by het-
erogeneity and context effects. Several hurdles need to
be taken in developing the MNP model. These hurdles
are related to the dimensionality of the integrations
involved in computing the choice probabilities, to the
identification of the model, and to the prediction of

holdout profiles. To overcome those problems, we pro-
pose a specific form of the MNP model that imposes a
factor structure on the covariance matrix and is esti-
mated with simulation. We present several restricted
versions of the MNP model that allow us to explore
the correlational structure of random utilities within
and across choice sets. In § 3 we present two applica-
tions to conjoint choice experiments on cars and coffee
makers. We compare several versions of themodel and
empirically demonstrate the advantages of accounting
for the covariance among utilities: substantially im-
proved model fit and predictive accuracy. We also il-
lustrate differences between the various MNP models
in performing market share simulations for three stra-
tegic scenarios that apply to the coffee-makers appli-
cation: product modification, product line extension,
and the introduction of me-too brands. In § 4 we pres-
ent discussion and conclusions.

2. Conjoint Choice MNP Models
In this sectionwe present the variousMNPmodels that
we will estimate later. In § 2.1 we specify the general
MNP model for conjoint choice experiments. In § 2.2
we develop the specification for the covariance matrix
and propose several alternative model formulations.

2.1. Multinomial Probit with Multiple-Choice Sets
In this section we focus for convenience on the partic-
ular choice set design used in the empirical applica-
tions that follow. Assume there are J respondents and
H different alternatives (profiles), which are divided
into K smaller sets with M alternatives each. One pro-
file, labeled (arbitrarily) 1, is the base alternative that
is common to all sets and that scales the utility levels
between choice sets. The other profiles are unique to
their particular choice set, so that H � K(M � 1) � 1.
It is possible to accommodate a more general choice
design, for instance with other profiles besides the base
alternative that appear in more than one choice set or
choice sets with different sizes, but we restrict our-
selves to the situation described above for simplicity.
The utilities of the alternatives for individual j are con-
tained in the latent unobservable vector uj, which
satisfies

u � Xb � e , (1)j j j
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where X is a (H � S) matrix containing the attributes
of the alternatives, bj is a (S � 1) vector of random
weights, and ej is the vector containing the random
component of the utilities, assumed to be distributed
as

e � N (0, R ), (2)j H e

independent between individuals;Re is a (H�H) posi-
tive definite covariance matrix. We allow for random
variation in the attribute level coefficients by specify-
ing bj in Equation (1) as (cf., e.g., Hausman and Wise
1978; Daganzo 1979; Ben-Akiva and Lerman 1985)

b � b � w , (3)j j

with wj � NS(0, Rw), independent of ej. Then

u � N (Xb, X), (4)j H

with

X � R � XR X�. (5)e w

We consider two ways to deal with the conjoint data
structure. First, we take an individual’s utilities to be
independent between the choice sets. We then have JK
independent observations, and the log-likelihood is a
straightforward generalization of the standard likeli-
hood of choice models, where a summation over
choice sets is introduced. Letting pkm denote the frac-
tion of individuals choosing alternative m in set k, the
log-likelihood is

K M

L � J p ln(p ), (6)1 � � km km
k�1 m�1

where pkm is the probability that alternativem is chosen
in set k. Note that in conjoint choice models consumer
characteristics or other individual specific variables are
usually not included, hence pkm does not depend on j
and each individual has the same probability of choos-
ing any specific alternative. For the MNP model, the
assumption of utility maximization results in an ex-
pression for pkm that involves an (M � 1)-dimensional
integral:

p � P(u � u � 0 ∀ n � m � D )km kn km k

0

� P(ũ � 0) � d (t)dt, (7)km km�
��

where Dk is the set of profiles in choice set k and dkm(•)
is the density of ũkm. This specification accounts for
local contrast effects because it allows utilities within
choice sets to be correlated.

Second, one may instead assume that utilities of the
same individual are not independent over choice sets,
but rather that utilities of alternatives in different
choice sets are correlated.1 In this case, the form of the
likelihood is more complicated. The consequences are
most easily illustrated by a simple example. Let K � 2
and M � 3 (H � 5), hence the two choice sets have
indexes {1, 2, 3} and {1, 4, 5}, respectively. For each
individual we observe two choices, one from each set.
Consider an individual j choosing “2” from set 1 and
“4” from set 2. The resulting joint probability for this
example is equal to

p � P(u � u , u � u , u � u , u � u ). (8)24 j2 j1 j2 j3 j4 j1 j4 j 5

This probability can be expressed involving a four-
dimensional integral. In the general case, a K vector of
choices is observed for each individual, and we have
to consider MK arrays containing the multiple choices
from different choice sets. Each array corresponds to a
joint probability, involving an (H � 1)-dimensional in-
tegral that describes the probability of observing the
array of choices from all choice sets (cf. Hausman and
Wise 1978; Papatla 1996). We omit a formal presenta-
tion of this probability because the notation is ex-
tremely burdensome without providing additional in-
sight. The log-likelihood for this approach is equal to

KM

L � J p ln (p ), (9)2 � l l
l�1

where l indexes the K-dimensional choice arrays, pl de-
notes fractions of the choice arrays, and pl denotes the
choice probabilities expressed as functions of the
model parameters. In this model we account in addi-
tion for the background contrast effect because the
choice probabilities, as in (8), depend on all profiles in
the design or, alternatively, with heterogeneity of the
parameters across choice sets. This is not the case with
models that treat the choice sets as independent, such
as the MNL model and the MNP model of (6) and (7).

1We are grateful to an anonymous reviewer of an earlier version of
our paper for pointing this out to us.
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Estimates for the parameters are obtained by maxi-
mization of the likelihood in (6) or (9) over b and the
parameters in the covariance matrix. However, when
the dimension of the integral is greater than three, the
probabilities pkm in (6) or pl in (9) cannot be evaluated
numerically (e.g., McFadden 1976; Maddala 1983;
Kamakura 1989; Keane 1992). The (H � 1)-dimen-
sional integrals (one for each respondent) involved in
the likelihood L2 (9) and the (M � 1)-dimensional in-
tegrals (K for each respondent) in L1 (6) are approxi-
mated using simulation. We use the SRC simulator to
apply the Simulated Maximum Likelihood (SML)
method. Details are given in the appendix. Note that
in conjoint choice experiments the number of respon-
dents, J, is often much lower than the number of pos-
sible different choice arrays, MK, so in practical appli-
cations only a maximum of J probabilities have to be
simulated in the maximization of (9).

2.2. Random Intercept and Random Coefficient
Models

In the general MNP model provided by Equations (1)
and (2), identification requires certain restrictions on
the parameters of the covariance matrix (e.g., Bunch
1991; Bunch and Kitamura 1991; Keane 1992). When
choice sets contain M alternatives, M � 1 covariance
parameters should be fixed, or alternatively, one var-
iance should be fixed in the covariance matrix of the
difference vector ũkm. However, in a conjoint choice ex-
periment with several choice sets that may partially
contain the same alternatives, the covariances of the
differences ũkm are related between choice sets, which
makes it difficult, if not impossible, to fix variance ele-
ments in the covariance matrix of these differences.
Therefore, covariance parameters should be fixed in
the original matrix X in conjoint choice experiments.
When the X matrix is identical for all individuals so
that there are no predictors that vary across subjects
and all respondents receive the same choice sets, which
often is the case in conjoint choice experiments, addi-
tional problems of model identification result
(Heckman and Sedlacek 1985). However, a necessary2

2Because this is a necessary and not a sufficient condition, we check
for local identification of the models in the applications by calculat-
ing the eigenvalues of the Hessian matrix in the optimum. When all
eigenvalues are positive, this is a strong indication that the model is

condition for identification of such a conjoint MNP
model is that the total number of covariance parame-
ters in X needs to be smaller than the total number of
alternatives H.

A second problem of the general MNP formulation
is that predictions for new profiles, not included in the
conjoint design, cannot be made with the covariance
matrix in (5) because in predicting choice probabilities
for alternatives not included in the design of the ex-
periment, estimates of the covariances of these new
profiles are required and those are not available (cf.,
e.g., Pudney 1989, p. 115; Elrod and Keane 1995). To
arrive at a model that is both identified and that allows
for predictions of new profiles, we have to impose re-
strictions on X. The specification that enables the pre-
diction of new alternatives that we propose assumes
Re � IH, and we parameterize Rw as a matrix of rank
one for reasons of parsimony and identification: Rw �

r r�, with r an S vector of parameters, where S is the
number of columns in the X matrix. The number of
parameters in X is then equal to the number of b pa-
rameters. A more general specification for Rw results
in an increase in the number of covariance parameters
so that identification often becomes a problem. Espe-
cially when the number of columns (S) in X or the
number of profiles (H) is large, our specification for X
is very parsimonious compared to a full random co-
efficients model or general Probit model.

In addition, we consider three possible structures for
r. The simplest is r � 0, so

IPX � I , (10)H

and the model reduces to the well-known Independent
Probit (IP) model, which is very similar to the MNL
model and has similar properties, including IIA
(Hausman and Wise 1978; Amemiya 1981). The IP
model is nested in the second model we consider: a
random intercepts model. Here only the intercepts (the
coefficients of the dummies indicating the brand
names) are taken to be random over individuals, but

identified (based on Bekker et al. 1994). Note that more parameters
can be estimated when the structure of the X-matrix is more general,
empirical results indicate that if G groups of respondents each re-
ceive different choice sets, this leads to G � 1 additional degrees of
freedom in estimation.
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Table 1 Overview of Models

RC RI iRC iRI IP

Likelihood L2 (9) L2 (9) L1 (6) L1 (6) L1 (6)
X IH � Xrr�X� IH � X r r�X�1 1 1 1 IM � Xrr�X� IM � X r r�X�1 1 1 1 IM

X: dummy indicators for all attributes, X1: dummy indicators for brands
only.

the other coefficients remain fixed. Let the brand dum-
mies be collected in the submatrix X1 of X, so X � (X1,
X2) and let r be partitioned accordingly. Then

RIX � I � X r r�X�. (11)H 1 1 1 1

This model accounts for context effects for the brand
names only because non-zero off-diagonal values in X

are only related, through the rs, to the brand name
attributes. A random intercepts MNL model has been
applied previously by, for example, Gönül and
Srinivasan (1993). The specification (11), denoted by
RI, is nested in the third, most general model that we
consider. Here we allow for random variation in all
coefficients:

RCX � I � Xrr�X�. (12)H

This random coefficients model is denoted by RC. It
accounts for context effects caused by all attributes in
the conjoint design. Rossi, McCulloch, and Allenby
(1996) previously developed a random coefficients
Bayesian MNL model. Our model differs from the
models by Gönül and Srinivasan (1993) and Rossi,
McCulloch, and Allenby (1996) in the factor structure
on Rw and in being applied to conjoint choice experi-
ments that have the typical structure of repeated choice
sets of varying composition.

We now have a number of models to be considered.
We can estimate the IP, RI, and RC models in two
ways, each without and with assuming independence
of the random utilities between choice sets, that is, us-
ing the likelihood in (6) or (9), respectively. We use IP,
RI, and RC to denote the models that do not assume
the choice sets independent, and attach a prefix “i” to
denote the corresponding models when independence
is assumed. This would result in six models, but in fact
there are only five different models since the IP and
iIP models are identical.3 Table 1 gives an overview of
those models.

3This follows because for the IPmodel wemay freely set the variance
of one element of ej equal to zero, for example, the first element (the
base alternative in our situation). The utility attached to that element
then becomes nonrandom, and the composite probabilities pertain-
ing to choice arrays simply factor out. For example, uj1 in (8) can
freely be taken to be nonrandom. Hence, under IP the joint proba-
bility is the product of the probabilities for each choice set: p24 �

P(uj2 � uj1, uj2 � uj3) •P(uj4 � uj1, uj4 � uj5). Note that this property
only holds when the choice sets have one alternative (the base alter-
native) in common.

To investigate the restrictiveness of the one-factor
structure we compare our models with two special
cases of the general random coefficients probit model
(5). First, we consider an unrestricted probit covariance
structure X � R�, and second we consider the full ran-
dom coefficients structure X � IM � XRWX�, both in
the “independent” context of likelihood (6). Only the
latter structure can be used to evaluate predictions. For
both these models we impose the general necessary
identification restrictions of MNP models.

The covariance parameters r in (11) and (12) repre-
sent the variance in utility associatedwith each specific
attribute level. According to the RC model, for exam-
ple, a high estimate for a r parameter contributes to a
high covariance of alternatives sharing that feature, be-
cause element xm,n of X is equal to for m � n.X rr�X�m n

This is consistent with specific context effects
(Simonson and Tversky 1992). The diagonal elements
xm,m of X are equal to 1 � . To interpret theX rr�X�m m

estimates of r one may inspect the estimated matrix
� and/or the matrix � I � Theˆ ˆR r̂r̂� X Xr̂r̂�X�.w

significant values in the r vector reveal possible
sources of dependencies between the alternatives in
the conjoint experiment and thereby enable inference
on possible heterogeneity of attribute level coefficients
due to context effects. The iRC and iRI models account
for local tradeoff contrast effects, that is, similarity ef-
fects within choice sets, whereas the RC and RI models
in addition account for background tradeoff contrast
effects caused by attribute tradeoffs in other choice
sets.

3. Applications
3.1. Introduction
The performance of the various models presented in
the previous section is evaluated using the results from
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two conjoint choice experiments on cars and coffee
makers. Sections 3.2 and 3.3 present the estimation re-
sults for the cars and coffee-maker data, respectively.
In § 3.4 we compare, for the coffee-maker data, the
performance of the models on holdout data and illus-
trate the simulation of market shares of new alterna-
tives. Both studies used mall-intercept samples, attrib-
utes and levels were determined on the basis of
in-depth interviews with manufacturers and consum-
ers, and effects-type coding was used for the attribute
dummies. For the simulations of the probabilities in
the likelihood we use the SRC procedure of
Hajivassiliou, McFadden, and Ruud (1993) with 100
draws. The optimization routine we use to maximize
the likelihoods is the Broyden, Fletcher, Goldfarb, and
Shanno algorithm implemented in the Gauss-package
(Aptech 1995). All models were estimated on a 133-
MHz Pentium PC.

All models were started with all parameters equal
to zero (this means that the probabilities in each choice
set are equal to 1/M at the start of the estimation). The
likelihood of the IP model has a unique maximum
(Maddala 1983), and convergence is quick in general.
Other MNP covariance structures can cause conver-
gence to local optima (e.g., Daganzo 1979; McCulloch
and Rossi 1994). Therefore, we also started the RC
model from the IP estimates for b (with r � 0) as well
as from 10 sets of random starting values for all pa-
rameters. These yielded virtually the same results and
will not be reported. This supports the findings of
McCulloch and Rossi (1994), who also found no evi-
dence of a multimodal likelihood for the MNP model.

To compare the models we use the log-likelihood
value, AIC (Akaike 1973), BIC (Schwarz 1978), and the
Pseudo R2 value (e.g., McFadden 1976) with a null
model in which all probabilities in a choice set are
equal to 1/M. Furthermore,we use the likelihood ratio
test to compare the nested models. Because the RC
model and the iRC model are non-nested and the RI
and iRI models are non-nested, we cannot test between
those models with the LR test. But, because they do
have the same number of parameters, they can easily
be compared on the other statistics.

3.2. Estimation Result for the Car Data
In the car experiment, respondents had to choose from
nine choice sets, each with four alternatives. The at-
tributes and levels of the cars are listed in Table 2. The

last alternative in each choice set was the “no-choice”
option, which was used as the base alternative. There
were 398 respondents, divided into six groups that re-
ceived different choice sets.4 The variables Price, Fuel
Consumption, and Engine Capacity were specified to
be linear with codes �1, 0, 1 for the levels,
respectively.

Table 3 gives the estimation results for all five mod-
els.5 All eigenvalues of the final Hessian are positive
for all models, which is a strong indication that all
models are identified (Bekker et al. 1994).6 The log-
likelihoods show that, when we relax only the inde-
pendence between alternatives (the IIA property), a
significantly better fit results. This holds for the iRI
model (LR(9) � 27.7, p � 0.01) and the iRC model
(LR(15) � 40.0, p � 0.01) relative to the IPmodel. How-
ever, the iRC model does not fit significantly better
than the iRI model (LR(6) � 12.2, p � 0.05). Note that
although the iRI model has a significantly better fit
than the IP model, none of the covariance parameters
is significant. When we also relax the independence
between choice sets we see a further substantial im-
provement in the log-likelihoods for the RC and RI
models (which occurs without the cost of increasing
the number of parameters). In both cases the improve-
ment is significant (LR(9) � 601.2, p � 0.01, for the RI
model and LR(15) � 626.4, p � 0.01, for the RCmodel).
Furthermore, the RC model is significantly better than

4In this design, with 27 profiles and six groups, more than 27 param-
eters can be estimated. We estimated this data set for one group, two
groups up to all six groups of respondents. The number of positive
eigenvalues for each of those analyses provide empirical evidence
that each additional group of respondents results in one extra pa-
rameter that can be estimated up to the maximum as specified by
the standard identification rule in MNP models (see e.g., Keane
1992). This would imply that for the complete data set with six
groups, only two degrees of freedom are left. Note, however, that
although when parameters are formally identified, nonpositive ei-
genvalues may be obtained due to data limitations.
5For this data set we do not compare the results of the models in
Table 1 with the general Probit and Full Random Coefficients struc-
ture for the covariance matrix, because the number of parameters in
these models are excessively large: 143 covariance parameters for
the general Probit model and 119 for the Full Random Coefficients
structure. Furthermore, we do not have holdout sets for this data
set, so we cannot compare models on predictive performance.
6The estimation times range from less than 20 minutes for the IP
model up to 44 hours for the RC model.
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Table 2 Attributes and Levels of Cars

Attribute
Level Brand

Price
(Dfl)

Fuel Consumption
(L/100km)

Engine
Capacity

Power
Steering Doors Airbag

1 Renault 19 27.000,� 5.3 1.4 l. Yes 2/3 Yes
2 Alfa Romeo 33 30.000,� 6.3 1.6 l. No 4/5 No
3 Opel Vectra 33.000,� 7.7 1.8 l.
4 VW Golf
5 Volvo 440
6 Daihatsu Applause
7 Ford Escort
8 Nissan Sunny
9 Kia-Sephia SLX

the RI model (LR(6) � 25.2, p � 0.01). The AIC and
BIC statistics support the RC and RI models as the best
models. The BIC statistic, which imposes amore severe
penalty, favors the IP model over the iRC and iRI mod-
els and the RI model over the RC model. Note that the
number of observations that appears in the BIC statis-
tic is equal to the number of respondents for the RC
and RI model, while it is equal to K (the number of
choice sets) times the number of respondents for the
iRC, iRI, and IP models.

From the value of the log-likelihood it is obvious that
the RC model fits much better than the iRC model. The
increased fit comes at no cost of additional parameters
to be estimated. The same holds for the RI and iRI
models. This is our most important finding: Themodel
fit improves substantially when choice sets are not
treated as independent. Table 3 also shows that the RI
model provides a much better fit than the iRC model,
with a much smaller number of parameters. Appar-
ently, it is crucial to account for heterogeneity in the
attribute levels across choice sets, which may indicate
the presence of strong background tradeoff contrast
effect in this choice experiment.

The signs of the regression parameters are as ex-
pected for all attributes. The differences between the
models are not large in most cases. Subjects prefer
lower price, higher mileage, more engine capacity,
power steering, fewer doors (smaller cars), and an air-
bag. The brand intercepts indicate some differences in
preferences among brands. Furthermore, Table 3
shows that the standard errors of the parameters are

almost always higher in the iRC and iRI model com-
pared to the RC and RI model, which indicates that
these former models are misspecified.

The estimates for the covariance parameters r lead
to variances in the RC model ranging from 1.00 (for
the base alternative) to 3.90, while the covariances are
all positive and range from 0.00 (for the base alterna-
tive) to 2.59. Similar observations can be made for the
covariance matrix of the RI and iRC models, where the
iRC model is the only model that has negative covar-
iances. It is of some interest to compare the estimates
of r for the RC and iRC models. In the RC model, the
r estimates for the brand dummies are much larger
than in the iRC model, which may indicate that the
background contrast effect predominantly involves
brands. That is, the extent to which a brand has a high
utility depends on the tradeoff between brands made
in other choice sets. Note that this is supported by com-
parison of the RI and iRI models.

3.3. Estimation Results for the Coffee-Maker Data
The five attributes for the coffee-makers—brand name,
capacity, price, presence of a special filter, and
thermos-flask—are listed in Table 4. Using a factorial
design, 16 profiles were constructed. Data were col-
lected from 185 respondents, divided into two groups
that received different choice sets based on the same
16 profiles. Respondents had to choose from eight sets
of three alternatives and from four sets of five alter-
natives. Each choice set included the same base alter-
native (given this design, there is only one degree of
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Table 3 Estimation Results Car Data

Parameter RC RI iRC iRI IP

b1 Renault 0.690* (.104) 0.687* (0.89) 0.166 (.116) 0.117 (.187) 0.205* (.056)
b2 Alfa 0.767* (.114) 0.761* (.099) 0.227 (.115) 0.245 (.132) 0.288* (0.57)
b3 Opel 1.217* (.114) 1.239* (.100) 0.847* (.103) 0.764* (.093) 0.723* (.057)
b4 VW 1.253* (.108) 1.244* (.094) 0.826* (.080) 0.795* (.070) 0.751* (.052)
b5 Volvo 0.794* (.112) 0.792* (.100) 0.335* (.082) 0.209 (.138) 0.316* (.057)
b6 Daihatsu �0.079 (.120) �0.072 (.102) �0.818* (.188) �1.112* (.506) �0.549* (.066)
b7 Ford 0.511* (.109) 0.507* (.096) �0.124 (.147) �0.026 (.127) 0.029 (.061)
b8 Nissan 0.112* (.126) 0.139 (.106) �0.344* (.098) �0.307 (.208) �0.248* (.061)
b9 Kia-Sephia �0.426* (.125) �0.420* (.110) �1.119* (.163) �0.882* (.123) �0.851* (.072)
b10 Price �0.066* (.023) �0.061* (.022) �0.059 (.038) �0.058* (.028) �0.059* (.021)
b11 Fuel consumption 0.103 (.023) 0.094 (.022) 0.093* (.034) 0.095* (.033) 0.092* (.021)
b12 Engine capacity 0.197* (.023) 0.195 (.022) 0.265* (.041) 0.208* (.030) 0.180* (.021)
b13 Power steering 0.046* (.020) 0.049* (.020) 0.057* (.027) 0.051* (.022) 0.052* (.019)
b14 Number of doors �0.211* (.020) �0.199* (.019) �0.184* (.036) �0.198* (.024) �0.173* (.018)
b15 Airbag 0.045* (.019) 0.050* (.019) 0.066 (.038) 0.068* (.022) 0.055* (.018)

r1 Renault 1.145* (.117) 1.157* (.103) �0.386 (.434) �0.893 (.509)
r2 Alfa 1.384* (.122) 1.404* (.113) 0.284 (.423) 0.379 (.515)
r3 Opel 1.345* (.117) 1.422* (.107) 1.132* (.562) �0.682 (.556)
r4 VW 1.288* (.110) 1.339 (.102) 0.331 (.371) �0.296 (.512)
r5 Volvo 1.357* (.121) 1.432* (.112) 0.069 (.422) 1.261 (.659)
r6 Daihatsu 1.173* (.144) 1.126* (.128) �0.779* (.319) 1.028 (.600)
r7 Ford 1.294* (.120) 1.330* (.111) �0.681* (.292) 0.299 (.225)
r8 Nissan 1.567* (.151) 1.508* (.132) 0.119 (.620) 0.396 (.741)
r9 Kia-Sephia 1.367* (.145) 1.289* (.135) 0.505 (.472) �0.054 (1.06)
r10 Price �0.015 (.036) 0.221* (.106)
r11 Fuel consumption �0.009 (.029) �0.097 (.108)
r12 Engine capacity �0.023 (.034) 0.070 (.090)
r13 Power steering �0.001 (.020) 0.183* (.069)
r14 Number of doors 0.135* (.027) �0.023 (.075)
r15 Airbag 0.043 (.029) 0.346* (.134)

Log-likelihood �4114.257 �4126.859 �4407.485 �4413.598 �4427.468
AIC 8288.513 8301.719 8874.970 8875.196 8884.936
BIC 8408.108 8397.393 9060.480 9023.604 8977.691
Pseudo R2 0.172 0.169 0.112 0.111 0.108

*p � 0.05, standard errors in parentheses.

Table 4 Attributes and Levels of Coffee Makers

Attribute
Level Brand Capacity

Price
(Dfl)

Special
Filter Thermos-flask

1 Philips 6 cups 39,� Yes Yes
2 Braun 10 cups 69,� No No
3 Moulinex 15 cups 99,�

freedom left in the iRC model). Furthermore, eight
holdout profiles were constructed; four holdout sets
with three alternatives and two holdout sets with five
alternatives, where the same base alternative was used
as in the estimation data. These holdout sets were of-
fered to all respondents. The choices from the sets with
three alternatives and the choices from the sets with
five alternatives are modeled separately.

In Table 5 the parameter estimates of all models, as
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Table 5 Estimation Results for Coffee-Maker Data

Choice sets (8) with three alternatives Choice sets (4) with five alternatives

Attribute (level) RC RI iRC iRI IP RC RI iRC iRI IP

b1 Brand (1) �0.029 (.101) �0.050 (.081) �0.106 (.203) �0.100 (.077) 0.015 (.055) 0.063 (.060) �0.053 (.066) �0.081 (.118) 0.116 (.097) 0.019 (.046)

b2 Brand (2) �0.240* (.078)�0.224* (.068)�0.179 (.222) �0.137 (.072) �0.265* (.047)�0.314* (.065)�0.189* (.051)�0.140 (.084) �0.037 (.098) �0.210* (.043)

b3 Capacity (1) �1.075* (.092)�0.912* (.052)�1.166* (.123)�1.088* (.100)�0.778* (.050)�0.943* (.105)�0.639* (.054)�1.303* (.261)�0.831* (.087)�0.597* (.051)

b4 Capacity (2) 0.565* (.060) 0.431* (.042) 0.587* (.090) 0.504* (.058) 0.372* (.039) 0.441* (.052) 0.258* (.040) 0.570* (.103) 0.322* (.051) 0.236* (.038)

b5 Price (1) 0.432* (.116) 0.212* (.071) 0.326 (.497) 0.275* (.081) 0.217* (.065) 0.282* (.075) 0.238* (.050) 0.983 (.585) 0.285* (.062) 0.213* (.048)

b6 Price (2) 0.244* (.082) 0.333* (.052) 0.378 (.269) 0.407* (.064) 0.296* (.048)�0.001 (.096) 0.081 (.041) 0.760 (.636) 0.178* (.053) 0.098* (.040)

b7 Filter (1) 0.355* (.038) 0.294* (.031) 0.354* (.098) 0.372* (.047) 0.261* (.029) 0.232* (.039) 0.211* (.032) 0.257* (.056) 0.342* (.051) 0.209* (.031)

b8 Thermos (1) 0.393* (.054) 0.253* (.035) 0.269 (.152) 0.197* (.041) 0.244* (.034) 0.359* (.048) 0.280* (.035) 0.400* (.080) 0.258* (.042) 0.273* (.033)

r1 Brand (1) 0.417* (.096) 0.787* (.068) 0.717 (.386) 1.096* (.206) 0.133 (.078) 0.564* (.075) 0.529* (.209) 0.849* (.260)

r2 Brand (2) �0.387* (.099)�0.574* (.077) 0.107 (.665) �0.518* (.197) �0.075 (.075) �0.285* (.081) 0.185 (.201) 0.484* (.186)

r3 Capacity (1) 0.850* (.094) 0.585* (.270) 0.803* (.106) 0.606* (.175)

r4 Capacity (2) �0.348* (.083) �0.001 (.224) �0.052 (.075) �0.239 (.229)

r5 Price (1) �0.562* (.139) �0.084 (.599) �0.541* (.108) 1.520 (.899)

r6 Price (2) �0.145 (.100) 0.482 (.473) 0.034 (.076) 1.173 (.709)

r7 Filter (1) 0.023 (.058) 0.298 (.372) 0.070 (.064) 0.338* (.133)

r8 Thermos (1)�0.206* (.071) 0.173 (.259) �0.238* (.064) �0.369* (.110)

Log-likelihood �1086.622 �1192.833 �1279.100 �1288.123 �1299.897 �934.589 �993.781 �997.026 �1005.647 �1014.191

AIC 2205.245 2405.666 2590.201 2596.245 2615.793 1901.178 2007.561 2026.053 2031.294 2044.382

BIC 2256.770 2437.870 2674.997 2649.244 2658.192 1952.704 2039.766 2099.758 2077.361 2081.235

Pseudo R2 0.332 0.266 0.213 0.208 0.201 0.215 0.166 0.163 0.156 0.148

*p � 0.05, standard errors in parentheses.

well as the statistics for model comparison, are listed
for the three-alternatives estimation data and for the
five-alternatives estimation data. All eigenvalues of the
Hessian are positive for all models, indicating that they
are identified (Bekker et al. 1994).7

Table 5 shows that the RC model has by far the high-
est value for the log-likelihood, both for the three- and
five-alternatives data. The LR statistic for testing the
RC model against the IP model is significant (LR(8) �

426.6, p � 0.01, for the three-alternatives data and
LR(8) � 159.2, p � 0.01, for the five-alternatives data).
The iRC model also has a significantly better value for
the log-likelihood than the IP model in both situations
(LR(8) � 41.6, p � 0.01, and LR(8) � 34.3, p � 0.01,
respectively). Similar results are found for the RI and
iRI models (LR(2) tests, p � 0.01). Both for the three-
and five-alternatives results the RC specification fits

7The estimation times range from less than a minute for the IP mod-
els up to 4–6 hours for the RC models.

significantly better than the RI specification and the
iRC specification fits significantly better than the iRI
specification (LR(6) tests, p � 0.01). From the value of
the log-likelihood it is obvious that the RC model,
which accounts for correlations between choice sets,
fits much better than the iRC model, which treats all
choice sets as independent. The number of parameters
for these two models is equal, so that the increased fit
comes at no cost of additional parameters estimated.
Interestingly, the RI model provides a much better fit
than the iRC model with a much smaller number of
parameters. This holds both for the three- and five-
alternatives data. Again it is important to account for
correlations across choice sets. Furthermore, allowing
for random variation in all b parameters leads to a sig-
nificantly better fit of the RC models compared with
the RI models that only have random coefficients for
the brand intercepts (cf. Rossi and Allenby 1993). The
AIC and BIC criteria support the RC model as the best
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model and the RI model as the second best. Again in
this application, our most important finding is that the
model fit improves substantially when the choice sets
are not treated as independent, which holds for both
the RC and RI specifications. This may again indicate
the presence of rather strong background tradeoff con-
trast effects.

For the sets with three and five alternatives we also
compare the results of the five models in Table 1 with
the full covariance Probit model and a Full Random
Coefficients structure to investigate the restrictiveness
of the one-factor structure imposed on the covariance
matrix. For the choice sets with three alternatives, the
full covariance probit model has a likelihood of
�1275.125 (R2 � 0.216) and the Full Random Coeffi-
cients model has a likelihood of �1271.189 (R2 �

0.218). For the sets with five alternatives, the full co-
variance probit model has a likelihood of �986.729 (R2

� 0.172) and the Full Random Coefficients model has
a likelihood of �989.035 (R2 � 0.170). Table 5 shows
that the likelihoods of these two models are higher
than those of the other models, except for the RC
model (and by the RI model for the sets with three
alternatives), which shows that the one-factor RC
structure provides a better fit with a much more par-
simonious representation.

In Table 5, the signs of the regression parameters are
as expected for all models; the lowest capacity and the
highest price have a negative partial utility and the
attributes Thermos-Flask and Special Filter have a
positive partial utility when present. The estimates of
the regression parameters for the five-alternatives data
are similar to the three-alternatives data for each
model in general. From Table 5 it can be observed that
due to misspecification, by assuming that choice sets
are independent, there is a loss of statistical efficiency
leading to larger standard errors both for the iRC and
iRI specifications compared to the RC and RI specifi-
cations, respectively.

The RC model has six significant covariance param-
eters for the three-alternatives data and three signifi-
cant covariance parameters for the five-alternatives
data. These covariance parameters are responsible for
the large increase in model fit of the RC model over
the IP model since differences in b estimates are mod-

est. This is in line with similar findings by Börsch-Su-
pan et al. (1990). Although, on the basis of the b esti-
mates, all models predict the highest expected utility
for the same profile, due to the differences in the esti-
mated covariance structure, the predicted choice prob-
abilities differ between models.

The variances of the profiles, calculated from the es-
timates of the RC model r parameters, range from 1.00
to 3.26 for the three-alternatives data and from 1.00 to
2.22 for the five-alternatives data. The covariances
range from �2.21 to 1.73 for the three-alternatives data
and from �1.22 to 1.15 for the five-alternatives data.
Interestingly, the covariance matrix of the RC model
for the three- and five-alternatives choice sets data re-
veal alternatives with near zero covariances with all
other alternatives. This indicates that these are (almost)
independent of the other alternatives. Although the su-
perior fit of the iRC and iRI models over the IP model
may be indicative of local contrast effects, due towhich
utilities within choice sets are correlated and the IIA
property does not hold, the superior fit of the RC and
RI models may indicate again that background con-
trast effect are prevalent.

A comparison of the estimates for r in the RC model
for the three-alternatives data with those for the five-
alternatives data reveals that most of the latter are
smaller in absolute sense. This may indicate that the
background contrast effect is larger for the three-
alternatives data. This can be explained from the ob-
servation that the range of attribute levels within
choice sets is necessary smaller when there are three
alternatives in the choice sets, while the number of
choice sets is larger, thus giving much more latitude
for background contrast effect to occur. An interesting
finding is that for the iRC model the reverse seems to
hold. The estimates for r tend to be larger for the five-
alternatives data than for the three-alternatives data.
The iRC model for the three-alternatives data even has
a covariancematrix close to the identitymatrix because
most of the r estimates are insignificant. This may oc-
cur because local contrast effects within each choice set
are much more prevalent for larger choice sets than for
smaller choice sets. Thus, the decision of the size of the
choice set in conjoint choice experiments seems to af-
fect the balance of local versus background contrast
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Table 6 Holdout Predictions for Coffee-Maker Data

Holdout sets (4) with three alternatives Holdout sets (2) with five alternatives

RC RI iRC iRI IP RC RI iRC iRI IP

Log-likelihood �679.075 �750.198 �784.677 �779.071 �759.368 �419.302 �447.012 �488.336 �464.750 �448.444
AIC 1390.151 1520.395 1601.354 1578.142 1534.736 870.604 914.023 1008.672 949.500 912.888
BIC 1441.676 1552.600 1675.060 1624.209 1571.589 922.130 946.228 1071.288 988.635 944.196
Pseudo R2 0.165 0.077 0.035 0.042 0.066 0.296 0.249 0.180 0.220 0.247

effects, where an increasing choice set causes a shift
from background to local contrast effects.

3.4. Holdout Predictions and Market-Share
Simulations for the Coffee-Maker Data

The estimates of the models on the three- and five-
alternatives coffee-maker data were used to predict the
holdout sets with three and five alternatives, respec-
tively. Table 6 gives the log-likelihood, pseudo R2, and
AIC and BIC values for the predicted choices in the
holdout choice sets. It shows all statistics indicate that
the RC model predicts the holdout sets much better
compared with the other models in both the three- and
five-alternatives holdout sets. The LR statistic for test-
ing this model against the IP model is significant in
both cases (LR(8) � 160.6, p � 0.01, and LR(8) � 58.5,
p � 0.01, respectively). The iRC and iRI models do not
predict the holdout sets better than the IP model, de-
spite the fact that the fit (Table 5) was significantly bet-
ter. The RImodel only predicts significantly better than
the IP model for the holdout sets with three alterna-
tives (LR(2) test, p � 0.01) and it predicts better than
the iRC model with a smaller number of parameters.
In both situations the RC model predicts significantly
better than the RI model (LR(6) test, p � 0.01).

To further investigate the restrictiveness of the one-
factor covariance structure we compare the results
with those of the Full RandomCoefficientsmodel (note
that the full covariance Probit model cannot be used
to generate predictions in a conjoint choice context).
The Full Random Coefficients model has for the hold-
out sets with three alternatives a predicted likelihood
of �750.884 (R2 � 0.076) and for the holdout sets with
five alternatives a predicted likelihood of �506.411 (R2

� 0.150). Table 6 shows for the holdout sets with three

alternatives that this model is again outperformed
with respect to the likelihood by the RC model. For the
holdout sets with five alternatives it is outperformed
by all models.

Table 6 shows that the prediction of holdout sets
with five alternatives is much better than the predic-
tion of holdout sets with three alternatives. The pseudo
R2 value is 0.165 for the RCmodel predictions for hold-
out sets with three alternatives, and it is equal to 0.296
for the RC model predictions for holdout sets with five
alternatives. The same pattern holds for the othermod-
els. This may be caused by the relative importance of
local and background contrast effects. The five-
alternatives RC model estimates indicated more local
but less background contrast effects. The background
contrast effects will have a different influence in the
holdout task, since the range of choice sets offered in
the holdout task differ substantially from that in the
main task. However, this effect will be stronger for the
holdout task with three alternatives than for the hold-
out task with five alternatives. This, therefore, reduces
the predictive validity of the estimates from the cali-
bration sample for the three-alternatives task relatively
more. In addition, the within-choice set variation in
attributes is larger for the five- than for the three-
alternatives tasks, due to which the differences in
within-choice set variation between the calibration and
holdout task are less for the five-choice set task. This
enhances similarity of local tradeoff contrast effects in
the holdout tasks, resulting in a better predictive va-
lidity of the five-choice set task.

This leads us to conclude that larger choice sets may
be preferred in conjoint choice experiments to alleviate
background contrast effects and obtain higher predic-
tive validity. The above analyses show that not only
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Table 7 Attributes of Prediction Profiles

Attribute
Profile Brand Capacity

Price
(Dfl)

Special
Filter Thermos-Flask

1 Philips 10 cups 39,� No No
2 Braun 15 cups 69,� No Yes
3 Moulinex 15 cups 69,� No No
4 Philips 10 cups 69,� Yes No

the RC model performs much better on model fit but
that also the holdout predictions are significantly bet-
ter. This underlines the importance of considering cor-
relations across choice sets to account for background
contrast effects.

Now we illustrate that the RC model can lead to
substantially different predictions of market shares
than the IP and the iRC models. We consider three
managerially relevant situations: a product modifica-
tion, a product line extension, and the introduction of
a me-too brand. In our simple hypothetical illutration
we use the four profiles listed in Table 7.

We use the estimates obtained from the three-
alternatives data from Table 5. First consider the situ-
ation of a product modification of the brand Philips.
We assume that the current market consists of two
products: Philips (profile 1) and Braun (profile 2). As-
sume that Philips modifies its existing product by in-
troducing a thermos-flask and asking a higher price for
the product (profile 4). The IP model predicts an in-
crease in market share of 16.8%, while the RC model
predicts an increase of only 11.5% in market share of
Philips (Table 8). In the IP model the market shares of
the two brands reverse approximately compared to the
initial situation. In the RC model the market shares
change less compared to the IP model. The iRC model
is in-between the two other models with respect to
market shares. However, compared with the “before”
situation, the differences in market shares are the high-
est for this model.

The second example pertains to a product line ex-
tension. Assume that Philips modifies the existing
brand and introduces it as an extension of its product
line. The product (profile 4) differs from the existing
product (profile 1) in that it has as an additional feature
(a thermos-flask) and that it has a higher price. The

market shares predicted by the IP, iRC, and RC mod-
els, before and after the product line extension, are pro-
vided in Table 8. The RC and IP models predict almost
the same market share in the initial situation with two
products. The iRCmodel predicts slightly different ini-
tial market shares. After the product line extension, the
IP model predicts that the market share of Braun drops
by 26.2%, whereas the RC model predicts only a 19.3%
decrease of its market share. The RC model predicts a
lower market share for the new Philips product com-
pared with the IP model, and it predicts that this mar-
ket share is drawn relatively more from the existing
product of Philips. Themarket share of Philips is 67.3%
as predicted by the IP model and 61.6% for the RC
model. When two alternatives are similar (as are the
two products of the same brand), the IPmodel predicts
a too high joint probability (market share) of these two
alternatives, due to the IIA property (Green and
Srinivasan 1978). Note that themarket share of the new
Philips product predicted by the iRC model is higher
than for both the RC and IP models.

The third situation considered is the introduction of
a new brand with characteristics relatively similar to
those of (one of) the brands already in the market, a
me-too brand. Consider again the situation of two
brands in the market (Philips and Braun). Now a third
brand, Moulinex, introduces a coffeemaker close to the
existing product of the initial market-leader Braun. Ta-
ble 8 gives the market shares predicted by the RC, iRC,
and IP models before and after the introduction. Table
8 shows that the predictions of the models are quite
different. After the introduction, the IP and iRCmodels
predict that the new brand becomes the market leader,
whereas the RC model still predicts the highest market
share for the initial market-leader Braun and the low-
est market share for the new brand. The RC model
predicts that the initial market leader loses 13.5% mar-
ket share as a result of the introduction of the me-too
brand, while the IP model predicts it to lose 21.8%, and
the iRC model even predicts a loss of 26.5%. In each
case Philips loses around 14%. Obviously, the misspe-
cification of the iRC and IP models results in an erro-
neous prediction that the new brand becomes the mar-
ket leader. The RC model predicts that it will stay well
behind the initial market leader and that it will be the
smallest brand. The simpler iRC and IP models yield
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Table 8 Market Simulations

Product Modification Product Line Extension Me-too Brand

Brand RC iRC IP Brand RC iRC IP Brand RC iRC IP

Before P (1) 0.423 0.362 0.410 P (1) 0.423 0.362 0.410 P (1) 0.423 0.362 0.410
B (2) 0.577 0.638 0.590 B (2) 0.577 0.638 0.590 B (2) 0.577 0.638 0.590

After P (4) 0.538 0.549 0.578 P (1) 0.182 0.155 0.213 P (1) 0.283 0.226 0.244
B (2) 0.462 0.451 0.422 B (2) 0.384 0.361 0.328 B (2) 0.442 0.373 0.372

P (4) 0.434 0.484 0.460 M (3) 0.276 0.401 0.384

incorrect predictions because they do not accommo-
date effects of the covariance structure of utilities
within and between choice sets. It is apparent that this
misspecification may severely affect market simula-
tions, even if the estimates of the attribute parameters
of these models are relatively similar.

4. Conclusion and Discussion
In this paper we applied the MNP model for the anal-
ysis of conjoint choice experiments. The MNP model
does not treat choices coming from the same respon-
dent as independent, but can be used to model corre-
lations of choice alternatives within and between
choice sets. We have taken two hurdles in the appli-
cation of the MNP model for conjoint choice data, i.e.,
that of model identification and that of making pre-
dictions. The resulting RC model is much more parsi-
monious than the full MNP or random taste variation
MNP models and outperforms those in terms of fit and
predictive validity. Given the identification problems
of MNP models, we recommend that in applications
of MNP models to conjoint choice data identification
of the model is thoroughly investigated, for example,
by checking the necessary condition that the number
of parameters should be smaller than the number of
profiles, as well as the eigenvalues of the Hessian in
the optimum.

The proposed random coefficients MNP model ac-
counts for heterogeneity due to context effects in mod-
eling stated choices in experimental choice analysis. In
addition, it does not suffer from the restrictive IIA
property. We showed that the proposed model leads
to significantly better fit and predictions than random

intercepts and IP models. The iRC model that arises as
a special case of the RC model by assuming that choice
sets are independent does not suffer from the IIA prop-
erty, but does not account for correlations between
choice sets. This model has a significantly better fit
than the IP model, but does not predict holdout sets
better. An interesting finding is that a random inter-
cepts model, where only brand intercepts are assumed
heterogeneous across subjects and choice sets, pro-
vides a better fit and holdout predictions than the iRC
model with fewer parameters. The RC model is signifi-
cantly better in terms of model fit and predicts the
holdout sets significantly better compared with all
other models. Therefore, we conclude that it is impor-
tant to allow all coefficients to be random, but that it
is even more important to take account of correlations
between choice sets. An alternative approach bywhich
this can be accomplished is the Bayesian approach by,
for example, Rossi and Allenby (1993). This procedure
provides the advantages of allowing for inferences on
part-worth estimates at the respondent level. A com-
parison of the SML and Bayesian approaches in terms
of their performance is left for further research.

We hypothesized that the covariances among utili-
ties within a choice set (as modeled in the iRC and iRI
models) account for local tradeoff contrast effects
(Simonson and Tversky 1992). Such local contrast ef-
fects specify that a respondents’ tradeoff of two alter-
natives in a specific choice set is affected by other
tradeoffs in that choice set. These effects would be re-
flected in significant covariance parameters in the iRC
and iRI models, which were observed in both appli-
cations. Thus, our results are indicative of such local
contrast effects, but it must be noted that the estimates
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of our model cannot be considered as unambiguous
evidence because other factors, including heterogene-
ity, may also have caused such covariances.

The superior fit of the RC and RI models in both
applications is caused by accommodating covariances
in utilities among choice sets, which may be indicative
of background tradeoff contrast effects (Simonson and
Tversky 1992). Such background contrast effects occur
when tradeoffs made among profiles in other choice
sets affect the tradeoffs in the current choice sets. Our
results strongly indicate the existence of such back-
ground contrast effects.

Judged from the magnitudes of the relevant covari-
ance parameters estimates, the background contrast ef-
fect may vary in importance for different attributes.
Such variation may be explained from different types
of context effects, such as substitution, dominance, at-
traction, and compromise effects. Further research
should investigate when these different types of effects
occur in conjoint choice experiments and how they are
reflected in the covariance parameters in our model.
The results showed that the background contrast effect
may be stronger for smaller choice sets due to themore
restricted range of attribute levels in such sets,
whereby previous tradeoffs therefore may have a
larger effect. Since predictions for holdout sets deteri-
orated for smaller holdout choice sets, such back-
ground contrast effects may negatively affect the ex-
ternal validity of conjoint choice experiments. We
recommend that experiments are conducted to inves-
tigate context effects in conjoint choice designs while
future research should delve into the question of op-
timal design of conjoint choice experiments in terms of
the number, size, and composition of choice sets in
view of minimizing context effect.8

Appendix: The SRC Probability Simulator
The multidimensional integrals involved in the RC model cannot be
evaluated numerically. However, simulation techniques can be used
to approximate the integrals in (4). The simulators differ basically as
to the way the drawings from the error distribution are obtained.
Hajivassiliou, McFadden, and Ruud (1993) compared the known
simulators and concluded that the Smooth Recursive Conditioning

8This paper has greatly benefitted from the suggestions of the editor
Richard Staelin, the area editor Greg Allenby, and the anonymous
reviewers. We also thank Peter Rossi for his insightful remarks.

(SRC) simulator, also known as the GHK simulator (after Geweke,
Hajivassiliou, and Keane), is one of the best.

This section is based on Börsch-Supan and Hajivassiliou (1993),
with some different notation to make this appendix consistent with
the earlier notation (for the SRC simulator, see also, e.g.,
Hajivassiliou 1993, and Geweke, Keane, and Runkle 1994).

We start with the following discrete choice model with one choice
set (hence K � 1, and we therefore suppress this index):

Y* � Xb � � � l � Ce,

with

Y* � N (l, X), X � CC �,M

e � N (0, I ), � � Ce. (A1)M

Observed is the (M � 1) vector Y, where

1 if y* � y* ∀ n � 1,. . . , M, n � m,m ny � . (A2)m �0 other

The probability P(ym � 1) involves an (M � 1)-dimensional integral
that cannot be evaluated for M � 4. The SRC probability simulator
simulates the probability pm � P(ym � 1) as follows:

Let V be a nonsingular matrix and define L as the lower Choleski-
factor of VXV� � LL�. Then from (A1) and (A2) it follows that for
all n � m it must hold that:

�� � y* � y* � 0,n m

⇒ �� � VY* � 0,
⇒ �� � V(Xb � �) � 0,
⇒ �� � V(l � Ce) � 0,

⇒ �� � Vl � Le � 0 � Vl,
⇒ a � Le � b. (A3)

We now need random drawings such that:

e � N(0,1) s.t. a � l e � b ,1 1 11 1 1

e � N(0,1) s.t. a � l e � l e � b ,2 2 21 1 22 2 2

� �
e � N(0,1) s.t. a � l e � • • •� l e � b ,M M M1 1 MM M M

⇔ a � L e � l e � b . (A4)M M,�M �M MM M M

These drawings can be obtained by drawing a vector U � Uni-
form(0,1) and by calculating from this vector U:

�1e � U [(U(b*) � U(a*))U � U(a*)], (A5)

where U is the normal cumulative distribution function. Then it
holds that e follows a truncated normal distribution (Hajivassiliou
and McFadden 1990):

e � N(0,1) s.t. a* � e � b*, with �� � a* � b* � �. (A6)

Now define Qm (m � 1, . . . , M) as:

a b1 1Q � P � e �1 1� �l l11 11

�
a � L e b � L em m,�m �m m m,�m �mQ (e , . . . , e ) � P � e � .m 1 m�1 m� �l lmm mm

(A7)
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The SRC probability simulator for pm is then for random drawings
er � (e1r, . . . , eMr)�, and with R replications (r � 1, . . . , R), defined
as:

R M1SRCp � f (b,X) � Q (e , . . . , e ) (A8)m m � � m 1r m�l,rR r�1 m�1

The simulator is unbiased and smooth. That is, is a continuousSRCpm
and differentiable function of b and X. The extension of the above
to the conjoint situation with K � 1 and probabilities as in (5) is
straightforward.

Estimation by Simulated Maximum Likelihood
With the method of Simulated Maximum Likelihood (SML), only
the probabilities of the selected alternatives have to be simulated,
which is computationally efficient. This method is known as Smooth
SML (SSML) when it is applied with a smooth choice simulator as
the SRC simulator. With SSML asymptotically efficiency requires
that R/�J → � as J → � (Börsch-Supan and Hajivassiliou 1993),
where R is the number of simulations. However, several studies
show that SSML is efficient even when the number of simulations is
rather low, say 10 to 20 (Mühleisen 1991; Lee 1992; Börsch-Supan
and Hajivassiliou 1993; Geweke, Keane, and Runkle 1994). The sim-
ulated probabilities replace the probabilities pkm in the likelihood of
(6) or pl in the likelihood of (9).

A potential drawback of using smooth simulators is that the sim-
ulated probabilities are not restricted to add up to one over the M
choices (McFadden 1989; Mühleisen 1991; Lee 1992). Lee (1992)
stated that the adding-up property can always be satisfied by nor-
malizing the original simulators, at the extra cost of simulating
choice probabilities for all alternatives.9
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