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Abstract

We show how to outsource data annotation to Amazon

Mechanical Turk. Doing so has produced annotations in

quite large numbers relatively cheaply. The quality is good,

and can be checked and controlled. Annotations are pro-

duced quickly. We describe results for several different an-

notation problems. We describe some strategies for deter-

mining when the task is well specified and properly priced.

1. Introduction

Big annotated image datasets now play an important role

in Computer Vision research. Many of them were built in-

house ([18, 11, 12, 3, 13, 5] and many others). This con-

sumes significant amounts of highly skilled labor, requires

much management work, is expensive and creates a percep-

tion that annotation is difficult. Another successful strat-

egy is to make the annotation process completely public

([24]) and even entertaining [26, 27]), at the cost of dimin-

ished control over what annotations are produced and neces-

sary centralization to achieve high volume of participation.

Finally, dedicated annotation services ([28]) can produce

high volume quality annotations, but at high price.

We show that image annotation work can be efficiently

outsourced to an online worker community (currently Ama-

zon Mechanical Turk [2]) (sec. 2). The resulting annota-

tions are good (sec. 2.3.2), cheap (sec. 2.3.1) and can be

aimed at specific research issues.

2. How to do it

Each annotation task is converted into a Human Intelli-

gence Task (HIT). The tasks are submitted to Amazon Me-

chanical Turk (MT). Online workers choose to work on the

submitted tasks. Every worker opens our web page with a

HIT and does what we ask them to do. They “submit” the

result to Amazon. We then fetch all results from Amazon

MT and convert them into annotations. The core tasks for

Exp Task img labels cost time effective

USD pay/hr

1 1 170 510 $8 750m $0.76

2 2 170 510 $8 380m $0.77

3 3 305 915 $14 950m $0.411

4 4 305 915 $14 150m $1.07

5 4 337 1011 $15 170m $0.9

Total: 982 3861 $59

Table 1. Collected data. In our five experiments we have col-

lected 3861 labels for 982 distinct images for only US $59. In

experiments 4 and 5 the throughput exceeds 300 annotations per

hour even at low ($1/hour) hourly rate. We expect further increase

in throughput as we increase the pay to effective market rate.

a researcher are: (1) define an annotation protocol and (2)

determine what data needs to be annotated.

The annotation protocol should be implemented within

an IFRAME of a web browser. We call the implementation

of a protocol an annotation module. The most common

implementation choices will be HTML/JS interface, Java or

Flash applet. The annotation module must be developed for

every radically new annotation protocol. We have already

built 4 different annotation modules(in Flash) for labeling

images of people. As the design process is quite straight-

forward, we aim to accomodate requests to build annota-

tion modules for various research projects.

Our architecture requires very little resources adminis-

tered by the researcher (bash, python, Matlab and a web

server or Amazon S3).

2.1. Quality assurance

There are three distinct aspects of quality assurance: (a)

Ensuring that the workers understand the requested task and

try to perform it well; (b) cleaning up occasional errors; (c)

detecting and preventing cheating in the system. We discuss

three viable strategies for QA: multiple annotations, grading

1This number includes around 30% of poor annotations.
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and gold standard evaluation (with immediate feedback).

The basic strategy is to collect multiple annotations for

every image. This will account for natural variability of

human performance, reduce the influence of occasional er-

rors and allow us to catch malicious users. However, this

increases the cost of annotation.

The second strategy is to perform a separate grading

task. A worker looks at several annotated images and

scores every annotation. We get explicit quality assesments

at a fraction of the cost, because grading is easy.

The third strategy is to build a gold standard - a collec-

tion of images with trusted annotations. Images from the

gold standard are injected into the annotation process. The

worker doesn’t know if an image comes from the new data

or from the gold standard. If the annotations provided by

the worker significantly deviate from the gold standard, we

suspect that the worker is not doing what we asked for. We

reveal the gold standard annotation to the worker after they

sumbit their own annotation. This immediate feedback clar-

ifies what we expect and encourages to follow the protocol.

This strategy is again cheap, as only a fraction of images

comes from the gold standard.

It is most important to ensure that contributors with high

impact understand the task and follow the requested pro-

tocol. As can be seen in fig 2, the bulk of annotation is

produced by a few contributors. In our experiments we col-

lected multiple annotations to study consistency. In only

one experiment did we have a significant contributor pro-

viding poor annotations (Fig 2, experiment 3, see the low

times among the first contributors. See also figure 5 experi-

ment 3, example “G”, yellow curve).

2.2. Annotation protocols

We implemented four annotation protocols (fig 1): two

coarse object segmentation protocols, polygonal labeling

and 14-point human landmark labeling. Object segmen-

tation protocols show an image to the worker and a small

image of the query (person). We ask the worker to click on

every circle (site) overlapping with the query (person). Pro-

tocol one places sites on a regular grid, whereas protocol

two places sites at the centers of superpixels (computed

with [19, 17]).

The third protocol, polygonal labeling, is very similar

to the one adopted in LabelMe[24]. We ask the worker to

trace the boundary of the person in the image.

The fourth protocol labels the landmarks of the human

body used for pose annotation in [23]. We ask the worker

to click on locations of the 14 points in the specified or-

der: right ankle, right knee, right hip, left hip, left knee, left

ankle, right wrist, right elbow, right shoulder, left shoulder,

left elbow, left wrist, neck and head. The worker is always

reminded what the next landmark is.

2.3. Annotation results

So far we have run five annotation experiments using

data collected from Youtube (experiments 1, 2, 5), the

dataset of people from [23] (exp. 3, 4) and small sample of

data from LabelMe[24], Weizman [6] and our own dataset

(exp. 5). In all experiments we are interested in people. As

shown in table 1 we have a total of 3861 annotations for 982

distinct images collected for a total cost of US$ 59. This is

very cheap as discussed in section 2.3.1. We describe the

quality of annotations in section 2.3.2.

We present sample annotation results (fig 1,4,5) to show

the representative annotations and highlight the most promi-

nent failures. We are extremely satisfied with the qual-

ity of the annotations taking into account that workers re-

ceive no feedback from us. We are currently implementing

QA strategies described above to provide feedback to work-

ers so we can stop using the multiple duplicate annotations

strategy.

2.3.1 Pricing

The work throughput is elastic and depends on the price of

the task. If the price is too low, workers will participate

out of curiosity and for entertainment, but may feel under-

paid and will loose motivation. If the price is too high, we

could be wasting resources and possibly attracting ineffi-

cient workers. As table 1 shows, the hourly pay in exper-

iments 4 and 5 was roughly $1/hour. In these experiments

we had a comments field and some comments suggested

that the pay should be increased by a factor of 3. From

this we conclude that the perceived fair pricing is about US

$3/hour. The fact that our experiments 1-5 finished com-

pletely shows the elasticity of the workforce. We note that

even at US $1/hour we had a high throughput of 300 anno-

tations per hour.

2.3.2 Annotation quality

To understand the quality of annotations we use three sim-

ple consistency scores for a pair of annotations (a1 and

a2) of the same type. For protocols 1,2 and 3 we divide

the area where annotations disagree by the area marked by

any of the two annotations. We can think about this as

XOR(a1,a2)/OR(a1,a2). For protocols 1 and 2 XOR counts

of sites with the different annotations, OR counts the sites

marked by any of the two annotations a1 and a2. For pro-

tocol 3, XOR is the area of the symmetric difference and

OR is the area of the union. For protocol 4 we measure the

average distance between the selected landmark locations.

Ideally, the locations coincide and the score is 0.

We then select the two best annotations for every image

by simply taking a pair with the lowest score, i.e. we take

the most consistent pair of annotations. For protocol 3 we
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Figure 1. Example results show the example results obtained from the annotation experiments. The first column is the implementation of

the protocol, the second column show obtained results, the third column shows some poor annotations we observed. The user interfaces

are similar, simple and are easy to implement. The total cost of annotating the images shown in this figure was US $0.66.

further assume that the polygon with more vertices is a bet-

ter annotation and we put it first in the pair. The distribution

of scores and a detailed analysis appears in figures 4,5. We

show all scores ordered from the best (lowest) on the left

to the worst (highest) on the right. We select 5:15:952 per-

25 through 95 with step 15

centiles of quality and show the respective annotations.

Looking at the images we see that the workers mostly

try to accomplish the task. Some of the errors come from

sloppy annotations (especially in the heavily underpaid ex-

periment 3 - polygonal labeling). Most of the disagreements

come from difficult cases, when the question we ask is dif-



ficult to answer. Consider figure 5, experiment 2, sample

“G”, leftmost circle. One annotator decided to mark the bat,

while the other decided not to. This is not the fault of the

annotators, but is rather a sign for us to give better instruc-

tions. The situation is even more difficult in experiment 4,

where we ask to label landmarks that are not immediately

visible. In figure 6 we show consistency of the annotations

of each landmark between the 35th and the 65th percentile

of figure 5. It is obvious from this figure that hips are much

more difficult to localize compared to shoulders, knees, el-

bows, wrists, ankles, the head and the neck.

3. Related work

Crisp understanding of the purpose of annotated data is

crucial. When it is clear what annotations should be made,

quite large annotated datasets appear [16, 15, 4, 22, 25, 18].

Such datasets last for a long time and allow for significant

advances in methods and theories. For object recognition,

there isn’t really a consensus on what should be annotated

and what annotations are required, so we have a large num-

ber of competing datasets.

To build large scale datasets researchers have made peo-

ple label images for free. LabelMe[24] is a public on-

line image annotation tool. LabelMe has over 11845 im-

ages and 18524 video frames with at least one object la-

beled [24]. The current web site counter displays 222970

labeled objects. The annotation process is simple and intu-

itive; users can browse existing annotations to get the idea

of what kind of annotations are required. The dataset is

freely available for download and comes with handy Mat-

lab toolbox to browse and search the dataset. The dataset

is semi-centralized. MIT maintains a publicly-accessible

repository, they accept images to be added to the dataset

and they distribute the source code to allow interested par-

ties to set up a similar repository. To our knowledge this

is the most open project. On the other hand LabelMe has

no explicit annotation tasks and annotation batches. The

progress can only be measured in the number of images an-

notated. In contrast we aim at annotating project-specific

data in well-defined batches. We also minimized the need

for maintenance of a centralized database. An annotation

project can run with only researcher’s laptop and comput-

ing utility services easily accessible online.

The ESP game [26] and Peekaboom [27] are interac-

tive games that collect image annotations by entertaining

people. The players cooperate by providing textual and

location information that is likely to describe the content

of the image to the partner. The games are great success.

They are known to have produced over 37 million [8] and

1 million [27] annotations respectively. The Peekaboom

project recently released a collection of 57797 images an-

notated through gameplay. The game-based approach has

two inconveniences. The first is centralization. To achieve

proper scale, it is necessary to have a well-attended game

service that features the game. This constrains publishing

of a new game to obtain project-specific annotations. The

second one is the game itself. To achieve reasonable scale

one has to design a game. The game should be entertaining

or else nobody will play it. This will require creativity and

experimentation to create appropriate annotation interface.

In contrast, our model serves as a drop-in, minimum effort,

utility annotation.

Building in-house datasets was another common strat-

egy. The most prominent examples here include: Berke-

ley segmentation dataset [18], Caltech 5/101 [11]/256 [12],

Pascal VOC datasets [10, 9], UIUC car dataset [1], MIT

[20] and INRIA [7] pedestrian datasets, Yale face dataset

[4], FERET [22], CMU PIE [25] and (Labeled [13]) Faces

in the Wild [5]. Every dataset above is a focused data col-

lection targeted at a specific research problem: segmenta-

tion, car detection, pedestrian detection, face detection and

recognition, object category recognition. The datasets are

relatively small compared to those produced by large scale

annotation projects.

Finally, dedicated annotation services can provide qual-

ity and scale, but at a high price. ImageParsing.com has

built one of the world largest annotated datasets[28]. With

over 49357 images, 587391 video frames and 3,927,130 an-

notated physical objects [28] this is a really invaluable re-

source for vision scientists. At the same time, the cost of

entry is steep. Obtaining standard data would require at

least US $1000 investment and custom annotations would

require at least US $5000 [14]. In contrast our model will

produce a 1000 images with custom annotations for under

US $40. ImageParsing.com provides high quality annota-

tions and has a large number of images available for free. It

is important to note that [28] presents probably the most rig-

orous and the most varied definition of the image labeling

task. Their definitions might not fit every single research

project, but we argue that this degree of rigor must be em-

braced and adopted by all researchers.

4. Discussion

We presented a data annotation framework to obtain

project-specific annotations very quickly on a large scale.

It is important to turn annotation process into a utility, be-

cause this will make the researchers answer the important

research issues: “What data to annotate?” and “What type

of annotations to use?”. As annotation happens quickly,

cheaply and with minimum participation of the researchers,

we can allow for multiple runs of annotation to iteratively

refine the precise definition of annotation protocols. Finally,

we shall ask “What happens when we get 1/10/100 million

annotated images?”.

We plan to implement more annotation protocols ([18, 3,

28, 9, 21], other suggestions are welcome) and the qual-
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Figure 2. Contributions. The first five graphs plot the contribution and the time spent against the rank of the worker. The rank is

determined by the total amount of the contribution by a particular worker. The lower the rank the higher the contributions. Note that

the scales differ from experiment to experiment, because of different complexity of the tasks. The sixth graph plots the total contribution

against the percentage of the top workers. It is really astonishing how closely the curves follow each other. These graphs give insight into

the job distribution among the workers: (1) single top contributors produce very significant amounts spending hours on the task (2) top

contributors are very effective in performing the tasks and (3) top 20% of annotators produce 70% of the data.
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Figure 3. Temporal structure of annotations. We show a scatterplot of all submitted annotations. The horizontal axis is time in minutes

when we receive the annotation. The vertical axis is the rank of the worker who produced the annotation. The bottom lines have many dots,

as they show when the most significant contributors participated in the annotation process. Note the different scales of the scatterplots. The

horizonal scale reflects the total time of the annotation while the vertical scale reflects the total number of people who participated in the

annotation. The plots show how interesting the tasks are to the workers. In experiments 4 and 5 the workers start early and participate until

the available tasks are exhausted - the dots all end at the same time, when no more tasks are left. In experiments 1,2 and 3 it takes much

longer for significant annotators to come. This is a direct consequence of the task pricing (sec 2.3.1). Experiments 1 and 2 pay 30% less

than experiments 4 and 5, while experiment 3 pays 50% less.

ity assurance strategies we discussed. We will make all the

code and data available online.
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