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Abstract

When the price processes of the financial assets are described by possi-
bly unbounded semimartingales, the classical concept of admissible trad-
ing strategies may lead to a trivial utility maximization problem because
the set of bounded from below stochastic integrals may be reduced to
the zero process. However, it could happen that the investor is willing
to trade in such a risky market, where potential losses are unlimited, in
order to increase his/her expected utility. We translate this attitude into
mathematical terms by employing a class K" of W —admiss-
ible trading strategies which depend on a loss random variable W. These
strategies enjoy good mathematical properties and the losses they could
generate in trading are compatible with the preferences of the agent.

We formulate and analyze by duality methods the utility maximiza-
tion problem on the new domain H". We show that, for all loss variables
W contained in a properly identified set W, the optimal value on the class
H"™ is constant and coincides with the optimal value of the maximization
problem over a larger domain K. The class K¢ doesn’t depend on the
single W € W, but it depends on the utility function u through its con-
jugate function ®.

By duality methods we show that the optimal solution exists in Kg
and it can be represented as a stochastic integral that is a uniformly in-
tegrable martingale under the minimax measure.

We provide the economic interpretation of the larger class K and we
analyze some examples that show that this enlargement of the class of
trading strategies is indeed necessary.
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1 Introduction

We shall be interested in a classical problem in Economic Theory: the expected
utility maximization from terminal wealth in a continuous time stochastic secu-
rity market.

The history of the problem traces back to two seminal papers by Merton [23]
and [24]. Tts study received a renovated impulse in the middle of the Eighties,
when the so-called duality approach to the problem was first developed. During
the past twenty years the theory has constantly improved (see e.g. [2], [5], [6],
[10], [13], [17], [18], [19], [20], [21], [29], [30]). However, a case has been left
apart which is exactly the challenging situation examined in this paper where
the semimartingale X representing the price process can be possibly not locally
bounded.

As usual, we denote with (Q,F, (F¢)¢e[o,7], P) a filtered probability space
and we assume that the filtration satisfies the usual assumptions of right con-
tinuity and completeness. T is a fixed time horizon, which can be as well
+o0: if this is the case, when considering processes Y it is understood that
Yo = lim; Y; exists. We assume that the general, cad-lag semimartingale X
defined on (Q, F, (Ft)iepo, 1], P) is R?—valued.

Assumption 1: Throughout the paper we will suppose that the utility function
u : R — R is strictly concave increasing differentiable and it satisfies the Inada
conditions

u'(—00) £ lim u/(z) = 400, v/ (+00) £ lim u/(x) =0. (1)

T——00 Tr——+00

We then analyze the following problem:

sup Elu(z + (H - X)71)], (P)
HeH

where x € R is the constant initial endowment and H is a class of trading
strategies that is appropriate for general semimartingales.

The class H" of “admissible” trading strategies (Definition 1) that we will
adopt in this paper depends on a random variable W that controls the losses
admitted in trading. We will require that W is suitable to the market model,
so that H" will be rich enough for trading purposes, and that W is compatible
with the preferences, so that the expected utility of terminal wealth is never
equal to —oo (Definitions 2 and 3).

We show, in Theorem 8, that, for all loss variables W contained in a properly
identified set W, the optimal value on the class H" is constant, i.e. it does not
depend on which W € W is selected, and it coincides with the optimal value of
the maximization problem over a larger domain Kg. We prove the existence in
K¢ of the optimal solution and show that it can be represented as a stochastic
integral that is a uniformly integrable martingale under the minimax measure.



We therefore extend existing results in literature in two ways since we allow
the semimartingale X to be not locally bounded and we adopt the new class
H"W of admissible trading strategies.

One other minor contribution of this paper concerns a technical condition
(see Section 2.2) that we will require on both the preferences and the market
model. This assumption is weaker than the condition of Reasonable Asymptotic
Elasticity introduced by Schachermayer [29] and frequently used in literature.

Our approach to solve problem (P) is based on the dual methodology, which
has been proved to be such a powerful tool. The method naturally leads to
the selection of the set M, N Py - of sigma martingale measures having finite
generalized entropy - as the domain in the dual optimization problem, and of
the polar cone K¢ = co(M, N Pp)? as the domain in the primal optimization
problem. The economic relevance and interpretation of both sets is described
in Sections 2.1 and 4. The mathematical motivation for the introduction of the
larger domain Kg is shown in Remark 14.

The paper is organized as follows. In Section 2 we introduce and discuss all
the concepts and definitions needed to formulate our main result, which is stated
in Theorem 8. The examples in Section 3 illustrate the advantages of this new
setting and show that in the classical Merton model the class H" is also useful
to achieve the optimal solution. The dual formulation of the primal problem
and a key result on the existence of the minimax sigma-martingale measure are
shown in Section 5. In Section 6 we characterize the optimal solution to the
dual problem and in Section 7 we complete the proof of Theorem 8.

2 The main results

Given a semimartingale X and a process H, we will use the standard notation
H € L(X)(P) as a shorthand for “H is predictable and X -integrable under
P, An R%—valued process H = (Hy)sepo,1) is called a trading strategy if H €
L(X)(P).

It is common knowledge that some other restrictions must be put on the class
of trading strategies. In the literature (Harrison and Pliska [16], Delbaen and
Schachermayer [7] and many others) the standard definition is that a trading
strategy H is admissible (we will say 1—admissible) if there exists a constant
¢ € R such that, for all ¢ € [0,T], the wealth process satisfies (H - X); > —c =
—c-1 P — a.s. The financial interpretation of ¢ is a finite credit line which the
investor must respect in his/her trading. We will denote with H' the class of
these 1—admissible strategies.

As pointed out by Schachermayer, [29] Remark 2.6, in the non locally bounded
case it can happen that H! = {0}. This fact forces us to introduce the less
restrictive notion of W—admissibility, in order to provide a non trivial enlarge-
ment of the class H'.



Definition 1 Let W € L°(P) be a fized random variable. The process H €
L(X)(P) is W-admissible, or it belongs to H"W , if there exists a nonnegative
constant ¢ such that (H - X)s > —cW Vit <T.

So H' € ‘HW, the containment generally being strict. However it is clear
that if W = 1 then H" = H! and we are back with the standard concept of
admissible trading strategies.

This natural extension of the notion of admissibility was already used in
Scha-
chermayer ([31] Section 4.1) in the context of the fundamental theorem of asset
pricing, as well as in Delbaen and Schachermayer [9]. In a subsequent article
[8], these two authors introduced a different notion of W—admissibility: their
goal was analyzing the super replication price of unbounded claims (see Remark
21 for a comparison).

We will work with H" as the domain in problem (P). To the best of our
know-
ledge, H" as well as any other extension of H! was never used before this paper
in the framework of wutility mazximization for general semimartingale models.

To ensure that utility maximization on H" is really a non-trivial problem, we
put two conditions on the random amount W that controls the losses admitted
in the trading. The first of these two conditions guarantees that H" is rich
enough for trading purposes:

Definition 2 A random variable W € L°(P) is X —suitable (or simply suit-
able) if W > 1 P— a.s. and for all 1 < i < d there exists a process H' €
L(X%)(P) such that P({w|3t > 0 H}(w) = 0}) =0 and

~W < (H"- X% <W, forallt e [0,T]. (2)

This implies that H? # 0 and both investments H® and —H’ in the single
asset X' are “W-admissible”. For each suitable W, we always have H! C HW,
since W > 1.

The second condition imposes that the W —admissible trading strategies are
compatible with the preferences of the investor, i.e. it assures that the expected
utility of terminal wealths z+ (H - X)r from all W-admissible trading strategies
is never equal to —oo.

Definition 3 A random variable W € L°(P) is u—compatible (or simply com-
patible) if W > 1 P— a.s. and

Elu(—cW)] > —oco Ve > 0.

We denote with W the convex set of X —suitable and u—compatible random
variables and we call its elements loss variables.



This compatibility condition is also one of the main novelties of the paper:
it is a precise mathematical formulation of the situation in which an agent is
willing to accept higher risk, in order to increase his/her utility, but only within
a certain degree. We note for future use that if W is a loss variable then
Elu(xz + (H - X)g)] > —o0, for all stopping time R, H € H" and z € R.

We now show that the condition W # () is automatically satisfied in the
locally bounded case.

Proposition 4 If X is locally bounded, then the constant 1 € W.

Proof. Since compatibility is obvious, we prove that 1 is X —suitable. Let
(T)n be a sequence of stopping times increasing to +oo such that X7» is
bounded. We can assume that for all 4, | X/, | < n. Put Ty = 0 and define the
real valued process ¢ as follows:

o= Iy + Z 27" I, )
n>0

so that ¢ - X, as well as its maximal functional (- X*)*, is bounded for all i.
So, Z?Zl(go - X")x < O, with a suitably chosen constant C. Then relation (2)
is verified with W =1 and H* = & for all i. m

However, in the general case W # () may not hold, even in models free of
arbitrage opportunities, so that we will require it.

Example 5 (On W =0) Let T < 400 and consider the trading interval [0,T].
Let (Q2,G, P) be a probability space and'Y be a random variable unbounded from
both sides. Set X equal to 0 if t < T and Xp =Y whent = T and take as
the filtration the P-augmentation of the natural one. Clearly H* = {0}, so that
the model is arbitrage free and 1 is not suitable. Modulo a scaling factor, the
minimal suitable W is 1+ 1Y |. Suppose now that Elexp(c|Y])] = +oo for some
¢ > 0 and that our investor has exponential preferences. Then W = ().

Remark 6 (On compatibility) Let W € LY, W > 1 and consider

W e L™, 3)
Ye>0 Elu(—cW)] > —o0, (4)
Je>0 Elu(—cW)] > —oc. (5)

Obviously (5) is weaker than (4), which is weaker than (3). The strongest con-
dition (3) leads to the well established notion of 1-admissibility, since in this
case HW = H'. The weaker compatibility condition (4) is studied in this paper
and will lead to the results stated in Theorem 8 and in the Remarks after it.
The weakest condition (5) could also be useful for the application to wutility
mazximization. Indeed, together with the property of being suitable, (5) ensures
that there exists some non-zero H € HW such that Elu(z + (H - X)r)] > —o0.
However, this condition would not guarantee the same uniformity obtained under
the present assumption (4). We leave this theme open for future investigation.



For the dual approach we are going to follow, we need the convex conjugate
®: Ry — R of u:
P(y) = Sup {u(z) —zy}. (6)

Then ® is a strictly convex differentiable function, ®(+o00) = +oo, ®(01) =
u(+00) and ¥’ (0") = —o00, P’ (+00) = +00. From the definition of @, the Fenchel
inequality immediately follows:

u(z) <yzr+ @(y), Yz € R, Vy >0, (7)

and
u(—®'(y)) = —y®'(y) + ®(y), Yy >0, (8)

where the usual rule 0 - co = 0 is applied.

In order to formalize the optimization problems that we will discuss, we need
some more notations. Let

P@Z{Q<<P|Ep {@(Z_gﬂ <+oo}

be the set of P—a.c. probability measures with finite generalized entropy and
M, ={Q < P : X is a ¢ — martingale under Q}

be the set of P—a.c. o-martingale measures. In Section 4 we provide more
information about these concepts. Here we only note that when X is bounded
(resp. locally bounded) then

M, ={Q < P: X is a martingale (resp. local martingale) w.r.to Q},

i.e. M, is the set of P—a.c. martingale (resp. local martingale) measures.

Assumption 2: Through out the paper we will suppose that for all Q € M,NPg

Ep [@ <>\%)} < 400 for all A > 0. (9)

For expository reasons, we postpone to Section 2.2 the detailed analysis of
this condition and of its relationship with other similar ones.

Let W € W and let the optimization domains be defined by

KWV = {(H-X)r|HeH"}; KY= ] K";
wew
Ko = (fe [ L'QI|EQlf] <0VQeMNPy 5.  (10)
QEM,NPs



The analog of the domain Kg was first explicitly introduced in the locally
bounded case by Frittelli [12] and [13], who showed its relevance for the exis-
tence of the optimal solutions to both the primal utility maximization problem
and its dual problem. We defer to Section 2.1 the interpretation of K and
its characterization. Here we only note that K3 doesn’t depend on a single
W € W, but only on the utility function u through its conjugate function ®.

Hereafter we have the corresponding optimal values:

UW(z) 2 sup Elu(z + k)|

ke KW

UY(@) & sup Elu(z+ k)]
ke KW

Ug(z) £ sup Elu(z + k)]
keEKs

The values UW (z) and U (z) are well defined, since the condition E[u~(z+
k)] < +oco is automatically satisfied if W € W. From the Fenchel inequality (7)
we get, forx € R, k € Kg, Q € M, NPy and A >0

Elu(z+k)] < E [(:c—F k)A%} +E {@ (A%)} <Az+FE {cb (A%)} < +o00.

Therefore, E[ut(z + k)] < oo and also Ug(z) is well defined, as soon as M, N
Py # 0.

In section 4 we will prove the following inequalities among the optimal values.
Proposition 7 (a) If W is u—compatible, then W € L'(Q) for all Q € Ps.
(b) If W € W then
KVCEKYCKgy and UY(z) <UYW(z) < Us(z)

In Theorem 8 we prove that the above three optimal values coincide and
we state our main result on the existence of the optimal solution in K¢ and its
representation as a stochastic integral.

Theorem 8 Suppose that

there exist Wy € W and o € R such that U™ (xq) < u(400). (12)
Then:
(CL) MU’ N P<I> 75 g,

(b) For all W € W and all x € R the optimal value UV (z) is less than u(+o0);
it does not depend on the particular W € W and

T A>0,Q¢

UV (z) =UW(z) = Up(z) = min {Aw +E [cp <>\Z—g>} } ;



(c) For all x € R there exists the optimal solution f, € Kg:
max {E[u(z + f)]| f € Ko} = Elu(z + f2)] = Us(z) < u(+00).

Moreover, if we indicate with A, Qs the optimal solution of the dual problem in

item (b), then:
dq
— _ / z .
fo=—2—- <>\mdP>’

(d) There exists H* € L(X)(Qz) such that the optimal solution f, coincides Q-
a.s. with the terminal value (H* - X)7 and H* - X is a Q-uniformly integrable

martingale. In case Q, ~ P, this integral representation of f. holds under P,
that is H* € L(X)(P) and f, = (H® - X)r P-a.s.

Hereafter we make some comments on the results just stated.

Remark 9 (On Q, ~ P) Set M¢ 2 M, N{Q : Q ~ P}. When u(400) = +00,
then Qz ~ P as noted in Bellini and Frittelli [2].

The condition M¢NPg # () also ensures Q, ~ P, as first proved in Csiszar [4]
with exponential utility and by Kabanov and Stricker [18] with general w. Their
argument relies on the Inada condition u'(—o0) = +o0o (i.e. '(0) = —oc0) and
it applies also with o-martingale measures.

Remark 10 (On M, N Py # &) Condition (12) is equivalent to
W # 0 and item (a).

Indeed, suppose that Q € M, N Py # &. Then it is always possible to find some
xo € R for which zo + E[@(%)] < u(400). Taking A =1 in (11), we see that
(11) implies Ug(xg) < u(+00) and, from Proposition 7, UV (zo) < Us(zo) <
u(+00), for any W € W.

If condition (12) does not hold true then, even with an arbitrarily large debt
(xg | —00), the investor might become arbitrarily close to his supremum utility
u(400), by investing in claims k € Ko having at most zero cost (i.e. Eglk] <
0) under each Q € M, N Pg. Thus (12) can be regarded as a hypothesis of
absence of utility based arbitrage.

Remark 11 (On FLVR) Note that we never require MS # &. This means,
thanks to the Fundamental Theorem of Asset Pricing by Delbaen and Schacher-
mayer [8], that Theorem 8 holds true even if there are Free Lunches with Vanish-
ing Risk (FLVR). Remember that a claim g € LS is a FLVR if it is positive on
a set of positive P probability and there exists a sequence hy, € (K* — LY (P))N
L>®(P) s.t. hy, — g in L>®(P). Since (K'— LY. (P))NL>®(P) C Kg, this readily
implies that whenever such a g exists, it belongs to Kg.

However, the presence of a FLVR does not preclude that condition (12) holds
true (see Lemma 12), nor the existence of the optimal solution f, € Kg. This
optimal solution is equal to 400 on the set {dQ./dP =0}, which can have
positive P measure when Q,  P. Under the condition (12), a FLVR g will



not be considered by the investor as an interesting opportunity, since g will
not increment the optimal utility. Indeed, * + f, = x + f, + g P—a.s. since
P({f: <+oo}N{g>0}) =0 (otherwise, f, could not be optimal).

We warmly thank W. Schachermayer for suggesting us the counterexample
in Lemma 12 and for pointing out an erroneous statement on the implications
in Lemma 12 in a previous version of this paper.

Lemma 12 NFLVR # (12) # NFLVR .

Proof. In the context of a complete continuous financial market with W = 1,

Schachermayer already showed in Lemma 3.8 [29] that (12) may not hold even
under NFLVR.
For the second statement, it is not difficult (adapting e.g. the proof of Proposi-
tion 3.3 in [29]) to construct a model with a continuous, bounded underlying X
such that: (i) there is precisely one martingale measure @ and (ii) % = 21 4,
P(A) = % Since @ # P, then there are free lunches with vanishing risk. Take
u(z) = —e %, W = 1,z = 0. Then U'(0) < u(+oc0) and the utility maxi-
mization program leads to U'(0) = —4 and fo = 0 on A4, fo = +oo on A°.
[

Remark 13 (On the uniformity over all W € W) Point b) in Theorem 8 pro-
vides a desirable uniformity over all the W € W. From this we see once more
why in the locally bounded case H' is the right set to work with. In fact, H*
is the smallest set of strategies, the wealth processes generated by H' are con-
trolled from below by the smallest bound in VW and at the same time the related
mazimization leads to the optimal value U'(z) = UV (x).

Finally we give the mathematical motivation of the “extra enlargement”
from K" to K needed to catch the optimal solution f,.

Remark 14 Even when Q. ~ P, in general we can not hope that the optimal
solution f, belongs to KV, that is f, can not always be represented as terminal
value of H* - X, with H*eHWY for some W € W.

What may go wrong is well understood in a complete market case, where we
denote with Q the unique equivalent measure in M, N Pg. It may happen that
H* - X is a Q-uniformly integrable martingale, but sup,p(H” - X), s not
Q-integrable. By Proposition 7 (a), we deduce that H® cannot belong to any
HW.

An explicit example can be found in the model described by Schachermayer
in [30], where it was constructed for a different purpose. In discrete times, with
T = 400, the author constructs a locally bounded bidimensional semimartin-
gale (X1, X?), which admits a unique equivalent local martingale measure Q.
Moreover, X! is the optimal solution to the exponential utility mazimization
on the “classical” domain K (recall that 1 € W # 0). Now, in our terminology,
(H* X)oo = XL € Ko, but X1 & K" since sup,,«..(X1),, is not Q-integrable.

n



Using classical techniques (as in Cvitanic et al. [5], Kramkov and Schacher-
mayer [20], Schachermayer [29]) the following statements can be also proved.

Proposition 15 Let Vg be the dual value function, that is:

dQ

Vo (y) = Bl2(y—5)]

in
QeEM,NPg
Then, under the same hypotheses of Theorem 8:

(a) Usp(x) = infyso yz + Vo (y), that is the primal and dual value functions are
conjugate; R

(8) For all y > 0, there exists the unique minimal probability Q, such that
Va(y) = E[@(y%)]; Vg is then strictly convex;

(v) Up and Vg are differentiable and:

dQ, . dQ,
vap ) ap

aUgp(z) = E[/ (x + fo)(x + f2)]-

Vg (y) = E[®'(

2.1 On the economic interpretation of the set Ky

From Theorem 25 we will deduce, in Section 6.1, the following Proposition. The
representation in (13) will also be needed in the proof of Theorem 8, item (d).

Proposition 16 Suppose that W € W and M, N Py # &. Then

N B -0@' = (| FV-IL@ =Ko, (13)

QEM,NPy QEM,NPyg

where A denotes the LY(Q)—closure of a set A.

The weak super replication price fo of each fixed f € N LY(Q) admits
QEM,NPs
the dual representation:

fo2inf{z eR|f—ue Ko} =sup{Eqlf]]| Q€ M,N Py} (14)
and when the above quantities are finite, the infimum is a minimum.

Equation (13) tells us that the class K¢, which by definition is the polar
cone of co(M, N Pg) (see Section 6 for the precise polarity relation), admits a
representation directly based on the set K"V. Indeed, the set KW — L}r(Q)Q
is the cone of Q—integrable claims that can be approximated, in the L'(Q)
norm topology, by elements in K"V — LY (Q) = (K" — L.(P)) N L*(Q), i.e.
by QQ—integrable claims that can be dominated by claims attainable with zero
initial wealth from W —admissible trading strategies (from all W € W).

We end up with n Kwv- LL(Q)Q, since only those Q € M, N Pg
QEM,NPs

10



are “allowed by the utility function v”. To explain this last assertion (see also
Frittelli [13]) note that: @ € M, belongs to Pg if and only if

Vz € R sup {Elu(z + f)] | f € LNQ) : Eg[f] <0} <wu(+o0)  (15)

(the implication @) € Py = (15) follows from Proposition 27 and the reverse
implication from Corollary 2.1 Bellini and Frittelli [2]). Thus, to avoid “utility
based arbitrage opportunities”, similar to those described in Remark 10, the
measures () € M, that are not in Py should not be selected as pricing measures.

Let fe () LYQ) be a “sufficiently integrable claim”. Its weak super
QeM,NPy

replication price, defined as fp 2 inf {r eR|f—x € Kg}, was introduced in
Biagini and Frittelli [3] in order to define a less expensive concept of “maximum
selling price”.

In the “classical” case, the super replication price inf {w ER|f—-z€ Kl}
of a bounded from below claim f admits the representation: sup {Eg[f] | Q € M,}.
Equation (14) shows that the dual representation of the weak super replication

price is: fo = sup{EQ[f] | @ € M, N Ps}. As a consequence, f € Ky if and

only if fo < 0 and so Kg is the set of claims in N LYQ) having “weak
QeEM,NPs
super replication price” less than or equal to zero.

2.2 On Assumption 2

Growth conditions on convex differentiable functions, finite valued on R, were
often considered in the literature about the existence of the minimal divergence
projection (see Section 6), as well as in Orlicz spaces theory. In particular, see
Liese and Vajda [22] Section 8.7, the following condition was extensively studied:

e For any A > 1 there exist yg > 0 and ¢y, ¢2,c3 € Ry such that:

D (\y) < 1P (y) + coy + ¢3, Yy > yo. (16)

If A =2 and cg = ¢35 = 0, (16) is the well known Ay growth property in
Orlicz spaces theory.
- Relation (16) and the assumption that ® (0) is finite clearly imply that (9)
holds true for all Q € Py, so that Assumption 2 is satisfied.

However, when @ is the conjugate of a utility function u, as in our setting,
® (0) finite is equivalent to u(+o00) finite, which is not always the case.
W.lo.g. we will assume in this section that «(0) > 0, so that ®(y) > 0 Vy > 0.
A fundamental step in the solution of the utility maximization problem was
established by Schachermayer, who introduced in [29] the following concept:
The utility u has Reasonable Asymptotic Elasticity RAFE(u) if

! !
D AE- o (w) 2 lmint ™) < 1 and (i6) AE, o () 2 Tmsup™e &) <1

11



(see also Kramkov and Schachermayer [20], where the notion AFE| o (u) < 1 was
developed).

In the theory of Orlicz spaces, the relation between the condition (i) on the
function w and the condition (16) on its conjugate ® is well known (see Rao
and Ren [26] Corollary 4, where the equivalence between Ay and AE_ o (u) > 1
is exactly stated). Schachermayer showed (Corollary 4.2 [29]) that when u has
RAE(u) then the conjugate ® satisfies:

e For each compact interval [Ag, A;] contained in (0,4o00) there exists a
constant o > 0 such that:

D(Ay) < ad(y), for y > 0 and A € [Ag, \1]. (17)

- This is clearly another sufficient condition for (9) to be true for all Q € Psg,
even without the assumption that ®(0) is finite.

Furthermore, consider the following condition
Pq>/\ = Pp VA > 0, (18)

where @) : (0,4+00) — R is defined by @ (y) £ ®(\y), and notice first that (17)
implies (18). Also, Assumption 2 can be rewritten as

Py, "M, = Po N M, YA > 0. (19)
Since RAE(u) implies (17), we get:
RAE(u) = (18) = (19). (20)

While RAFE(u) is a condition only on w (as (17) is a condition only on @),
(18) concerns both P and ®; and (19) involves P, ® and the market model
via the set M,. In general none of the implications in (20) may be reversed.
One trivial case is when P assigns non zero probability only to a finite number
of atoms: Then (18) always holds true, regardless whether u satisfies RAF(u)
or ® satisfies (17). We provide now two non trivial cases where the weaker
Assumption 2 holds, but RAE(u) is not verified, nor (17).

Example 17 (a) (complete market) Suppose that X is modelled as a multi-
dimensional diffusion, that the market is complete and the unique martingale
measure has square integrable density (this is the case when e.g. the market
price of risk is bounded). If ®(y) < y* for ally > 0 then clearly (19) holds true.
However, ® does not necessarily satisfy (17) - and hence u does not necessarily
satisfy RAE(u). Such a ® can easily be derived as in the example in Rao and
Ren [26], page 27. This shows that even if ® has at most polynomial growth, ®
may not satisfy Ao - nor (17) or (16).

(b) (incomplete market) Suppose that all the elements Q € M, have bounded
densities wrt P. Then, whenever ®(0) < 400, the relation (19) holds true even
if u does not satisfy RAE(u) nor ® satisfies (17) - take for example ®(y) =
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(yIny + DIrocy<iy + ¥ Hiysay.

To build a market model where % € L for allQ € M, consider a sequence
of independent bernoullian variables (Y, )n>2 such that the possible states of Yy,
are #, —#, each with P-probability % Let Y1 be independent from (Yy)n>2,
with the three possible states —1,0,1, (say) each with P-probability % and let
Yo = 0. Consider the filtration generated by Y. Define Xg = 0, X1 = Y7,
X, =Xn1+Y,+ ein ifn>2 X =Ilim, X, and T = oco. The market is
incomplete and it is easy to find out the martingale measures for (X )n<oo: take
Wg = Z1(a)Zz -+ Zn, where Zy(a) = 3oy, =13 +3(1—20) I 1y, —oy +3al gy, —_1y
with 0 < a < % and Z, = (1 — Z—j)l{ynzl/na} +(1+ Z—:)I{m:,l/nz} forn >
2. An application of Kakutani’s theorem gives that M, = MS = {Q“ % =
lim, W, with 0 < a < 1}, where the limit is in L' and also a.s. To show that

n?
n

each Q% € L°°, notice that 0 < % < N Z1(@) oo limy, T (1 4 k2e7F) < oo,

n
since the series > In(1 + k?e™%) converges.
k=2

When X is a locally bounded semimartingale and H = H?*, Schachermayer
[29] showed that RAE(u) (together with Assumption 1 and U'(z) < u(o0))
implies the existence of the optimal solution of problem (P). He also showed
that if the utility function u does not satisfy RAE(u) then it is always possible
to find a probabilistic model (2, F, (F)efo,17, P) in which problem (P) has no
solution.

This is not in contradiction with our main result: When X is a semimartin-
gale - not necessarily locally bounded - Theorem 8 shows that Assumption 2
(together with Assumption 1 and U" () < u(c0)) is a sufficient condition -
on P, u and M, - for the existence of an optimal solution to (P). Thus, under
Assumption 2 we always obtain an optimal solution even if u does not satisfy
RAE(u).

We remark that one other condition, necessary and sufficient for the existence
of optimal investments, involving P, u and the set of local martingale measures
has been already introduced by Kramkov and Schachermayer [21] in the different
setting of utility functions finite valued only on R .

Another advantage of using Assumption 2 is that all our results will be pre-
sented in a self contained manner. Indeed, in all our proofs we will either directly
apply Assumption 2 or use the very simple facts stated in the next Lemma and
deduced only from (9).

Lemma 18 Let © : Ry — R be a convex differentiable function and Q < P. If
Ep[O(A\IL)] < 400 YA > 0, then :

(a) O (N5 e L1(Q) YA > 0;

(b) If (9 +g71) € L (P) then E[O(g#)] € ’;

(c) If ©'(0F) = —o0, ©'(+00) = +oo and O is strictly convex then F(\) =
E[%@’(A%)] defines a bijection between (0, +00) and (—o0, +00).

13



Proof. Set n = %%.

(a) From O'(y) < %,a>l, and ©'(y) > W,a<lit

follows that ©'(n) € L'(Q). We may apply the same argument to the function
Ox(y) £ O(\y), A > 0, and deduce that ©)(n) = A0’ (\n) € L}(Q).

(b) There exist M > € > 0 such that ¢ < g < M, P—a.s. Therefore, if
A ={6(en) = O(Mn)} , O(en)La-+O(Mn)Ix < O(gn) < O(en)Ia+O(Mn)lae,
P—a.s. and —oo < E[O(gn)] < +oc.

(c¢) From (a) we deduce that F is finite valued on (0,+00). Note that ©’
is strictly increasing from —oo to 400 and it is continuous on (0,+00). Then
A — nO©'(An) is P—a.s. monotone on (0,+00) and F is strictly increasing on
(0,+00). Since n©’(An) € LY(P), for each A > 0, by the monotone conver-
gence Theorem we deduce that F' is continuous on (0, +00) and limy o F/(A) =
Ellimy|gn©'(An)] = —oo, limyjee F'(A) = E[limyjc 7O’ (An)] = +00, and so
item (c) follows. m

3 Examples

Hereafter we give two examples of the application of the new class of strategies.
In particular, the second one really shows the performances of H". In both cases
we deal with the exponential utility u(z) = —e~* and therefore ®(y) = ylny—y.

3.1 Merton’s model

With Merton’s model we mean a Black Scholes market model where we have an
exponential utility maximizer agent. Then, if with B we indicate the standard
Brownian motion, the discounted asset price follows the dynamics:

dXt = /,LXtdt + O’XtdBt

up to the (finite) horizon T. Here X is continuous and hence locally bounded
(and so one may also apply the results in Schachermayer [29]). The hypothesis
of our Theorem 8 are satisfied with Wy = 1, x arbitrary, so that for any W € W
we get UV (z) = Ul(x).

Let Z; = By + £t be the Brownian motion under the unique martingale
measure Q. It is widely known that U'(z) = E[—e~(*+%%7)] and that the
supremum is reached on the claim f, = £Zp, which is independent from x
and does not belong to K', because it is unbounded. But if we take W =
1 — inficr Z;, then W € W and f, € K. Indeed f, = £ [ -1-dX,, with
H=AseH".

This classic setup thus provides an example in which the set of strategies
H? is strictly contained in H"W, while U'(z) = UV (x). The enlargement of
strategies does mot increase the maximum expected utility, but in this case it is
necessary to catch the optimal solution to the primal problem.

14



3.2 Exponential utility maximization with infinitely many
unbounded jumps

Let X now be a scalar Compound Poisson process, that is X; = Zqu Y, in
which: (i) Tp = 0 and (7});>1 is the sequence of the jump times of a Poisson
process N; (ii) Yo = 0 and (Yj);>1 is a sequence of ii.d. random variables
independent from (7});>1.

Fix a finite horizon T and choose the filtration F to be the P-augmentation
of the natural one. Since X is a strong Markov process, F is already right
continuous.

Whenever the Y} are unbounded from both sides H' is trivial. So, we as-
sume that the Y; are normally distributed, with mean m # 0 and variance
o?. Classical utility maximization is then trivial and U'(z) = —e™2, but
let us see what happens if we maximize over some H"W, with W € W. Set
W =3 en(1+Y1 [+ - -+|Yo|) [{np—ny. In practice, we disintegrate according to
the jumps of NV and we sum the absolute value of the occurred jump sizes. Then
W € W, since W > X; > —W for all t and E[—e*"V] = _ATEE-1)
for all @ € R. The condition sup,cxw E[—e~*] < 0 can also be verified by dis-
integration with respect to Np. Thus, we can apply the results of Theorem
8:

sup E[-e*7F = ax E[—e*7F
Jup [—e™"] max B¢~

. dq
R T {/\EQ[ln(d—P)] + Az —1+1In /\)}

the optima being f, = 25 X (which belongs to K W and it does not depend on

x) and dd%‘ = exp(—Z5 Xp — AT'(e” 2. — 1)). Hence, by accepting more risk,
the expected utility is strictly increased:

Ug(z) = —exp(—z + AT(e_% —1)) > —e " =U(z).

4 Sigma martingale measures and the supermartin-
gale property of H"

In their seminal work [8], Delbaen and Schachermayer first showed the finan-
cial importance of the existence of (equivalent) probabilities that make X a
o-martingale. Emery [11] proved a nice characterization of o-martingale pro-
cesses, which shows “how weak” this property is with respect to the local mar-
tingale property. Hereafter we state the characterization that will be used in
subsequent proofs.

Proposition 19 ([11], Proposition 2) Let X be a d-dimensional semimartin-

gale on (Q, F, (Fi)ieo,r), Q). The following conditions are equivalent: a) X is
a o-martingale; b) there exist (scalar) processes K® with paths that Q — a.s.
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never touch zero, such that K' € L(X*)(Q) and K*- X" is a local martingale; c)
there exist a d-dimensional H*(Q) martingale N and a positive (scalar) process
Y € M<i<aL(N*)(Q) such that X' =1 - N*.

Let W € LY(P) and define:

Mow £ {Q€ M, | Eg[W] < +oo};
Mapw 2 {Q < P|Eg[W]< +o0o and H - X is a Q-supermart. VH € H"};
Mrw 2 {Q < P|Eg[W]< oo, (H-X)r € L'(Q) and

Egl(H - X)r] <O0VH € HV}.
Applying a classical result by Ansel and Stricker [1] we deduce:

Proposition 20 Let W € L°(P) and suppose that M, w is not empty. Then:
(a) For all H € HW', H - X is a local martingale and a supermartingale under
each Q € My w;

(b) If W is X —suitable, then

MU,W = Msup,W = MT,W;
(c) If W is u—compatible, then
Ma,W NPy =M,NPsp.

Proof. (a) By definition, there exists a ¢ > 0 such that (H - X), > —cW.
Now, if Q € M, w, there exists a positive predictable scalar process 9 (of course,
depending on @) such that ¥~ X is a Q uniformly integrable martingale!. So,
under Q, H-X = (YH) - ("' - X) is a stochastic integral wrt the martingale
('gb_l - X) and its negative part is controlled by the Q-integrable variable cW.
Thanks to Ansel and Stricker [1], H - X is then a @-local martingale and a
supermartingale.

(b) Let H* be as in Definition 2: then —W < (H*- X%); <W, for all t <T.

First we prove that M, w = Mgyup w. By item (a), we only have to prove
that Mgupw € Mo w. Fix s <t <T. If Q € Mgypw and A € Fy, then it is
easily seen that both I41(, H, —Ialisy H' are in HW:

(FTalsqH') - X'y = LA (H' - X)upt — (H' - X")s]Iussy = —2W

therefore Eq[((Ial(s4H®) - X")r] =0 and thus M* £ H*- X" is a Q-martingale
for all ¢ = 1,---,d. Since it verifies condition b) in Proposition 19, X is a
o-martingale under Q.

Then, we show that M., w = M7, w: we prove only the nontrivial contain-
ment Mpyw C Mgyp w, by the following standard argument.

Define the stopping times (increasing to T') T,, = inf{t < T'| (H - X); > n}

INote that sometimes we make a slight abuse of notation: while =1 . X = (¢~ 1.
X1,---,%~ - X4) with componentwise integration, H - X stands for vector stochastic in-
tegration. We use the same symbol for both types of integration, since no confusion arises.
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andfixs <t <Tand A € F,. If (H-X); > —cW, then also Ialjs sa7,,)H € HY
since

((LaH s tnr,)) - X)uw = —cW —n > —(c+n)W.
When @ € My w we have EQ[((IAHI]s,t/\Tn]) - X)7] <0, so that:

EQUA(H - X)int, L1, >s)) < EQUa(H - X)slir,> 5]

Observe now that |[I4(H - X)sItr, s < |(H-X)s| and (H-X), € L'(Q), since
I gH € H"W. In addition, I4(H - X)iat, I{,>5y > —cW: hence an application
of Lebesgue dominated convergence theorem on the rhs and of Fatou lemma on
the lhs leads us to the final inequality Eq[la(H - X):] < Eg[la(H - X)s].

(c) Since W > 1 then Eg[W] > 1. Replacing in the Fenchel inequality (7) x
by (=W), y by %% and computing the expectation, we see that W € L1(Q) for
all @ € Pgp. Then (c) follows. m

Proof of Proposition 7 (a) follows from the proof of item (c) in Proposition 20.
(b) Applying Proposition 20, we deduce that if W € W and if Q € M, N Pp =
MU,W NPy = MT,W N Py then EQ[k] <0Vk e KW,

Remark 21 The definition of W -admissibility is inspired by Section 5 in Del-
baen and Schachermayer [8] and by the extended notion of admissibility there
introduced. From Definitions 5.1 and 5.4 in [8], if W > 1 is a feasible weight
Junction for X then Mg y, £ M, wn{Q ~ P} # 0. And a strategy H is

W -admissible in the sense of [8] (briefly H € 7‘~(W) if the losses are controlled
in the following way: (H - X)¢ > —cEq[W|F], for every Q € Mgy, .

One can also check that if W is a feasible weight function, then it is also
X-suitable. If that is the case, then HY C HW, thanks to the supermartingale
property shown in the above Proposition.

In our setting, we do not need the assumption Mg y, # (. Also, we note that
Delbaen and Schachermayer’s control of the losses requires the heavy computa-
tion of the set of processes (EQ[W|F]):, generated by all the Q € Mg . On
the contrary, our condition of W -admissibility relies only on the single random
variable W. In addition, if R is a stopping time, the admissibility of H, in the
sense of [8], does not imply that of HIp r). Our class HW satisfies this prop-
erty, which seems a natural request, both from a mathematical and a financial
point of view. Hence when W is a feasible weight function, HW is smaller than
HW', and easier to handle in practice.

5 Dual formulation of the primal problem
In this section we consider a general setting, where K is a convex cone (0 € K)

contained in the set L**(P) & {f € L°(P)|3c € Rs.t. f > ¢ P—as.} of
bounded from below random variables.
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We use the notation KW = {f = kW |k € K} and similarly for /W. Define

(1>

M (K) {Q< P:keL'(Q)and Eglk] <0 for all k € K}, (21)
Mw((K) £ {Q<P:WeL'Q)and h e L'(Q), Eg[h] <0Vhe KW}.

The following Theorem proves the existence of the minimax measure in Mj (K)
(see Bellini and Frittelli [2] for a detailed analysis of this topic) in a general
framework, since W may be unbounded. From a simple check of its proof, we
see that Assumption 2 is not necessary in Theorem 22.

Theorem 22 Let K C L**(P) be a convex cone and let W be u—compatible. If
supsex Elu(z + fW)] < u(+o0) then M1(K) and My (K) are not empty and

. ax a dQ
EEEE[u(w +EW)] = a>0,énel/r\l/ll(lc) {EQ [W] + FE [CD <Wd_P>} }

dR
= i E|® (A .
>\>O,Rr2.1/\1/llw(lc) {Ax * { (AdP)} }

Proof. We will follow the proof of Theorem 2.1 in [2] with a key device
consisting of thinking 4(w, ) = u(z + W (w)), with £ € R, as argument of the
expectation. Let Iz(h) £ Ela(w, h(w))], D £ {h € L>®(P) | Is(h) > —oc} be its
effective domain and set C = (K — LY (P)) N L>(P). Since W is u—compatible,
then for all h € L>°(P) we have I5(h) > Elu(z— || h ||oo W)] > —o0. Therefore
D = L*°(P) and we may apply Fenchel’s duality theorem:

sup Elu(z + kW)] = sup E[u(z + hW)] = min {0co(2) — (Ia)*(2)}, (22)
kek hec z€ba(P)

where the first equality follows from the Fatou Lemma and the assumption
K C LP*(P). In (22) the polarity refers to the dual system (L>(P),ba(P)), dco
is the indicator functional of the convex cone C, the polar of C with respect to
(L*°(P),ba(P)), and (Iz)* is the concave conjugate of Ij.

Define the pointwise convex conjugate of @ as:

) = sup (i, ) — ) = s+ (5 )

(w

where @ is the convex conjugate of u (see equation 6). Set I_z(h) = E[—®(h)]

(and I(h) = E[®(h)]). Since @ is a normal concave integrand in the sense of
Rockafellar [27], we can write:

(Ta)"(2) = I_g(2a) = 0p(—2s),

in which z,, z, are the countably additive and purely singular parts of z and
0p(2) = sup;ep 2(f) is the convex conjugate of dp. But D = L>(P) so that
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(5}5 = 5{0} and

B, o) = '@} = gin,, L)

. zx z
= aim Pl 20 )}
. ax a dQ
= Eo |— E|o(—=—
a>o,3§?41(zc>{ Q {W] * { <WdP>H’
since M7 (K) = {Q < P : Eglg] <0 for all g € C}. Note that the minimum is
not attained by z = 0, because sup e, Elu(z + fW)] < u(+00) and @(0) =

u(+00). Since Q € M;(K) iff R € My (K), where 2& = %% and 8 > 0 is
the normalizing constant, the proof is completed.

5.1 Application to W —admissible strategies

Wo

We come back to the setting of the Sections 1-4 and let K £ KWO with Wy e W.
From the definition of Myy, (KC) and of My, we immediately get:

M, (K) = {Q<P|WyeL'Q), g€ L'(Q) and Eglg] <0Vg e K0}

MT,WQ = MO’,W()7
where the last equality follows from Proposition 20, since Wy is X —suitable.

Corollary 23 If there exist Wy € W, z € R such that UV° (z) = supy,c gwo Elu(z+
k)] < u(+00), then M, N Pg is not empty and for all W € W

UVo(z) =UY(z) = UV (2) = min {/\:H—E{Q) (A@ﬂ}, (23)

T A>0,QEM, NPy dP

Proof. IfK= KMZO, then K is contained in L**(P), My, (K) = My w,

and we may apply Theorem 22:

—q _ . dQ
S Elu(z+k)] = ZlelgE[u(:C-l-kWO)] = o iy {A:c +E {cb <>\F)} }

(24)
Using Assumption 2 and Proposition 20, we see that the minimax measure
attaining the minimum in the above equation belongs to M, w, NPs, = M w,N
Py = M, N Py. For any other W € W we deduce, as in Remark 10, that
UW(z) < u(4+00). Therefore, (24) holds true for an arbitrary W € W and so
(23) follows. m

6 Solution to the dual problem

In this Section, the convex cone K C L°(P) is not necessarily contained in
LP(P). Recall the definition of M (K) given in (21) and suppose that:

N(K) = M (K)n Py # 0.
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To simplify the notation, we drop the dependence of these sets of measures on
IC. Let’s define the linear spaces

L= () L'Q) and L' = Lin{N'} C L'(P).
QeN

The map < 1,1’ >: Lx L' — R given by < [,1’ >= E[ll'] is a well-defined bilinear
form on L x L'. We put on both L, L’ the weak topologies: o(L, L") and o(L’, L)
respectively. All the polars are defined with respect to this dual system which
is not necessarily separated (see Grothendieck [15], as a standard reference for
details on general dual systems). We remark that X C L by construction.

The following theorem provides a necessary and sufficient condition for the
existence of the projection of P on M; with respect to the ®—divergence dis-
tance. Theorem 24 is essentially Theorem 5 in Riischendorf [28], when A = 1.
The proof we present here is the generalization of the proof of Theorem 2.3 in
Frittelli [12]. Theorem 24 (in the formulation given in Corollary 26) is crucial
for the proof of Theorem 8.

Theorem 24 Suppose N = M1 N Py, , YA > 0. Then Qx € N is optimal for

inf {E {cp <)\Z—g>} Qe N} (25)
if and only if fx = E[n,® (Mny)] — @' (Any) € (co(N))°, where ny = dQx/dP.

Proof. First consider A = 1. Suppose that @ is optimal for (25) and let
Qo € N. Set n, = %7 &, =xny + (1 —x)ny, € [0,1]. By optimality of @1,

we necessarily have (- E[®(,)]|z=0) > 0. From the convexity of ® we derive
0@ (1) < 1@ () + (o) — 2(my) P —a.s. (26)

From Lemma 18 (a) and from (26) we obtain
m® (n,) € L' (P) and (0@’ ()" € L' (P). (27)

Set H(x) = ®(&,), = € [0,1]. By convexity of H, (w) is non decreasing.
Since E [H(1) — H(0)] < 400, we apply the monotone convergence Theorem to
get:

d

L B0, |amo = lim B [

= E[H(0)] = E[2'(n)(no —m)]-
From (27) and (28) we deduce 1,®'(n,) € L'(P) and f1 € L'(Qo). From

equation (28) we get: 0 < Eqg,[®'(n1)] — Eg,[®'(n1)] = —Eg,[f1]- This holds
for all Qo € N and so f1 € (co(N))°.

o
IN

H(z) — H(O)} (28)

X
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Conversely, suppose f1 € (co(N))?. Then, for any Qo € N

)
E[®(n )]+EQ0[ "(m)] = Eq,[@'(m)]
= E[@(m)] - Eqlf1] = E[®(m)].
d

Now fix A > 0 and set 7, = Note that Q) € N is optimal for (25) iff it
attains the infimum in: inf {Eq),\( )| Q€ N} From the case A = 1, applied

to the function @), then the last statement is equivalent to f1 = E[n,® (n,)] —
P () € (co(N))?, and the thesis follows from the cone property of (co(N))°.
|

The following Theorem is the abstract version of Proposition 16, which is
used in Section 2.1. It was first proved in Biagini and Frittelli [3], in the case
K C LP and ®(0) < 400 and by Owen [25] in the case K C L', & generic. We
prove the version with general K and &.

E[®(n)] =

Theorem 25 Suppose that N = My N Py, for all X > 0. Then

N K-LLQ —{feL|EQ[ ] <0 for all @ € N} 2 (co(N))°; (29)
QeEN

folimt{zeR|f-ze () K-1LQ° p =sup{Falf]| Q € M}
QEN

Vf € L, where A% denotes the L' (Q)—-closure of a set A.

Proof. Set C = | IC—L}r(Q)Q. We need to show that (co(N))? C
QeEN

C, since the opposite inclusion is obvious. Let k € (co(N))? and suppose by
contradiction that there exists Qo € N such that k ¢ K — Li(QO)QO
By the Hahn-Banach Theorem, there exists £ € L>(Qq) such that:

sup B, [Ef] <0 < Eq,[¢k]. (30)
FEK—L1(Qo)

Since _I{E<0} € (K- LY (Qo)), we deduce that £>0Qo— a.s. Since E‘f,%] >0

P — a.s., we normalize E , call it £, and define a probability Q1 < P by setting:
LQl = EdQO From equation (30) we then derive Q1 € M and Eg, [k] > 0.

Flrst consider the case ®(07) < +o0o. We claim that Q1 € Ps, so that
Q1 € N, which is in contradiction with k € (co(N))?. In fact, fix A9 > 0 and
let ¢* be the unique solution of ® = 0. Since ® increases after ¢* we have:

d d d
E[@(%)} SE[@@ fO)I{gm}}w(m [ o T2 sy }I{M}}

and the rhs is finite since Qo € N' = M1NPg, VA > 0 and we may apply Lemma
18 (b) to E {@( %)I{@)\O}] because ¢ is bounded P—a.s on {dd%’ > O}.
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Now suppose that ®(07) = +oo. Then the condition Qy € Pp implies
Qo ~ P and therefore %—; € L>*(P). Consider the convex combination Q* =

AQ'+(1-1)Q° € My. If A€ [0,1) then 0 < 1—X < 995 < A28 41— X holds

P —a.s and therefore Lemma 18 (b) and Q° € Py imply again CID(ddQPi) € LY(P).
So VA € [0,1) Qx € N. However, since Eq, [k] = AEg, [k] + (1 — A\)Eg,[k] and
Eq, [k] > 0, there exists A* € [0,1) such that Eg,.[k] > 0, which contradicts
k € (co(N))°. The proof of (29) is now completed.

As an immediate consequence of (29) we have:

o(L',L)

Cis o(L,L') — closed, C* = C, C° = co(N) (31)

For any subset G C L'(P) weset: G1 = {2z € G : E[z] = 1}. An easy application
of the Hahn-Banach theorem permits also to conclude that

o(L',L) L',L) L',L)

(coN) =N and so (€°); = N7 (32)

Theorem 10 [3] states that if G C L is a convex cone satisfying G = G,
(G°)1 # @ and —Iq € G then for all f € L we have:

inf{fz eR|f—2e€G}=sup{E[zf] |z € (G°)1}. (33)

Applying (33) to the set G = C and using (32), we get for all f € L:

inf{x€R|f—m€C} = Sup{EQ[f]lQGNU(L’,L)}
= sup{Eqlf] | Q@ €N},

since Fo[f] : L' — R is (L', L)—continuous. m

6.1 Application to I¥-admissible strategies

We come back to the setting of the Sections 1-4 and we let X = KW with
W € W. From the definition of M;(K) and of My and by Propositions
20 and 7, we immediately get M1(K") = {Q < P | Eq[k] <0Vk € K"} and
N(KWY) = My (K")N Py = My w N Py = M, N Pp. From the definitions of
L, L' and of K¢ (see (10)) we then have: K¢ = (co(M, N Ps))°.

Recalling from Proposition 7 that K" C K" C Kg, one may now easily
deduce Proposition 16 from Theorem 25. Moreover, from Theorem 24 we get:

Corollary 26 Suppose that M, N Py # @. If A > 0 then Q\ € M, N Py is

optimal for
(2[5 (+22)] |20

if and only if fr = En\® (Mn,)] — ®'(\n,) € Kg, where 0y = dQy/dP.
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7 Solution to the primal problem

Proposition 27 If Q € Py satisfies (9), then for all x € R the optimal A\(z, Q)

solution of
e

18 the unique solution of the first order condition

dQ o (4Q\ | _

and f, & —x — @’(A(m,Q)%) € {f € L' Q) : Eq[f] =0} satisfies
sup { Elu(z + f)] | f € LN(Q) and Eq[f] < 0} = Efu(z + f,)] < u(+00). (35)

Proof. The existence and uniqueness of the solution to (34) follow from
Lemma 18 (c). Set n = % and \* £ \(z,Q) and recall from Lemma 18 (a)
that, for all A > 0, n®'(A\n) € L' (P), which implies, thanks to (8) and (9), that
u(—®'(An)) € L'(P). From Fenchel inequality (7) and from (9), we deduce that
for all f € L}(Q) with Eg[f] <0 and for all A > 0:

Elu(z + f)] < E[M(z + )] + E[@(An)] < Az + E[@(An)] < +o0,
and therefore:
Elu(e + )] < jnf EXa +20w)] = Xo+ B@(n)] =

@ Eu(-' )] = Blu(+ £,

where in the equality (a) we used (34) and (8). However, f, € L*(Q), since
(M) € LY(Q), and Eg[f.] = 0 (from equation (34)). Hence, f, attains the
supremum in (35) and, from the strict monotonicity of u, we deduce E[u(z +
f2)] <u(400). m

Proof of Theorem 8

(a) and the main part of (b) follow directly from Corollary 23. Since we know
that there exists @ € M, N Pg, from Proposition 27 we deduce that for all x € R
we have:

Us(z) < sup{Eu(z + f) | f € L'(Q) and Eg[f] < 0} < u(+00)

and this completes the proof of point (b).

(c) We show first that Us(z) = U (z). As an immediate consequence of (11)
and of Proposition 7 we have:

UW(z) < Up(z) < min {/\x +E [q) (A%)} } : (36)

T A>0,QEM, NPy
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and by Corollary 23 we get that equalities must hold in the above formula.
Now, we show that there exists the optimal solution f, in Kg. Consider the
dual problem in (36) and think about it as:

: : dQ
s B ()]}

Let us first minimize over A with fixed @ € M, N Py. The minimum in
miny~g {)\w +FE [@ ()\%)] } is reached when the optimal A(z, @) is the unique

solution of the first order condition in (34).
Then we minimize over ) and we face:

ocmin {/\(:c, Q)+ E {@ (A(:c, Q)%)} } .

Denote with @, the optimal probability measure, with 7, its density and set
Az = Az, Q). Now, consider the two obvious facts:

1. Q4 is also the optimal solution to mingenr,np, {Asz + E[®(A:dQ/dP)]}
2. A is also the optimal solution to minysg {Az + E[®(An,)]}

We can apply Corollary 26 to the problem in the first item to get that
fe 2 E[n,® (M\an,)] — @ (A\en,) belongs to Kg. Looking at the second item, we
realize, as in equation (34), that

 + Eln, @' (Aan,)] = 0, (37)
so that f, = —x — ®'(\,n,). From (8) we get:

Finally, by taking expectations on both sides, we obtain Flu(z + f,)] = A\x +
E[®(Azn,)], since (37) holds.

(d) We now prove that f, can be Q,-represented as the terminal value of a
stochastic integral H* - X, which is a @),-martingale. We have just shown that
fz € Ko and that Eq,[f;] = 0 (in (37)). Fix W € W. Then, from the

representation of Kg in (13), f, € WQE, so that we can select a sequence of
integrals Y™ = H" - X with H" € H" such that (Y")7r — f, in L}(Q,) and
Q.-a.s. After this key observation, we can proceed in a standard way (see e.g.
Schachermayer [29], Step 10 in the proof of Theorem 2.2).

The sequence (Y™), is made of @), supermartingales, but a priori we can
not control the losses uniformly on n.

However, by passing to a subsequence if necessary, >, || YA—Y7 ! |1, <
+00. Take the supremum over the negative parts (here and in what follows the
inequalities are intended to hold Q,-a.s.):

Z =sup(Y{)” <| Y7 |+ 1Y -yt
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then Y7* > —Z and Z is Q,-integrable. Consider now the (cadlag version of
the) martingale generated by Z: Z, = Eq,[Z | F;]. This process (Z;); controls
the losses of the Y™ at every instant t. In fact, just use the supermartingale
property of the Y™:

Yi > —Z =Y > EQ[Yr | Fil > —Eq.[Z | Fil.

Hence, since @, € M,, by Theorem D in Delbaen and Schachermayer, [9] (in
the version stated in [8] section 5), we can find a H* € L(X)(Q,) and a super-
martingale V such that: (i) (H*-X); > V; Qg -a.s. forall t; (ii) Vr = f, Q.-a.s.
But then, again by the result of Ansel and Stricker [1], H*- X is a ,-local mar-
tingale and a supermartingale. To end up, 0 > Eg [(H* - X)r| > Eg,[fs] =0
implies f, = (H” - X)7 Qg -a.s. and that the process H* - X is a true Q-
martingale. O
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