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ABSTRACT
Participatory sensing (PS) is becoming a popular data ac-
quisition means for interesting emerging applications. How-
ever, as data queries from these applications increase, the
sustainability of this platform for multiple concurrent appli-
cations is at stake. In this paper1, we consider the problem
of efficient data acquisition in PS when queries of different
types come from different applications. We effectively deal
with the issues related to resource constraints, user privacy,
data reliability, and uncontrolled mobility. We formulate
the problem as multi-query optimization and propose effi-
cient heuristics for its effective solution for the various query
types and mixes that enable sustainable sensing. Based on
simulations with real and artificial data traces, we found that
our heuristic algorithms outperform baseline approaches in
a multitude of settings considered.

Categories and Subject Descriptors
C.3 [Special-purpose and Application-based Systems]:
Participatory Sensing; H.3.3 [Information Storage and
Retrieval]: Sensor Data Acquisition

General Terms
ALGORITHMS, EXPERIMENTATION

Keywords
sustainability, sensor data sharing, query mix

1. INTRODUCTION
Participatory sensing (PS) is becoming a popular paradigm

for collecting and sharing data about phenomena of social
interest, such as air quality, well-being, traffic, etc. Even
though some people might altruistically participate in such
data collection systems, we believe that enough incentives
must be provided to people to encourage more participation.

1Partially supported by the EU project OpenIoT (ICT
287305).
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The burden that participation imposes on the participants,
e.g. battery and network consumption and privacy leakage,
should be compensated to guarantee long-term sustainabil-
ity of the system. Moreover, in a popular PS environment,
there can be many users/applications that are interested in
the data being collected and pose different types of queries,
instant or continuous ones. At the same time, some of the
users may participate in the sensor data collection. Such PS
system can be envisioned by introducing some sort of incen-
tives, e.g. payments from the querying user, to the users
from whom the data for the query is collected. It is critical
for the sustainability of the system to provide to the users
as much utility as possible. In this context, utility is defined
as the difference between the value of the query results to
the users and the price they pay for obtaining the results.

There exists a large body of work in the area of sensor data
acquisition, which either have a single application-specific
objective, e.g. achieving complete coverage of the sensing
field [16], or assume certain structures for the utility func-
tions, e.g. submodularity as in [1, 15, 10, 9]. Similarly,
there is a large body of work in the context of multi-query
optimization in sensor networks and in stream processing
systems, e.g., [18, 11, 17]. However, the existing approaches
cannot be directly applied to the context of PS for the fol-
lowing reasons: 1) because of the uncontrolled mobility of
the participants, the query processor needs to deal with data
unavailability; and 2) there is a lack of sophisticated utility
considerations in the existing work.

The original contributions of this paper are the following:

1. We propose a data acquisition framework in the con-
text of PS that takes into account the factors pertinent
to this context and efficiently shares sensor data among
queries of different types, so as to enable sustainabil-
ity. Queries for sensor data come from multiple differ-
ent applications or users that can have any arbitrary
utility considerations.

2. We formulate the optimal data acquisition problem as
a multi-query optimization with the objective of maxi-
mizing the total utility (or social welfare) and propose
efficient heuristic solutions for various query types and
query mixes.

3. Important query categories, including one-shot and con-
tinuous queries, in the context of PS are considered and
efficient data acquisition algorithms are proposed for
each query type as well as the combination of different
query types.

4. We verify the effectiveness of our approach through
extensive simulations on real and synthetic data traces.
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The remainder of the paper is organized as follows. In
Section 2, we introduce our context and formally define the
problem. We present heuristic algorithms for sensor schedul-
ing in Section 3 and evaluate those algorithms experimen-
tally in Section 4. We review the related work in Section 5
and finally we conclude our paper in Section 6.

2. THE CONTEXT
In a PS system several participants carrying heteroge-

neous sensing devices move in a certain region. The sensing
devices communicate with a server, which is called the ag-
gregator. Sensing devices take a measurement only when
they are selected by the aggregator to do so. Participants
ask for a payment for each measurement they provide. Each
sensor has a specific sensing range. Each measurement in-
cludes a sensor-specific inherent inaccuracy. In this paper,
we use the term sensor to refer to the actual sensor on the
sensing device, the sensing device, or even the combination
of the participant and the sensing device she carries.

End users (or applications) submit queries to the aggre-
gator. The aggregator periodically collects the queries and
tries to optimally answer them. Our optimization objec-
tive is to maximize the overall utility (or social welfare),
since this objective matches our requirement for sustainable
operation of the system, as opposed to data value maxi-
mization or cost minimization. Alternatively, an egalitarian
approach could be followed, where the number of users with
positive utility is maximized. Utility maximization can be
achieved by selecting appropriate sensors for providing mea-
surements, considering the value of the measurements to the
queries, the cost of obtaining such measurements, and ex-
ploiting possible common data requirements among queries.
In a PS context with diverse set of end users who have dif-
ferent criteria for evaluating the quality of query results,
the aggregator relies on the end users to provide a valuation
function, vq(.), with each query q. This function returns the
value, in real or virtual currency, of a set of measurements
that can provide the answer to the query based on the qual-
ity of the measurements. Users have a limited budget to
spend for obtaining query answers.

Queries issued by end users can fall into two major cat-
egories, namely one-shot queries and continuous queries.
One-shot queries are executed only once, while continuous
queries are continuously evaluated. Major one-shot queries
in the PS context are point queries, spatial aggregate queries
over a region, and queries over trajectories. Continuous
queries can be split into two sub-categories of monitoring
queries and event detection queries. Single-sensor queries
only need one sensor reading while multi-sensor queries need
multiple sensor readings. Figure 1 shows these categories
and the query types that we handle explicitly in this paper.
Each query category is explained in more details later in this
section. Table 1 summarizes our notation.

2.1 Problem Formulation
We assume, without loss of generality, that the system

runs for a period of T , e.g., from 6 a.m. to 9 p.m. in a
day. This period is discretized into several time slots of fixed
length, e.g., 5 minutes. All the sensors communicate with a
unique aggregator and if necessary, at the beginning of each
time slot announce their location and price of providing a
measurement at that location.

The objective is to acquire data for the queries from the

Query

One-shot Continuous

Single-sensor Multi-sensor

Point Query

Spatial Aggregate Query
Query over Trajectory

Location Monitoring Query

Region Monitoring Query

Point Query

MonitoringEvent Detection

...

Figure 1: Query categories in the PS context. The
query types in boldface are explicitly handled in this
paper.

available sensors in order to maximize the utility over T .
Formally, we let Q denote the set of all queries issued from
time 1 to T , St denote the set of available sensors at time

slot t, and K : Q → ×Tt=12S
t

define an allocation scheme
that assigns sensors to each query. Y (K, t) is a function that
returns the set of sensors that are assigned to all queries at
time t. We denote by cs(K, t), the cost of sensor s at time t
given the allocation K. Let K denote the set of all possible
allocation schemes. The goal is to find allocation K∗ ∈ K
that maximizes the social welfare:

K∗ = arg max
K∈K

(∑
q∈Q

vq(K(q))−
T∑
t=1

∑
s∈Y (K,t)

cs(K, t)
)
. (1)

For solving the above problem we need to know in advance
all the queries that will be issued over T , and the location
and cost of all the sensors at each time slot. However, in a PS
system, users must be able to submit new queries whenever
they desire and it is not realistic to ask the users to pose all
their queries in the beginning of T . Due to the uncontrolled
mobility of the sensors, their exact locations at a specific
time slot cannot be determined a priori. Moreover, the cost
of a sensor might vary from one time slot to another based
on the preferences of the sensor owner. Due to the lack of
access to all the required information to solve the long-term
optimization problem 1, we resort to a myopic approach,
in which we try to maximize the utility at the current time
slot without considering the future state of the system. This
approach would be further motivated in a “hotspot” moni-
toring setting: Consider a hotspot area, e.g. the downtown,
of a city where users carrying smart phones continuously en-
ter and exit, and roam around while they are inside it. In
this case, the mix of available sensors in the hotspot area
dynamically changes and short-term optimization towards
monitoring sustainability becomes more important.

Let Q denote the set of all queries available at the cur-
rent time slot t, which can include one-shot queries issued
for time t and continuous queries that started before or at t.
Let S be the set of available sensors at t and cs denote the
reported cost of each sensor s. Let M : Q→ 2S define an al-
location scheme that assigns sensors to each query. Y (M) is
a function that returns the set of sensors assigned to queries.
LetM denote the set of all possible allocation schemes. The
goal is to find allocation M∗ ∈M that maximizes the total
utility in the current time slot:

M∗ = arg max
M∈M

(∑
q∈Q

vq(M(q))−
∑

s∈Y (M)

cs
)
. (2)

After finding the best allocation scheme, the cost of each
selected sensor s is shared among queries that are answered
using the measurement from s. We denote by πs,q the
amount that query q pays for using data from sensor s.
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We must ensure that for each selected sensor s, the total
payment from the queries using that sensor is equal to cs.
Moreover, for each query q, which is answered using sensors
Sq, its utility must be positive, i.e., vq(Sq)−

∑
s∈Sq

πq,s > 0.

2.2 One-shot Queries
We can distinguish between the queries that only need

data from one sensor and queries that ask for several sensor
readings. More specifically, spatial aggregate queries and
queries over trajectories always require several sensor read-
ings, whereas there exist some point queries that ask for only
one sensor reading and some point queries that ask for more
than one sensor reading. The former type of point queries
is referred to as single-sensor point queries and the latter is
referred to as multiple-sensor point queries. The reason for
this distinction is that single-sensor queries can be treated
more efficiently due to their special characteristics.

2.2.1 Point Queries
A user who is interested in knowing the value of a phe-

nomenon at a certain location, submits a point query at that
location to the system. The queries are required to come
with a quality valuation function to valuate the quality of
the sensor readings. Generally, the value of a sensor reading
for an application is a function of the quality of that sensor
reading and the quality of the sensor readings obtained so
far. The number of samples required for finding the value
of a phenomenon depends on the phenomenon itself and
the trustworthiness of the sensors. For example, it might
be necessary to take redundant measurements to assess the
trustworthiness of a particular sensor that can be used for
providing the measurements. For instance, a single-sensor
point query q might have the following valuation function:

vq(s) =

{
Bqθq,s θqmin ≤ θq,s ≤ 1,

0 θq,s < θqmin,
(3)

where 0 ≤ θq,s ≤ 1 is the quality of the sensor reading, θqmin
is the minimum acceptable quality by the query, and Bq is
the query budget. This implies that the user is willing to
pay Bq for a sensor reading with the highest possible quality.

The quality of a sensor reading depends on the distance
of the sensor from the queried location (more accurately, it
depends on the correlation between the phenomenon value
at the queried location and the location of the sensor,) the
inherent sensing inaccuracy, and the trustworthiness of the
sensor. We assume that this dependency is given by a user-
defined function θq(s, lq), where lq is the queried location.
The following is an example of such a function:

θq(s, lq) =

{
(1− γs)(1− |ls−lq|dmax

)τs if |ls − lq| ≤ dmax
0 otherwise,

(4)
where γs is the inaccuracy of s measured in percentage of the
value range of the sensor, 0 ≤ τs ≤ 1 is the trustworthiness
of s, ls is the current location of s, and dmax is the maximum
distance in which the sensors can be considered to provide
data. Hereafter, we assume the same function for all queries
and we only use θs when lq is implied by the context.

In the case of multiple-sensor point queries, the querying
application is requested to provide a more general valua-
tion function vq(S), that takes as input a set of sensors and
determines their value to the query.

2.2.2 Spatial Aggregate Queries
When issuing spatial aggregate queries, applications are

interested in an aggregate value of the measurements (e.g.
average, min, and max) over a region. Users assign a budget
Bq to each query q and spend it based on their valuation of
the quality of the result. The quality of an aggregate query
answer depends on the qualities of the sensor readings used
for providing the answer as well as the coverage of these
readings. The application provides, along with the query q,
a function vq(Sq) that evaluates the quality of the result.
Sq denotes the set of selected sensors for answering query q.
The following is an example of such a function:

vq(Sq) = BqGq(Sq)
∑
s∈Sq

θs

|Sq|
, (5)

where Gq is a function that calculates the coverage of the
selected sensors. A simple coverage function can calculate
the fraction of the area covered by the sensors, while a more
general function might also take into account the dispersion
or the importance of the locations that are covered by the
selected sensors.

2.2.3 Queries over Trajectories
When a user issues a query over a trajectory, she would

like to know the (aggregate) value of a phenomenon over
that trajectory. For instance, a user might be interested in
knowing the current maximum value of CO2 in the way from
her house to her work. This type of query can be treated as
a special case of spatial aggregate query in which instead of
providing a region of interest, a trajectory is specified.

2.3 Continuous Queries
Continuous queries are queries that are continuously exe-

cuted for a certain time period or until they are removed by
the users. In general, two categories of continuous queries
can be distinguished: 1) monitoring queries that ask for con-
tinuously monitoring a phenomenon at a certain location or
area, and 2) event detection queries that ask for monitoring
a location or region for detecting the occurrence of an event.
In the following example queries, Q1 and Q2 are monitoring
queries and Q3 and Q4 are event detection queries.

Q1: Monitor CO2 level at location l in the period [t1, t2].

Q2: Monitor CO2 level in region r in the period [t1, t2].

Q3: Notify me when CO2 > x with confidence > α at loca-

tion l in the period [t1, t2].

Q4: Notify me when avg(CO2) > x with confidence > α in

region R in the period [t1, t2].

For queries similar to Q1, which are referred to as location
monitoring queries, applications are requested to provide the
desired sampling times T , as well as a valuation function
vq(T ′), which returns the value of sampled times T ′. Since
the locations of sensors, rather unpredictably, change over
time, satisfying all the desired sampling times cannot be
guaranteed. On the other hand, it is likely that a sensor
moves close to a queried location at time t′ /∈ T . Taking
a measurement at these time instances, especially when the
sensor can be shared with other queries, can increase the
utility of the query at hand. In Section 3.3 we propose an
approach to answering location monitoring queries with the
objective of increasing the utility of the queries.

In the case of queries similar to Q2, which we refer to
them as region monitoring queries, we rely on the querying

253



applications to provide their desired sampling points (i.e.,
sampling locations and times), as well as a valuation func-
tion vq(.), which calculates the value of the measurements
(taken at any sampling points). As for location monitoring
queries, it might not be possible to satisfy all the desired
sampling points. Also, there are opportunities to use other
sampling points considering the sharing possibilities with
other queries. In Section 3.3 we introduce an approach for
answering region monitoring queries considering the oppor-
tunistic nature of PS.

In this paper, we don’t specifically deal with event detec-
tion queries. However, we believe that data acquisition for
this type of continuous queries is very similar to data acqui-
sition for monitoring queries. The main difference is that
redundant sampling might be needed to ensure the confi-
dence requested by the queries.

2.3.1 Example Valuation Function for Region Moni-
toring Queries

One common approach for finding the valuation of a set of
sensors for an application is to use the notion of expected re-
duction in variance [9, 2]. In this approach the phenomenon
is modeled as a Gaussian process. Let V be the set of loca-
tions at which a measurement can be performed, i.e., there
exists at least one sensor at each of these locations. The
state of the phenomenon can be modeled using a set of ran-
dom variables XV . Assume, for the moment, that the goal
is to select a subset A ⊆ V of the locations to maximize the
sensing quality F (A) while the budget constraint is satisfied.
The value of the phenomenon at the unobserved locations
are then predicted based on the process model given the
observed locations. The expected reduction in variance at
the unobserved locations can be used to measure the qual-
ity of sensing if the set A of locations are selected to take
measurements from. This quantity is given by:

F (A) = V ar(XV)−
∫
P (xA)V ar(XV |XA = xA)dxA, (6)

where xA is the measurements observed at locations A. The
following valuation function can be used for region monitor-
ing queries:

vq(S) = Bq · F (S) ·
∑
s∈S θs

|S| , (7)

where S is the set of sensors (and their locations). No-
tice that in the above modeling, the assumption is that the
phenomenon is a spatial process. In order to expand the
approach for spatio-temporal phenomena, one needs to add
a time dimension to the random variables.

2.4 Costs
Sensor owners participate in the system as long as the re-

source consumption on their devices as well as their location
privacy loss are compensated. In this regard, each sensor
asks for a certain price in return for providing a measure-
ment to the aggregator. Therefore, the cost of obtaining a
measurement from sensor s which is located at ls, consists of
two components as demonstrated in the following equation:

cs(Es, Hs, ls) = ces(Es) + cps(ps(Hs, ls)), (8)

where Es is the remaining energy, and Hs is the history
of revealed locations of s. ces is a function that gives the
energy cost of taking a measurement and transmitting it

Symbol Semantic

θq,s quality of readings from sensor s for query q (in [0, 1])

τs trustworthiness of sensor s (in [0, 1])

γs inaccuracy of sensor s (in [0, 1])

Bq budget for query q

vq utility function for query q

Es remaining energy for sensor s

Hs history of revealed locations for sensor s

ls location of sensor s

lq location queried by query q

cs/ces/cps total/energy/privacy cost for sensor s

T/t total considered time period/specific time slot

Q/Q all queries in T/ in the current time slot

K/K set of all possible allocation schemes/specific alloca-
tion scheme

M/M set of all possible allocation schemes/specific alloca-
tion scheme in one time slot

T /T ′ set of desired sampling times/set of sampled times for
a location monitoring query

πq,s the payment of query q to sensor s

Table 1: Summary of introduced symbols

to the aggregator, and cps is a function that calculates the
cost of the sensor’s privacy loss due to revealing its location.
The privacy loss is computed by the function ps. We do not
impose any restrictions on the form of these two functions.

3. OUR DATA ACQUISITION APPROACH
In this section we describe our approach to the problem

of utility-driven data acquisition for a mixture of queries
of different types. We first introduce data acquisition for
each query type. Data acquisition for the query mix, which
is based on the data acquisition algorithms for individual
query types, is explained in the end of this section.

3.1 Single-Sensor Point Queries
We present two algorithms for answering single-sensor point

queries. The first one finds the optimal solution but does
not scale to large problem instances. The second one is an
efficient heuristic approximation.

3.1.1 Optimal Scheduling
When there exist only point queries in the current time

slot, we can express the optimized sensor allocation prob-
lem as a Binary Integer Linear Program (BILP). Assume n
sensors are available and L locations are queried. For each
queried location l, by ml queries, we define a binary vari-
able Y li ∈ {0, 1} for each i = 1, . . . , n, which states whether
sensor i is assigned to location l or not. For each sensor i,
let Xi ∈ {0, 1} denote whether sensor i is assigned to any
location or not. We denote by ci the cost of sensor i. The
following BILP solves the problem of optimally assigning
sensors to answer single-sensor point queries:

max

L∑
l=1

n∑
i=1

v′l(si)Y
l
i −

n∑
i=1

ciXi,

s.t. Y li ≤ Xi ∀i, l, and

n∑
i=1

Y li ≤ 1 ∀l.

(9)
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In the above formula v′l(si) is defined as:

v′l(si) =

{
vl(si) if vl(si) > 0

−1 otherwise,
(10)

where vl(si) =
∑
q∈Ql

vq(si) in which Ql is the set of queries
at location l.

We split the sensor cost among queries proportionally to
the value it yields to each query (proportionate cost alloca-
tion.) In other words, if Y ls = 1, then the user who has issued
the query q∗ ∈ Ql has to pay according to the following:

πq∗,s =
vq∗(s) · cs∑L
a=1 v

′
a(s)Y as

. (11)

This cost sharing scheme ensures that each query receives a
positive net benefit because a sensor is selected only if the
total valuations it yields is greater than its cost. It follows
that πq,s < vq(s) for each q that is answered by sensor s.

3.1.2 Heuristic Scheduling
Instances of the optimization problem (9) can be solved

optimally by an ILP solver as long as the input size is not
very large. When the input size is very large, we can resort to
an approximation algorithm. We define the utility function
u : 2S →R as the following:

u(S′) =
∑
l∈L

max
s∈S′

vl(s)−
∑
s∈S′

cs, (12)

where S′ ⊆ S. Then the optimal sensor allocation problem
reduces to finding S∗ ⊆ S such that S∗ = arg maxS′⊆S u(S′).
Once the optimal set of sensors is determined, each sensor
is assigned to a query location for which it yields the best
valuation compared to other sensors. It can be shown that
u(.) is a (non-monotone) submodular function.

A 1
3
-approximation algorithm for non-monotone submod-

ular functions, referred to as Local Search algorithm, is pro-
posed in [3], which works as follows. It starts by adding
the sensor which maximizes the utility function to the set of
selected sensors W . Then it iteratively adds to W those sen-
sors that increase the utility more than a certain threshold.
In the next step, it removes from W the sensors that have
become obsolete and then goes to the previous step. These
steps are repeated until no obsolete sensors are found. If
u(W ) ≥ u(S\W ), then the set W is returned, otherwise
S\W is returned as the set of selected sensors. This algo-
rithm requires at most O(n3 logn) calls to the utility func-
tion, where n is the number of available sensors. It is worth-
while to mention that a randomized local search algorithm
is also proposed in [3], which achieves a 2

5
-approximation of

the optimal solution. However, in our experiments we only
use the Local Search algorithm.

3.2 Multiple-Sensor One-shot Queries
There exist queries which ask for measurements from more

than one sensor. These queries include, but not limited
to, spatial aggregate queries, queries over trajectories, and
multiple-sensor point queries. At each time slot several of
these queries can arrive to the aggregator. Many of them
require data about the same phenomenon over different (po-
tentially overlapping) regions. In order to maximize the
overall utility, the aggregator must exploit as much as pos-
sible the common data requirements among these queries
and select the best set of sensors that provide the required

data. The problem of finding the optimal set of sensors is a
combinatorial problem, since we have to enumerate all pos-
sible sensor assignments to queries and select the one that
maximizes the overall net benefit. Therefore, we propose a
greedy approach, presented in Algorithm 1, that iteratively
selects sensors that maximize the partial overall utility.

The objective is to maximize the following utility function:

u(S′) =
∑
q∈Q

vq(S
′)−

∑
s∈S′

cs, (13)

where S′ is the set of selected sensors, and Q is the set of
queries. When all vq’s are submodular, it can be shown
that u(.) is also a submodular (non-monotone) function.
While the algorithms proposed in [3] have proven perfor-
mance guarantees for submodular functions, it is shown that
the greedy algorithm can perform arbitrarily badly com-
pared to the optimal solution. However, because the val-
uation functions are taken as black boxes, we use Algorithm
1 unless we have knowledge about submodularity of the val-
uation functions. In this case, we can adapt the aforemen-
tioned algorithms for non-monotone submodular function.
The reason behind using Algorithm 1 instead of always uti-
lizing the adapted approximate algorithms in [3] is that when
the utility functions are not submodular, experimentally the
former performs better in terms of total utility and it’s also
faster. It is worth mentioning that, for example, function
(5) is not submodular, even though it is known that the
coverage function is submodular. Involving sensor quality
in evaluation of a set of sensors destroys the submodularity
of the function.

Algorithm 1: Greedy Sensor Selection

Data: Set Q of queries, S of available sensors, and
quality valuation function vq of each query q.

Result: S\S̃ is the set of selected sensors.

1 S̃ ← S
2 ∀q ∈ Q,Sq ← ∅
3 while S̃ 6= ∅ do

4 ∀s ∈ S̃, Qs ← ∅
5 foreach s ∈ S̃ and q ∈ Qls do
6 δvq,s ← vq(Sq ∪ {s})− vq(Sq)
7 if δvq,s > 0 then Qs ← Qs ∪ {q}
8 a← arg maxs∈S̃

∑
q∈Qs

δvq,s − cs
9 if

∑
q∈Qa

δvq,a − ca > 0 then

10 ∀q ∈ Qa;Sq ← Sq ∪ a; πq,a ← δvq,a·ca∑
q∈Qa

δvq,a

11 S̃ ← S̃\a
12 else Leave the while loop

Theorem 1. Let S′ = S\S̃ denote the set of selected

sensors after Algorithm 1 terminates. Let Sq = S
(m)
q =

{s1, s2, ..., sm} be the set of selected sensors for query q,
where m is the number of these sensors. We have the fol-
lowing properties:

1.
∑
s∈Sq

δvq,s = vq(Sq), ∀q ∈ Q.

2. If S′ 6= ∅, then
∑
q∈Q vq(Sq) >

∑
s∈W cs, that is, the

total utility is positive.
3. vq(Sq) >

∑
s∈Sq

πq,s, ∀q ∈ Q, that is, the individual

utility is not negative.
4. The algorithm requires O(|Q||S|2) calls to the valuation

functions.
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Proof. The first property is proved using the definition
of δq,s, the partial utility of a sensor s for a query q:∑
s∈Sq

δvq,s =

m∑
i=1

δvq,si =

m∑
i=1

vq(S
(i−1)
q ∪ {si})− vq(S(i−1)

q )

=

m∑
i=1

vq(S
(i)
q )− vq(S(i−1)

q ) = vq(S
(m)
q )− vq(S(0)

q )

=vq(S
(m)
q ) = vq(Sq).

The second property can be easily proved by using property
1 and the fact that the algorithm ensures

∑
q∈Q δvq,s−cs > 0

for each selected sensor s. The proof of the third property
is straightforward in the same way as for property 2 and by
using the definition of proportionate cost allocation. The
algorithm goes through the sensors in S̃ in every iteration
(at most |S| iterations) and this continues until S̃ becomes
empty. In each iteration all queries are considered. There-
fore, the time complexity of Algorithm 1 is O(|Q||S|2).

3.3 Continuous Queries
We propose Algorithm 2 for providing the required data

for a set of location monitoring queries. Each query q con-
tinuously needs the value of a phenomenon at location q.l
in the time period q.t1 to q.t2. The desired sampling times
of query q is denoted by q.T . The main objective of the al-
gorithm is to obtain a measurement for each t ∈ q.T . How-
ever, because of the uncertainty in succeeding to satisfy all
the desired sampling times, we also follow an opportunistic
approach to obtain measurements at all t′ /∈ q.T .

Function CreatePointQuery(t, q)

Data: t is the current time and q is the query
Result: A point query for query q at time t

1 if t = q.t1 then

2 q.T ′ ← ∅; q.Ĉ ← 0
3 q.lst← −∞; q.nst← q.T .first
4 ∆vt ← vq(q.T ′ ∪ {t})− vq(q.T ′)
5 if t ∈ q.T OR q.nst =∞ OR q.lst < q.T ′.last then

∆v ← ∆vt

6 else ∆v ← min{α(vq(q.T ′)− q.Ĉ),∆vt}
7 return A point query ql with the valuation function

with the maximum value of ∆v.

Procedure ApplyResults(t, q, π)

Data: t is the current time, q is the query, and π is the
amount that q must pay.

1 if π ≥ 0 then
2 q.T ′ ← q.T ′ ∪ {t}
3 q.Ĉ ← q.Ĉ + π
4 if t = q.nst then q.lst← t; q.nst← q.T .next(t)
5 else if t ∈ T then q.lst← t; q.nst← q.T .next(t)

At each time slot t, for each available location monitor-
ing query, function CreatePointQuery is called to create a
point query at the queried location. After execution of the
created point queries, procedure ApplyResults is invoked
to apply the results for each query. Consider one location
monitoring query q. If t ∈ q.T , or if sampling at the last
sampling time has been failed, or t is greater than the final

requested sampling time, a point query is created. The max-
imum value for the valuation function of the point query is
denoted by ∆v, which is the valuation of taking a sample
at time t. When none of these conditions hold, the current
extra budget is calculated and a fraction, denoted by pa-
rameter α, of this extra budget is used for a point query.
The reason behind using only a fraction of the extra budget
is to be able to keep some extra budget for uncertain future
samples. A natural way for specifying α is to start with a
small value and increase it (or possibly decrease it) as we
learn the difference between the utility obtained compared
to the expected utility and how much utility is expected to
achieve in future. In this algorithm, T .first returns the first
sampling time in T , and T .next(t) returns the first sampling
time which is greater than t. Note that although omitted
in the algorithm, vq considers the quality of the collected
sensor readings or the expected quality of a sensor reading
before the actual sensor selection at the current time.

Algorithm 2: Sensor Selection for Location Monitoring
Queries at time t

Data: Set Q of location monitoring queries, and
quality valuation function vq of each query q.

1 Qp ← ∅
2 foreach q ∈ Q do
3 Qp ← Qp∪ CreatePointQuery(t, q);

4 Select sensors for point queries in Qp and for each point
query calculate its payment πq,t. If the point query is
not satisfied, set πq,t ← −∞.

5 foreach q ∈ Q do
6 ApplyResults(t, q, πq,t)

Algorithm 3 is used for answering a set of region mon-
itoring queries. The algorithm uses two main functions:
CreatePointQueries and ApplyResults. The first is called
for generating the required point queries, and the second
is called for applying the results after execution of point
queries. Consider a single region monitoring query q with
region rq. At each time t, a query-specific function fq is con-
sulted for obtaining the desired sampling locations based on
the current locations and costs of sensors in rq and the re-
maining budget. For each sampling location, a point query
is created with the valuation function equal to the valuation
improvement by the sensor at that location. The generated
point queries, Qt, are then executed along with all other
point queries, e.g., using one of the algorithms introduced
in Section 3.1.

After execution of point queries we can make use of the
sensors that are selected for other queries if they fall into
rq. The maximum total cost contribution from query q for

these sensors is α(Ct − Ĉt), where Ct is the expected cost

to be spent, and Ĉt is the actual cost spent in time t. The
control parameter α is used for determining how much extra
budget to keep for the next time slots. The actual cost con-
tribution depends on the sensors’ costs and their valuation
improvement for the query.

Sensor data sharing is possible when the query regions
overlap. This potential data sharing can be incorporated in
Algorithm 3 by providing the input set SCr,t to the function
fq as a set containing weighted costs of sensors. For example,
when some sensors are already selected for other queries, a
weight of zero can be assigned to their costs in SCr,t. Also,
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Function CreatePointQueries(t, q, Sr,t, SCr,t)

Data: t is the current time, q is the query, Sr,t is the
set of sensors in region q.r at time t, and SCr,t
is their corresponding locations and costs

Result: A set of point queries, the expected budget for
the queries, and the set of sensors which are
supposed to answer the point queries

1 if t = q.t1 then

2 q.S ← ∅, q.Ĉ ← 0

3 Ct ← 0, Qt ← ∅
4 St ← fq(Sr,t, SCr,t, q.B − q.Ĉ)
5 foreach s ∈ St do
6 Create a point query qs with the valuation function

vpq = vq(St)− vq(St\{s}).
7 Qt ← Qt ∪ qs; Ct ← Ct + cs

8 return {Qt, Ct, St}

a heuristic approach for increasing the selection chance of a
sensor which can be shared by k region monitoring queries,
is to reduce its cost by a factor of w(k), where w is a function
that returns a real value between 0 and 1.

Procedure ApplyResults(q,Qt, Ct, St, π, Ar,t)

Data: q,Qt, Ct, St are as for CreatePointQueries, π is
the amount that q pays for the satisfied point
queries, and Ar,t is the set of sensors in region
q.r selected for other queries

1 foreach qs ∈ Qt, if qs is not satisfied do
2 St ← St\{s}

3 Ĉt ← π
4 Contribute to the costs of sensors in Ar,t\St by the

maximum amount of α(Ct − Ĉt) and update Ĉt
accordingly.

5 q.S ← q.S ∪ (St ∪Ar,t); q.Ĉ ← q.Ĉ + Ĉt

Because of the query budget constraints, a mechanism is
needed to decide which sensors to take measurements from
and when. In the context of sensor networks, this problem
is referred to as sensor selection problem. To be able to sup-
port a wide range of applications, the queries are requested
to provide a method for specifying the desired set of sam-
pling points at each time slot (fq in Algorithm 3.) In PS
with uncontrolled mobility, applications are faced with an
obstacle for finding out all their desired sampling points in
advance: only at the current time we know which sensors
are located in the queried region. As a workaround, instead
of finding upfront all the desired sampling points, at each
time slot we can select the best sampling locations based on
the available sensors in the queried region.

We propose Algorithm 4 as an example approach for find-
ing the set of best sensors to query for the current time tc.
The sensors in the queried region along with their costs and
locations are provided as input to the algorithm. We assume
that the current location of sensors will not change in the
future. Even with this simplifying assumption, the problem
is NP-complete. The proposed solution is hence a greedy
approach. Notice that even though the algorithm selects
(sensor) locations for different time instances, we are only
interested in the locations for tc. The multiplication of the
sensing quality improvement by the fraction of the remain-

ing time over the duration of the query is an attempt to
increase the chance of selecting sensors for the current time.

Algorithm 3: Sensor Selection for Region Monitoring
Queries at Time t

Data: Set Q of region monitoring queries, and quality
valuation function vq of each query q.

1 Qp ← ∅
2 forall the q ∈ Q do
3 Compute Sr,t and SCr,t
4 X[q]← CreatePointQueries(t, q, Sr,t, SCr,t)
5 Qp ← Qp ∪X[q].Qt

6 Select sensors for point queries in Qp.
7 foreach q ∈ Q do
8 π ← the payment of q for the satisfied point queries

in X[q].Qt
9 Ar,t ← selected sensors in region q.r at time t for

other queries
10 ApplyResults(q,X[q].Qt, X[q].Ct, X[q].St, πq, Ar,t)

Algorithm 4: Sampling point selection for a region
monitoring query at time tc.

Data: Set S of available sensors in queried region rq of
query q, the budget B, and function F that
quantifies the value of a set of sensors.

Result: Stc is the set of locations to query at current
time tc.

1 C ← 0
2 St ← ∅ for all t = tc, . . . , q.t2
3 while C < B do
4 foreach s ∈ S do
5 foreach t = tc to q.t2 do
6 if s /∈ St then

7 δs,t ← (F (St ∪ {s})− F (St)) θs
q.t2−t
q.t2−q.t1

8 (s∗, t∗)← arg maxs,t δs,t
9 St∗ ← St∗ ∪ {s∗}

10 C ← C + cs∗

3.4 Query Mix
When the aggregator receives queries of different types, it

has the possibility of sharing the sensors among them and
hence increasing the total utility. Indeed, since individually
finding an optimal set of sensors for multiple point or ag-
gregate queries is NP-Complete, finding the optimal set of
sensors for the combination of queries is also NP-Complete.
We therefore propose Algorithm 5 for selecting sensors con-
sidering the commonalities between the queries at hand.

This algorithm consists of four stages. In the first stage,
the required point queries are generated for available loca-
tion monitoring and region monitoring queries. For doing
so, the functions CreatePointQuery used in Algorithm 2
and CreatePointQueries used in Algorithm 3 are called.
In the second step, all the queries are jointly provided to
Algorithm 1 as the input. This greedy algorithm selects
the sensors with the objective of increasing the total utility
and computes the amount that each query will be charged
for using the data from the assigned sensors. In the next
stage, the results of the point queries generated for continu-
ous queries are applied using the procedures ApplyResults
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used in Algorithms 2 and 3. The cost contribution from re-
gion monitoring queries for the extra sensors that they can
use necessitates the adjustment of the payments for other
queries sharing the same sensors. In the last stage, selected
sensors are asked to send their measurements, which are then
sent to the higher level query processor. Finally, the users
are charged the amount that is calculated in the previous
stage and each selected sensor is paid its announced price.

Algorithm 5: Data Acquisition for Query Mix

Data: Set Qagg, Qp, Qlm, Qrm of aggregate, point,
location monitoring, and region monitoring
queries, set S of available sensors, and quality
valuation function vq of each query q.

. Point query creation for continuous queries
1 [Function CreatePointQuery ] Create required point

queries for location monitoring queries Qlm. Let Qlmp
denote the generated point queries.

2 [Function CreatePointQueries ] Create required point
queries for region monitoring queries Qrm. Let Qrmp
denote the generated point queries.
. Sensor selection

3 [Algorithm 1] Input all the queries

Qagg ∪Qp ∪Qlmp ∪Qrmp to Algorithm 1 for sensor
selection.

4 [Algorithm 2 and 3] Run Algorithms 2 and 3 for
applying the results of the corresponding point queries.
. Payment adjustment

5 Adjust the payments to be asked from the queries based
on the potential cost contribution resulting from Step 4.
. Data acquisition and accounting

6 Ask the selected sensors to provide their measurements.
7 Provide the data to the query processor. Charge the

users whose queries have been satisfied and pay the cost
of selected sensors.

4. EXPERIMENTAL EVALUATION
In order to prove the effectiveness of our utility-driven

data acquisition framework, we have conducted a thorough
simulation study using real and synthetic mobility datasets.
In the following we first introduce these datasets and then for
each query type presents the experiments and their results.

4.1 Setup
We consider a simulation period of 50 time slots in all

the experiments. At each time slot new queries are gener-
ated and then executed jointly with the existing continuous
queries, if any. The inaccuracy of each sensor is chosen ran-
domly from the interval [0, 0.2]. We refer to the maximum
number of readings that a sensor can provide as the lifetime
of the sensor. When the number of measurement taken by a
sensor reaches its lifetime, it cannot be used anymore in the
subsequent time slots. Unless otherwise stated, the lifetime
is equal to the simulation period. We use two simple energy
cost models: A fixed cost model defined by ces(Es) = Cs, and
a linear cost model defined by ces(Es) = Cs(1 + β(1 − Es)),
where Cs is a fix price, and β is the cost increment factor.

We assume the aggregator is a trusted entity and there-
fore, the sensors always report their true locations to the
aggregator. However, the other consumers of the data are
not trusted. The privacy computation model employed in
the simulations works as follows: each sensor keeps a history

of the times when it has reported a measurement to the ag-
gregator. The size of the history is called the privacy window
and is denoted by w. The privacy loss is the weighted aver-
age of the time distances between the times when a data is
reported and the current time t:

ps(Hs, ls) =
w +

∑
t′∈Hs

(w − (t− t′))
w(w+1)

2

. (14)

Function (14) puts more weight on the recent data report-
ing times. Therefore, by applying this function, the sensor
device tries to avoid reporting measurements in consecutive
time instances, hence hiding its trajectory. We consider 5
different privacy sensitivity levels (PSL) for the sensor de-
vices, namely Zero, Low, Moderate, High, and Very High,
which are, respectively, mapped to values 0, 0.25, 0.5, 0.75, 1.
The privacy cost function is defined as:

cps(ps(Hs, ls)) = PSLs ∗ ps(Hs, ls) ∗ Cs. (15)

In all the experiments we set Cs = 10 and unless stated
otherwise, we use the fixed cost model for energy and we set
the privacy sensitivity level to Zero.

A trust value in the interval [0, 1] is assigned to each sen-
sor. A trust value of zero indicates that the sensor readings
cannot be trusted at all, while the trust value of one implies
that the sensor readings are fully trusted. Even though the
trustworthiness of the sensors can change over the course of
time, for simplicity, we assume that this parameter remains
unchanged over the whole simulation period. Since the trust
or reputation assessment of sensors is not the focus of this
work, we assume that there is a trust assessment mechanism
in place which assigns trustworthiness values to the sensors
upon initialization. In the simulations, unless specified oth-
erwise, the sensors are assumed to be fully trusted.

4.2 Datasets
We use two mobility datasets: RWM generated based on

the random waypoint model [6], and RNC which is a real mo-
bility dataset from Nokia campaign (http://opensense.epfl.ch).
In RWM each sensor moves from its current location with a
speed randomly selected between zero and a sensor-specific
maximum speed. The direction of the movement is either
up, down, left, or right, and is randomly selected. The move-
ments are limited to a region of 80×80 grids. Upon initial-
ization the maximum speed of each sensor is set randomly
to 4 or 5, which are spread randomly in the region. Only a
central subregion of 50×50 is considered by the aggregator
as the working region (or the “hotspot”). That is, only the
queries and sensors that are bounded by this subregion are
considered, but sensors can enter and leave this subregion.
The default number of sensors for the experiments using
RWM is 200.

RNC is derived from a data collection campaign in Lau-
sanne, Switzerland consisting of location information of 180
participants. The whole region of movement is griditized
into grids of length 100 meters. Only a region of 237×300
grids is considered and the working subregion is set to be
a subregion of size 100×100. Because of the high sparsity
of this mobility data, we have shifted the movements times
to have more users in the same day. We also added some
dummy users with the mobility patterns of the existing users
but with randomly selected starting location and time of the
movement from the real trajectories. This resulted in hav-
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ing in total 635 sensors in the whole region and on average
120 sensors in the working subregion in each time slot.

In the simulations involving region monitoring queries,
we use Intel Lab dataset (http://db.csail.mit.edu/labdata).
The simulations are performed over a 20 × 15 region. The
reason for using this data set is that in the experiments for
region monitoring query we need to have real sensor readings
in addition to mobility data. Since the sensors in the Intel
Lab deployment are stationary, we assign the sensor read-
ings to the grids in which they are located. Then we use a
random waypoint model for generating mobility data for 30
imaginary sensors. The sensor reading which is assigned to
a grid is reported as the data for the imaginary sensor that
is located in that grid.

4.3 Single-Sensor Point Queries
We have implemented a baseline algorithm which in each

time slot takes queries one by one and for each query selects
the sensor with maximum utility. A sensor that is selected
to answer a query at a certain location is also assigned to all
other queries at that location. The cost of the selected sen-
sors is set to zero for the remaining queries. This algorithm
resembles execution on query arrival and data buffering for
the duration of a time slot.

In each time slot 300 users submit point queries each with
the location randomly picked over the working region. The
valuation function (3) with θqmin = 0.2 is used for all point
queries. For finding the quality of each sensor reading, func-
tion (4) is used with dmax = 5 for the experiments on RWM
and with dmax = 10 for the experiments on RNC.

Figure 2(a) shows the average utility achieved by different
algorithms per time slot w.r.t. the query budget when RWM
is used. It can be seen that the Local Search algorithm finds
solutions close to the optimal ones. In this experiment, the
query budget is the same for all the queries. Figure 2(b)
shows the fraction of point queries that are answered (sat-
isfaction ratio) by different algorithms. Since the baseline
algorithm does not efficiently benefit from sensor sharing
among queries, it cannot answer any queries when the query
budget is small (i.e., 7, 10). On the contrary, the optimal
and Local Search algorithms can always answer more than
60% of the queries. When the query budget is big enough,
the average utility and the satisfaction ratio achieved by the
algorithms become very close since the queries can afford the
cost of any sensor. As the budget increases, the satisfaction
ratio converges to around 73%. This shows that regardless
of the amount of budget, about 27% of the queries can never
be answered because of the lack of sensors with acceptable
quality in their vicinities. We recall that our goal is to max-
imize utility, not to maximize the satisfaction ratio nor the
quality of results. This means that the optimal algorithm
might not always achieve the best satisfaction ratio com-
pared to the heuristic algorithms. In other words, achieving
higher utility sometimes requires refusing answering queries
for which a lower total utility can be achieved.

Figures 3(a) and 3(b) show the results when RNC is used.
Similar patterns as for the experiment with RWM are ob-
served. However, the average utilities and satisfaction ratios
are smaller than their counterparts in Figures 2(a) and 2(b).
Besides the difference in the mobility patterns, the reason
is that the simulation area in the experiments with RNC
is larger, hence the sensors are more sparsely distributed.
Hereafter, we only present the results on RNC dataset.

In practice we cannot assume that all the queries have the
same budget. Therefore, in the next experiment we chose
the query budget uniformly at random in budget mean ±10.
Figures 4(a) and 4(b) show that the results are very similar
to when the fixed budget scheme is used. Therefore, in order
to highlight more easily the efficiency of the algorithms, in all
the next experiments we use the fixed query budget scheme.

Figures 5(a) and 4(b) illustrate that as the number of
queries increases, the possibility of sharing sensors among
more queries increases, which results in more utility and
slightly higher satisfaction ratio. In the next experiment,
we randomly pick the privacy sensitivity level of each sensor
and we set the sensors use the linear energy cost function
with β randomly chosen in [0, 4]. The results are depicted in
Figures 6(a) and 6(b) for lifetime 50 and in Figures 6(c) and
6(d) for lifetime 25. The figures demonstrate that in general
the utility and satisfaction ratio drop when the participants
become privacy sensitive and use non-constant energy cost
(compare to Figures 3(a) and 3(b).) The difference in the
utilities when the lifetime is 50 and when it is 25 is very
small, which implies that only a few sensors are worn out
during the simulation. Due to their mobility, sensors might
enter and leave the working region at any time, which pre-
vents sensors to be exhaustively used.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 7  10  15  20  25  30  35

A
ve

ra
ge

 u
til

ity

Query budget

Optimal
LocalSearch

Baseline

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 7  10  15  20  25  30  35

Q
ue

ry
 s

at
is

fa
ct

io
n 

ra
tio

Query budget

Optimal
LocalSearch

Baseline

(b)

Figure 2: Single-sensor point queries, RWM dataset,
a) average utility per time slot, b) satisfaction ratio.
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Figure 3: Single-sensor point queries, a) average
utility per time slot, b) satisfaction ratio.
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Figure 4: Uniformly distributed budget, a) average
utility per time slot, b) satisfaction ratio of point
queries.
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Figure 5: Varying the number of queries, with query
budget fixed to 15. a) Average utility per time slot,
b) satisfaction ratio of point queries.
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Figure 6: Random privacy sensitivity level and lin-
ear energy cost function, a) average utility per time
slot - lifetime 50, b) satisfaction ratio of point queries
- lifetime 50, c) average utility per time slot - lifetime
25, d) satisfaction ratio of point queries - lifetime 25.

4.4 Spatial Aggregate Queries
Since other types of multiple-sensor one-shot queries in-

troduced in this paper can be treated similarly to the spatial
aggregate queries, we only consider this query type. We have
implemented a baseline algorithm for answering multiple-
sensor one-shot queries which resembles sequential execution
of queries with data buffering. It takes the queries one by
one and for each query selects the sensors that result in best
utility. The cost of the selected sensors is set to zero for the
subsequent queries in the time slot. The valuation function
(5) is used for all queries. The sensing range of sensors is
set to 10 units. In each time slot the number of aggregate
queries is selected uniformly at random with the mean of 30
queries. The queried regions are generated randomly in the
working region. The query budget for each query q is set

to
A(rq)

1.5rs
b, where rs is the average coverage of the sensors

(which is set to dmax), and b is the budget factor.
Figure 7(a) shows the average utility per time slot w.r.t.

the budget factor. Algorithm 1 not only always significantly
outperforms the baseline, but also can answer queries even
when the budget is small. Figure 7(b) shows the average
quality of results for the answered queries. The average
quality of results for a query is the valuation of the set of se-
lected sensors for that query divided by the maximum value
of its valuation function.
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Figure 7: Aggregate queries, a) average utility per
time slot, b) average quality of results.

4.5 Location Monitoring Queries
We use the technique proposed in [19] for determining

the sampling times for a location monitoring query. This
algorithm works on the historical data and selects the sam-
pling times such that the residuals of the model based on
the values at the sampling times and the model given all the
historical data is minimized. The number of sampling times
is assumed to be fixed and is given to the algorithm. This
approach assumes that the data values for the current time
interval are almost the same as the data values in the same
time interval in the past. Even though this is a weak assump-
tion, it shall not affect the effectiveness of our data acquisi-
tion approach, which is designed to work with any sampling
approach and any valuation function. We use a dataset con-
taining a trace of ozone measurements from a deployments
in Zurich, Switzerland (http://www.opensense.ethz.ch). A
linear regression model is used to model the data. We use
the following valuation function:

vq(T ′,Θ) = BqG(T ′)
∑
θ∈Θ θ

|Θ| , (16)

G(T ′) =

∑N
i=1 r

2
i |T∑N

i=1 r
2
i |T ′

, (17)

where T is the desired sampling times, T ′ and Θ are the
set of timestamps and qualities of the samples taken so far,
Bq is the query budget, N is the number of historical data
items, and ri|T is the difference between the actual value
of the ith data item and the modeled value from the model
generated using only data items with timestamps in T .

At each time slot the number of existing queries and new
queries is always less than 100. The location for each new
query is randomly selected in the working subregion. The
duration of each query is randomly chosen from [5, 20] and
the number of desired sampling times is set to one third of
the query duration. The budget assigned to each query is
equal to its duration times the budget factor. The param-
eter α is set to the constant value 0.5. Figure 8(a) shows
the average utility per time slot w.r.t. the budget factor
using Algorithm 2 compared to a baseline approach. Alg2-
O and Alg2-LS state that, respectively, the optimal solution
and the Local Search algorithm are used for answering point
queries. In the baseline approach point queries are generated
only at the desired sampling times and then the baseline ap-
proach introduced in Section 4.3 is used for answering the
point queries. The average quality of results is shown in Fig-
ure 8(b). The relatively small values for the average utility
and average quality of results stem from the lack of enough
sensors close to the queried locations and the weak assump-
tion in the technique used in determining the best sampling
times, which assumes similar periodic patterns in the data.
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Nevertheless, our approach still outperforms the baseline.
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Figure 8: Location monitoring queries, a) average
utility per time slot, b) average quality of results.
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Figure 9: Region monitoring queries, a) average util-
ity per time slot, b) average quality of results.

4.6 Region Monitoring Queries
In this experiment we assign the valuation function (7) to

all region monitoring queries. The parameters of the Gaus-
sian model are learned from a fraction of sensor readings
in Intel Lab dataset. Function fq in Algorithm 3 is imple-
mented based on Algorithm 4. At each time slot one query
is created with the query region randomly generated in the
simulation area. The duration of the query is randomly cho-
sen in [5, 20]. The budget assigned to each query is calcu-

lated as
A(rq)

3πr2s
b, where rs is the average coverage distance of

the sensors (2 in this case), and b is the budget factor. The
parameter α is set to the constant value 0.5. The following
weight function is used to modify the cost of a sensor which
falls into the region of k region monitoring queries:

w(k) =

{
11− k k < 10

0.1 otherwise.
(18)

Figure 9(a) shows the average utility per time slot w.r.t.
the budget factor using Algorithm 3 compared to a base-
line approach. In Algorithm 3 we use the optimal solution
for answering point queries. In the baseline approach we
do not use cost weighting and we omit sharing sensors that
are selected for other queries and are not at the locations
requested by the query. In addition, the baseline approach
introduced in Section 4.3 is used for answering the point
queries. Figure 9(b) shows that, most of the times, the av-
erage quality of results is more than 1, which means that
the valuation of sensors selected for each query is more than
what was requested by the queries. Note that this is possible
since F (A) is not bounded by 1.

4.7 Query Mix
In addition to Algorithm 5, we have implemented a base-

line algorithm for answering a mixture of queries of different
types. In this algorithm, first the aggregate queries are ex-
ecuted using the baseline algorithm for aggregate queries.

The cost of selected sensors is set to zero for subsequent
queries in the current time slot. In the next step, the re-
quired point queries are generated for continuous queries
and then they are executed along with the point queries is-
sued by end users using the baseline algorithm for answering
single-sensor point queries. This baseline resembles sequen-
tial execution of queries in one time slot with buffering data
for the period of that time slot. The number of point, aggre-
gate, and location monitoring queries is the same as in the
experiments for each individual query type. Due to the lack
of complete measurement data in RNC, we exclude region
monitoring queries in this experiment. Sensor lifetime is set
to 25 and a random privacy sensitivity level is assigned to
each sensor. The linear energy cost function is used by each
sensor with parameter β randomly chosen in [0, 4].

Figure 10(a) shows the average utility per time slot w.r.t.
the budget factor. It can be seen that Algorithm 5 signifi-
cantly outperforms the baseline approach. As Figures 10(b),
10(c), and 10(d) show, the quality of results produced by
the baseline approach for each query type is either zero or
very small when the budget is small. In contrast, our ap-
proach can satisfy many queries even when the budget is
small thanks to more efficient sensor sharing.
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Figure 10: Mix of point, aggregate and location
monitoring queries. a) average utility per time slot
for query mix, b) average quality of results for point
queries, c) average quality of results for aggregate
queries, d) average quality of results for location
monitoring queries.

We have also performed experiments with different trust
value distributions and we observed that the more trust-
worthy the sensors are, the more utility they bring to the
queries. This is indeed expected because in all utility func-
tions that have been considered, the utility has a direct re-
lation with the trustworthiness of the sensors.

5. RELATED WORK
A utility-based sensor selection framework is proposed in

[1] in which the applications can specify the utility of each
set of sensors in a wireless sensor network. Submodular and
supermodular utility function classes are considered. The
goal is to select a sequence of sets to maximize the total
utility while not exceeding the available energy. In [15], the
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problem of sensor selection, where a set of sensors is selected
according to the maximum a posteriori or the maximum
likelihood rules, is formulated as optimizations of submod-
ular functions over uniform matroids. A heuristic approach
based on convex optimization is proposed in [7] for the sen-
sor selection problem with the objective of minimizing the
estimation error. In our scenario, the network model is dif-
ferent and the objective is to maximize the net benefit. As
we allow multiple applications, which potentially have dif-
ferent valuation functions, we cannot identify up front in
which function category our utility function falls.

Simultaneous placement and scheduling of sensors is con-
sidered in [10], where an algorithm is proposed to efficiently
and simultaneously decide where to place sensors and when
to activate them using the submodularity of the utility func-
tion. Two distributed sensor scheduling approaches are pro-
posed in [5, 4]. These works are based on the assumption
that the utility function is submodular. In this paper we
pursue a centralized approach, which is not restricted to
submodular utility functions in order to be able to handle
applications with diverse requirements.

The work of [9] is perhaps the closest to this paper. We
distinguish our work in two main ways: 1) they try to max-
imize the utility of data collection for the queried locations
assuming that the sensors are fully trusted and the budget
is fixed. In contrast, we aim for maximizing the utility of
several concurrent queries, potentially of different types, as-
suming that the sensors are not fully trusted; 2) they assume
that the phenomenon follows a known distribution and uti-
lize this for the near-optimal sensor selection, whereas we
don’t have any explicit assumption on the phenomenon and
we obtain the utility functions from the applications.

The problem of multi-query processing has been system-
atically defined in [14] in the context of relational database
systems. Lifetime-based and event-based queries are in-
troduces along with normal queries in sensor networks in
[12]. Optimization techniques such as reordering of pred-
icates and event query batching has been used to preserve
power. Merging multiple user queries into one network query
and then extracting user data streams from network data
streams is proposed in [13]. Optimizing multiple aggregate
queries in sensor networks is studied in [18] with the ob-
jective of minimizing the communication cost while taking
into account the processing limitations of the sensor nodes.
In order to reduce energy consumption in a wireless sen-
sor network, rewriting a new monitoring query based on the
existing ones and evaluating it in the base station rather
than injecting it into the network is proposed in [11]. In the
AdaptiveCQ framework [17], for efficient processing of multi-
ple continuous queries, the intermediate results of queries are
shared at a fine level without materializing them on disk. [8]
proposes a query planner for distributed stream processing
systems which exploits overlaps between queries and sharing
partial results with the objective of efficient resource alloca-
tion. In our approach, data sharing is implied without using
techniques such as query rewriting.

6. CONCLUSION
We proposed a holistic data acquisition framework for par-

ticipatory sensing (PS) environments, where multiple appli-
cations may pose multiple queries of different types. We
formulated the problem of optimal multi-query data acqui-
sition with the objective of maximizing the total utility. We

proposed heuristic algorithms for maximizing the utility in
a myopic way for the most important query types or their
mixes in this context. As a particular example, we consid-
ered efficient data acquisition for continuous queries in a PS
environment with no guarantees on the data availability nei-
ther spatially nor temporally. As a future work, we plan to
exploit knowledge on the sensor mobility.
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