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Jakša Cvitanić ∗

Department of Mathematics
USC, 1042 W 36 Pl, DRB 155
Los Angeles, CA 90089-1113
cvitanic@math.usc.edu

Walter Schachermayer †

Department of Statistics, Probability Theory and Actuarial Mathematics
Vienna University of Technology

Wiedner Hauptstrasse 8-10, A-1040 Wien
wschach@fam.tuwien.ac.at

Hui Wang
Department of Statistics

Columbia University
New York, NY 10027

wanghui@stat.columbia.edu

September 23, 2002

Abstract

This paper solves in great generality a problem in mathematical finance: to find a solution to
the problem of maximizing utility from terminal wealth of an agent with a random endowment
process, in the general, semimartingale model for incomplete markets, and to characterize it via
the associated dual problem. We show that this is indeed possible if the dual problem and its
domain are carefully defined. More precisely, we show that the optimal terminal wealth is equal
to the inverse of marginal utility evaluated at the solution to the dual problem, which is in the
form of the regular part of an element of (L∞)∗ (the dual space of L∞).
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1 Introduction

The problem of utility maximization in incomplete markets is relatively new - it was solved in Ito-
processes models of financial markets by Karatzas, Lehoczky, Shreve and Xu (1991) (henceforth
KLSX[91]), using the powerful convex duality/martingale approach, which enabled the authors to
deal with models which are not necessarily Markovian (for a more detailed history of the problem
see Kramkov and Schachermayer (1999), henceforth KS[99]). The approach has recently been
generalized to semimartingale models and under weaker conditions on the utility function by KS[99].
One of the main innovations of the latter article, that made the approach work in this general
context, was the extension of the domain of the dual problem: it is defined through a family of
random variables Y (T ) (here T denotes the terminal time) associated with nonnegative processes
Y (·) which are such that, for any admissible wealth processs X(·), the product process X(·)Y (·) is
a supermartingale, and not necessarily a local martingale as in KLSX[91]. In both KLSX[91] and
KS[99], the agent was endowed with an initial capital x > 0, and received no endowment after the
initial time t = 0. Attempts to extend the KLSX[91] approach to an agent who receives a random
endowment process have failed (if the endowment process cannot be replicated in the market).
Nevertheless, solutions have been found by attacking directly the primal problem in special cases:
in Markovian models by Duffie, Fleming, Soner and Zariphopoulou (1997), and in more general
models in Cuoco (1997). A dual problem approach in a particular Brownian model has been worked
out under the constraint X(·) ≥ 0 by El Karoui and Jeanblanc (1998). This constraint is somewhat
stringent in models with endowment process, since it precludes borrowing against future income.

In this paper we solve in great generality the problem of maximizing expected utility E[U(X(T ))]
of terminal wealth, for an agent whose income is represented as an arbitrary bounded and adapted
endowment process e(·). This is done in the general semimartingale incomplete model, under the
same minimal conditions on the utility function U as in KS[99], and using a similar duality approach.
The main difference, and the reason why we are able to do it, is that we extend the dual domain
even further - it is no longer contained in the space L1, but (L∞)∗, the dual space of L∞. In the
language of control theory, we are “relaxing” the set of controls over which we do the optimization
in the dual problem. The solution Q̂ is then found in this set, and the optimal terminal wealth is
shown to be equal to the inverse of marginal utility evaluated at the regular part of Q̂. It should be
mentioned that this approach was already implicitly present in KS[99]: in that paper the domain
of the dual problem is associated with processes Y (t) which, in our context, correspond to the
processes given by the Radon-Nikodym densities of the regular part of the restriction of elements
Q ∈ (L∞)∗ to Ft, the σ-algebra generated by the information up to time t. It was shown in that
article that the optimal Ŷ (·) is not necessarily a martingale, hence the corresponding Q̂ is not
necessarily contained in L1. It was not important for the analysis of KS[99] to observe where “the
singular mass of Q̂ has disappeared to”. In the present paper this becomes very important, since
the “disappeared mass” does not actually vanish, but acts on the accumulated random endowment,
and can be located in (L∞)∗.

We introduce the model and the primal problem in Section 1, and define the dual problem in
Section 2. We solve it and make the connection to the primal problem in Section 3. Finally, in the
Appendix we recall some results on properties of (L∞)∗ needed in the paper.
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2 The Market Model

We consider a model of a security market which consists of d+1 assets, one bond (or bank account)
and d stocks. Without loss of generality, we assume that the bond price is constant (we can always
choose the bond as the numéraire otherwise). The stock-price process S = (Si)1≤i≤d is assumed
to be a semimartingale on a filtered probability space (Ω,F , (Ft)0≤t≤T , P). Here T is the finite
time-horizon, but our results can also be extended to an infinite time-horizon.

A portfolio Π is defined as a pair (x, H), where the constant x ∈ R is the initial wealth and
H = (H i)1≤i≤d is a predictable S-integrable process specifying the number of shares of each asset
held in the portfolio. We also assume that the agent receives an exogenous endowment (income),
with its cumulative process denoted by e = (et)0≤t≤T , e0 = 0, assumed bounded and adapted, with

ρ
�
= ‖eT ‖∞ < ∞. The corresponding value process A = (At)0≤t≤T is then given by

At = x + (H · S)t + et, 0 ≤ t ≤ T.

Here (H · S) =
∫ ·
0 H dS denotes the stochastic integral with respect to S. Note that e(·) can

take negative values, in which case it is interpreted as the mandatory consumption (mandatory
outflow of funds). It should also be noted that for the problem of maximizing expected utility from
terminal wealth AT that we consider here, only the final value eT matters. This is not the case
when maximizing expected utility from consumption, a problem that we plan to consider in future
research.

A portfolio Π is called admissible if the process (H · S) is uniformly bounded from below by
some constant. Let C0 be the convex cone of random variables dominated by admissible stochastic
integrals, i.e.

C0
�
= {X | X ≤ (H · S)T for some admissible portfolio H}

and C �
= C0 ∩ L∞, the intersection with space L∞.

Suppose that the agent also has a utility function U : (0,∞) −→ R for wealth, which is strictly
concave, strictly increasing, continuously differentiable and satisfies the Inada conditions

U ′(0+) = lim
x→0

U ′(x) = ∞, U ′(∞) = lim
x→∞U ′(x) = 0.

Our primal problem is to maximize the expected utility from terminal wealth with value function

u(x) = max
X∈C0

E[U(x + X + eT )].(2.1)

Without loss of generality, we may assume U(∞) > 0. Define also U(x) = −∞ whenever x ≤ 0.

We adopt the definition of an equivalent local martingale measure from KS[99].

Definition 2.1. A probability measure Q ∼ P is called an equivalent local martingale measure if
for any H admissible, (H · S) is a local martingale under Q.

Throughout the paper we shall assume the following conditions.

Assumption 1. The family of equivalent local martingale measures M is not empty.
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Assumption 2. The utility function U(x) has asymptotic elasticity strictly less than 1, i.e.

AE(U)
�
= lim sup

x→∞
xU ′(x)
U(x)

< 1.

Assumption 3. |u(x)| < ∞ holds for some x > ρ = ‖eT‖∞.

Remark 2.1. Detailed discussions on Definition 2.1 and the intimate relationship between Assump-
tion 1 and the absence of arbitrage opportunities are available in KS[99], DS[94] and DS[98] (for
the case of general process S which fails to be locally bounded).

Remark 2.2. It is shown in KS[99] that Assumption 2 is basically both necessary and sufficient to
get existence and nice properties of the solution to the primal problem.

Remark 2.3. The concavity of u(x) and Assumption 3 easily imply that u(x) < ∞ for all x ∈ R.

3 The Dual Problem

Let us denote by V : (0,∞) −→ R the conjugate function of utility U(x), i.e.,

V (y)
�
= sup

x>0
[U(x)− xy] = U(I(y))− yI(y).

Here I : (0,∞) −→ (0,∞) is the continuous, strictly decreasing inverse function of the derivative of
U(x). It is well known that V (y) is continuously differentiable, strictly decreasing, strictly convex
and satisfies

V (0) = U(∞), V (∞) = U(0), and V ′ = −I.

The function V (y) is the Legendre-transform of the function −U(−x), which has been proved
very useful in solving utility maximization problems, especially in non-Markovian cases (for early
works on duality in stochastic optimal control see Bismut [73], and Pliska [86], for the first ap-
plication to finance). In this paper, we extend the usual dual domain (a subset of L1) to (L∞)∗,
the dual space of L∞. It is well known that L1 is strictly contained in (L∞)∗; see Dunford and
Schwartz (1967) or Appendix A for more details about space (L∞)∗.

Define the following subset of (L∞)∗, which is equipped with the weak-star topology:

D �
=
{
Q ∈ (L∞)∗

∣∣ ‖ Q ‖= 1 and 〈Q, X〉 ≤ 0 for all X ∈ C} ,

and Dr �
= D ∩ L1 (where r stands for “regular”). Note that D ⊆ (L∞)∗+ (hence Dr ⊆ L1

+) since
−L∞

+ ⊆ C. Moreover, D is clearly convex and weak-star compact (by Alaoglu’s Theorem). For
any Q ∈ (L∞)∗+, we have the unique decomposition Q = Qr + Qs. Here Qr and Qs are defined
on the σ–algebra F modulo the nullsets; on this abstract σ–algebra Qr is countably additive and
absolutely continuous while Qs is purely finitely additive.

For any Q ∈ (L∞)∗+, we may define

〈Q, X〉 �
= lim

n
↑ 〈Q, X ∧ n〉 ∈ [0,∞]
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for all X ∈ L0
+. For X ∈ L0, set 〈Q, X〉 = 〈Q, X+〉 − 〈Q, X−〉 whenever this is well defined. Under

this definition, it is easy to see that
〈Q, X〉 ≤ 0

for all Q ∈ D and all X ∈ C0 which are uniformly bounded from below (actually, this holds for all
Q ∈ D, X ∈ C0).

We now define the value function of the dual optimization problem by

v(y)
�
= min

Q∈D
J(y, Q) := min

Q∈D

{
E[V (y

dQr

dP
)] + y〈Q, eT 〉

}
,(3.1)

which is clearly decreasing and convex. The following is the principal result of the paper.

Theorem 3.1. Suppose Assumptions 1−3 hold true. Then

(i) u(x) < ∞ for all x ∈ R and v(y) is finitely valued for all y > 0. The value function u and v

are conjugate in the sense that

v(y) = sup
x>x0

[u(x)− xy], y > 0,(3.2)

u(x) = inf
y>0

[v(y) + xy], x > x0.(3.3)

Here

x0
�
= −v′(∞) = sup

Q∈D
〈Q,−eT 〉.(3.4)

The value function u(x) is continuously differentiable on (x0,∞) and u(x) = −∞ for all
x < x0. The value function v(y) is continuously differentiable on (0,∞).

(ii) For all y > 0, there exists Q̂y ∈ D (unique up to the singular part) that attains the infimum

in the dual problem (3.1). For all x > x0, X̂ = I(ŷ
dQ̂r

ŷ

dP ) − x − eT is optimal for the primal
problem (2.1), where ŷ attains the infimum of [v(y) + xy], and ŷ = u′(x).

The proof of the above Theorem will be given in Section 4 below.

Remark 3.1. The definition of the dual domain D is independent of x and (et)0≤t≤T . It is simply
the polar set of C (intersected with the norm-1 elements). Moreover, D and Dr are both nonempty
since M ⊆ Dr . Actually, Dr is the set of absolutely continuous local martingale measures in the
case of locally bounded S (see DS[94], Theorem 5.6); see also DS[98] for the general case and the
notion of equivalent sigma-martingale measures.

4 Proof of the Main Theorem

We claim that E[U(x + X + eT )] ≤ J(y, Q) + xy for any X ∈ C0 and y > 0, Q ∈ D. We only need
to consider the case x + X + eT ≥ 0 (hence X is uniformly bounded from below). It follows from
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the definition of V (·), nonnegativity of x + X + eT , and 〈Q, X〉 ≤ 0, that

E[U(x + X + eT )] ≤ E[V (y
dQr

dP
) + y(x + X + eT )

dQr

dP
]

≤ E[V (y
dQr

dP
)] + y〈Q, x + X + eT 〉

≤ J(y, Q) + xy.

Moreover, the above inequalities become equalities if and only if

x + X + eT = I(y
dQr

dP
), 〈Qs, x + X + eT 〉 = 0 and 〈Q, X〉 = 0,(4.1)

in which case X is optimal for the primal problem. It is now clear that

u(x) ≤ inf
y>0

[v(y) + xy].(4.2)

To show that equality actually holds true, it suffices to find a pair (ŷ, Q̂) which attains the infimum
of [J(y, Q) + xy] and a X ∈ C0 such that equalities (4.1) hold.

First note that v(y) is finitely valued. Indeed, it follows from Jensen’s inequality and the
decrease of V (·) that

v(y) ≥ min
Q∈D

E[V (y
dQr

dP
)] − yρ ≥ min

Q∈D
V (yE[

dQr

dP
])− yρ ≥ V (y) − yρ,(4.3)

where ρ =‖ eT ‖∞. The fact v(y) < ∞ follows from Theorem 2.2(iv) KS[99] (observe M ⊆ D,
〈Q, eT 〉 ≤ ρ and supX∈C0

EU(x + X) ≤ u(x + ρ) < ∞ for all x).
The following inequalities are often used in the proof below. Under Assumption 2, there exist

y0 > 0, 0 < γ, µ < 1 and C < ∞ such that

yI(y) <
γ

1 − γ
V (y) and V (µy) < CV (y), ∀0 < y < y0.(4.4)

(see KS[99] Lemma 6.3 and Corollary 6.1 for the proof.)

Lemma 4.1. For every y > 0, the minimum in the definition of the dual value function v(y) is
attained at some Q̂y ∈ D.

Proof: With the help of Komlos Theorem (see Schwartz 86, for example) and convexity of D, we
can find a minimizing sequence {Qn} ⊆ D such that

dQr
n

dP
−→ f almost surely

for some random variable f ≥ 0. Moreover, since |〈Qn, eT 〉| ≤ ρ, we can always extract a subse-
quence of Qn (still denoted by Qn) such that 〈Qn, eT 〉 converges. Since D is weak-star closed and
bounded, it is weak-star compact, and the sequence {Qn} has a cluster point Q∗ ∈ D (that might
not be unique). We want to show that Q∗ is actually a minimizer. It follows from Proposition A.1
that

dQr∗
dP

= f = lim
dQr

n

dP
.
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By Lemma 3.4 of KS[99], we have

lim inf E[V (y
dQr

n

dP
)] ≥ E[V (y

dQr∗
dP

)].

Furthermore, since 〈Q∗, eT 〉 is a cluster point of {〈Qn, eT 〉} which is convergent, we have 〈Q∗, eT 〉 =
lim〈Qn, eT 〉. Hence J(y, Q∗) ≤ lim inf J(y, Qn) = v(y), which yields

J(y, Q∗) = v(y).

Therefore, we can take Q̂y = Q∗. �

Remark 4.1. The minimizer might NOT be unique. However, it is unique to the extent that its
countably additive part (regular part) is unique. Indeed, suppose Q1, Q2 are two minimizers with

Qr
1 �= Qr

2. Let Q
�
= 1

2Q1 + 1
2Q2. It follows that Qr = 1

2Qr
1 + 1

2Qr
2. By strict convexity of V we have

E[V (y dQr

dP )] < 1
2E[V (y dQr

1
dP )] + 1

2E[V (y dQr
2

dP )]. Hence J(y, Q) < 1
2J(y, Q1) + 1

2J(y, Q2) = J(y, Q̂y), a
contradiction.

Remark 4.2. It is easy to see that the function v(·) is actually strictly convex. Indeed, for all
y1, y2 > 0 with y1 �= y2, and λ ∈ (0, 1), we have, for y = λy1 + (1 − λ)y2,

v(y) = J(y, Q̂y) > λJ(y1, Q̂y) + (1 − λ)J(y2, Q̂y) ≥ λv(y1) + (1− λ)v(y2).

Lemma 4.2. The dual value function v(y) is continuously differentiable with

v′(y) = −〈Q̂r
y, I(y

dQ̂r
y

dP
)〉+ 〈Q̂y, eT 〉.

Proof: We first show that v(·) is differentiable (hence continuously differentiable by convexity). For

a fixed y > 0, let h(z)
�
= E[V (z dQ̂r

y

dP )] + z〈Q̂y, eT 〉. Then h(·) is convex, h(·) ≥ v(·) and h(y) = v(y).
These estimates easily imply �−h(y) ≤ �−v(y) ≤ �+v(y) ≤ �+h(y), where �± denote the left
and the right derivatives respectively. It is easy to show, by the fact that V ′(·) = −I(·), and the
Monotone Convergence Theorem, that

�+h(y) ≤ −E

[
dQ̂r

y

dP
I(y

dQ̂r
y

dP
)

]
+ 〈Q̂y, eT 〉 = −〈Q̂r

y, I(y
dQ̂r

y

dP
)〉 + 〈Q̂y, eT 〉.

On the other hand,

�−h(y) ≥ lim sup
ε→0+

E

[
−dQ̂r

y

dP
I

(
(y − ε)

dQ̂r
y

dP

)
+ 〈Q̂y, eT 〉

]
.

We claim that, with y0 being the constant from (4.4),

dQ̂r
y

dP
I

(
(y − ε)

dQ̂r
y

dP

)
=

dQ̂r
y

dP
I

(
(y − ε)

dQ̂r
y

dP

)
1
{y

dQ̂r
y

dP
≤y0}

+
dQ̂r

y

dP
I

(
(y − ε)

dQ̂r
y

dP

)
1
{y

dQ̂r
y

dP
>y0}
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is uniformly integrable when ε is sufficiently small. Indeed, the second part is dominated by

I( y−ε
y y0)

dQ̂r
y

dP , which is uniformly integrable when ε is small since ‖ Q̂r
y ‖≤ 1. It follows from (4.4)

that the first part, when ε is small, is dominated by

1
y − ε

γ

1 − γ
V

(
(y − ε)

dQ̂r
y

dP

)

which is in turn dominated by
1

y − ε

γC

1− γ
V

(
y
dQ̂r

y

dP

)
.

Therefore the first part is also uniformly integrable since E

∣∣∣∣V
(

y
dQ̂r

y

dP

)∣∣∣∣ < ∞. We have established

�−h(y) ≥ −E

[
dQ̂r

y

dP
I(y

dQ̂r
y

dP
)

]
+ 〈Q̂y, eT 〉 = −〈Q̂r

y, I(y
dQ̂r

y

dP
)〉 + 〈Q̂y, eT 〉.

This completes our proof. �

Lemma 4.3. v′(0+) = −∞, v′(∞) ∈ [infQ∈D〈Q, eT 〉, supQ∈D〈Q, eT 〉]
Proof: Observe that v(0+) ≥ V (0+) by (4.3). However, v(y) ≤ V (0+) + yρ implies v(0+) ≤
V (0+), which in turn implies v(0+) = V (0+) = U(∞). If U(∞) = ∞, then v(0+) = ∞ and
v′(0+) = −∞. If U(∞) < ∞, we have

−v′(0+) ≥ v(0+) − v(y)
y

≥ V (0+) − V (y dQr

dP )− yρ

y
≥ E[

dQr

dP
I(y

dQr

dP
)]− ρ

for all y > 0 and Q ∈ D. Letting y → 0, we have −v′(0+) ≥ ∞, or v′(0+) = −∞.
By de l’Hospital’s Rule

v′(∞) = lim
y→∞

v(y)
y

= lim
y→∞

infQ∈D
{

E[V (y dQr

dP )] + y〈Q, eT 〉
}

y

∈
[

lim
y→∞

infQ∈D E[V (y dQr

dP )]
y

+ inf
Q∈D

〈Q, eT 〉, lim
y→∞

infQ∈D E[V (y dQr

dP )]
y

+ sup
Q∈D

〈Q, eT 〉
]

However, limy→∞
infQ∈D E[V (y dQr

dP
)]

y = 0 as in KS[99], Lemma 3.7. �

Remark 4.3. Note that infy>0[v(y) + xy] = −∞ for all x < −v′(∞), which implies u(x) = −∞ by
(4.2) (in this case the optimization problem is trivial). However, for every x ∈ (−v′(∞),∞), there
exists a unique ŷ > 0 that attains the infimum of [v(y) + xy], and such that v′(ŷ) = −x. From
now on we consider x ∈ (−v′(∞),∞), and let Q̂ := Q̂ŷ and X̂ = I(ŷ dQ̂r

dP ) − x− eT . It follows from
Lemma 4.2 that

v′(ŷ) = −x = −〈Q̂r, x + X̂〉 + 〈Q̂s, eT 〉.(4.5)
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Lemma 4.4. We have

sup
Q∈D

[〈Qr, x + X̂〉 − 〈Qs, eT 〉] = 〈Q̂r, x + X̂〉 − 〈Q̂s, eT 〉 = x;

in particular,

〈Qr, x + X̂〉 ≤ 〈Qs, eT 〉 + x ∀Q ∈ D.(4.6)

Remark 4.4. ¿From the definition of D, we have 〈Q, x + X̂〉 ≤ x, for Q ∈ D. If the endowment
eT is zero almost surely, then, by the lemma, we also have 〈Qr, x + X̂〉 ≤ x for Q ∈ D, and
〈Q̂r, x + X̂〉 = x. This has the “classical” interpretation that x is the cost of replicating the claim
ÂT := x+X̂ in this incomplete market, and the “shadow state-price density” for pricing ÂT is given
by the density of Q̂r. In the case of a nonzero endowment process this interpretation is somewhat
lost: now we have 〈Q̂, x + XT 〉 = x (see below), but Q̂ does not necessarily have a density.

For the agent receiving the endowment, the cost of financing x + X̂ + eT is still x, but

〈Q̂r, x + X̂ + eT 〉 = x + 〈Q̂, eT 〉.
However, if the endowment process is “spanned” in the market, namely representable as et =
(He · S)t for some admissible strategy He, the standard interpretation is preserved. Indeed, since
et is assumed to be a bounded process, we have both 〈Q, eT 〉 ≤ 0 and 〈Q,−eT 〉 ≤ 0, for all
Q ∈ D. In particular, 〈Q̂, eT 〉 = 0, and x = 〈Q̂r, x + X̂ + eT 〉.
Proof of Lemma 4.4: For a given Q ∈ D and ε ∈ (0, 1), let Qε

�
= (1 − ε)Q̂ + εQ. It follows that

Qr
ε = (1− ε)Q̂r + εQr. By optimality of Q̂ we have

0 ≥ 1
εŷ

E

[
V (ŷ

dQ̂r

dP
) − V (ŷ

dQr
ε

dP
)

]
+ 〈Q̂, eT 〉 − 〈Q, eT 〉

≥ − 1
εŷ

E

[
ŷ(

dQ̂r

dP
− dQr

ε

dP
)I(ŷ

dQr
ε

dP
)

]
+ 〈Q̂, eT 〉 − 〈Q, eT 〉

= E

[
(
dQr

dP
− dQ̂r

dP
)I(ŷ

dQr
ε

dP
)

]
+ 〈Q̂, eT 〉 − 〈Q, eT 〉.

However, (
(
dQr

dP
− dQ̂r

dP
)I(ŷ

dQr
ε

dP
)

)−
≤ dQ̂r

dP
I(ŷ

dQr
ε

dP
) ≤ dQ̂r

dP
I(ŷ(1 − ε)

dQ̂r

dP
).

It follows from the same proof as in Lemma 4.2 that the last term is uniformly integrable when ε
is sufficiently small. Now Fatou’s Lemma gives

0 ≥ E

[
(
dQr

dP
− dQ̂r

dP
)I(ŷ

dQ̂r

dP
)

]
+ 〈Q̂, eT 〉 − 〈Q, eT 〉

= 〈Qr, x + X̂〉 − 〈Q̂r, x + X̂〉 + 〈Q̂s, eT 〉 − 〈Qs, eT 〉,
which completes our proof. �

We recall from DS[94] the following version of the bipolar theorem:
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Lemma 4.5. Let X ∈ L∞. Then X ∈ C if and only if 〈Q, X〉 ≤ 0 for all Q ∈ Dr.

Proof: Necessity follows directly from the definition. For sufficiency, first note that the set C is a
closed convex cone in L∞ equipped with the weak-star topology σ(L∞, L1); see DS[94], Theorem 4.2
(for the case of non locally bounded S we refer to DS[98]). Now let X ∈ L∞, such that 〈Q, X〉 ≤ 0
for all Q ∈ Dr . If X does not belong to C, by the Hahn-Banach Theorem X and C are strictly
separated (see Conway 85, Theorem IV.3.9.) Therefore, there exists a continuous linear functional
f (i.e. f ∈ (L∞, σ(L∞, L1))∗ = L1) such that 〈f, X〉 > α and 〈f, X〉 ≤ α, ∀X ∈ C for some
α ∈ R. We claim that α = 0. Since 0 ∈ C, we have α ≥ 0. Moreover, if there exists an X ∈ C such
that 〈f, X〉 > 0, then for any constant c > 0, we have cX ∈ C because C is a convex cone. Thus,
〈f, cX〉 = c〈f, X〉 tends to +∞ as c → ∞, which is impossible. Hence α = 0. This implies that
f ∈ Dr and 〈f, X〉 > 0, which is impossible. �

Lemma 4.6. X̂ ∈ C0.

Proof: It suffices to show that X̂ ∧n ∈ C for all n > 0, and the rest follows from DS[94], Theorem
4.2 again. However, X̂ ∧ n ∈ L∞ because X̂ is uniformly bounded from below. Moreover, for any
Q ∈ Dr we have Qr = Q and it follows from Lemma 4.4 that

〈Q, x + X̂ ∧ n〉 ≤ 〈Q, x + X̂〉 ≤ x,

which implies 〈Q, X̂ ∧ n〉 ≤ 0 for all Q ∈ Dr and n ≥ 0. By Lemma 4.5, we obtain X̂ ∧ n ∈ C. �

Remark 4.5. Since X̂ ∈ C0 and X̂ is bounded from below, we have 〈Q̂, X̂〉 ≤ 0. However, it follows
from (4.5) that

〈Q̂, eT 〉 + x = 〈Q̂r, x + X̂ + eT 〉 ≤ 〈Q̂, x + X̂ + eT 〉 ≤ 〈Q̂, eT 〉 + x,

which yields the last two equations in (4.1):

〈Q̂s, x + X̂ + eT 〉 = 0 and 〈Q̂, X̂〉 = 0.(4.7)

Therefore, we have shown that X̂ solves the primal optimization problem and

u(x) = v(ŷ) + xŷ.(4.8)

Remark 4.6. By definition there exists an admissible portfolio process Ĥ such that X̂ := X̂T =
(Ĥ ·S)T . Let X̂t

�
= (Ĥ ·S)t. We claim that X̂t is a “martingale” under the finitely additive measure

Q̂ in the sense that
〈Q̂, X̂T1A〉 = 〈Q̂, X̂t1A〉

for all A ∈ Ft. To this end, we only need to show that X̂t is a “supermartingale” under the finitely
additive measure Q̂ (“martingale” property will follow from the fact that X̂0 = 0 and 〈Q̂, X̂T 〉 = 0),
or equivalently

〈Q̂, X̂T1A〉 ≤ 〈Q̂, X̂t1A〉
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for all A ∈ Ft. It suffices to show the above inequality for all A ∈ Ft on which X̂t is bounded. Fix
such a set A, and note that (X̂t) is a supermartingale under any measure Q ∈ Dr; see Proposition
4.7 DS[98]. This implies

〈Q, X̂T1A ∧ n〉 ≤ 〈Q, X̂T1A〉 ≤ 〈Q, X̂t1A〉, ∀Q ∈ Dr, ∀n > 0

Hence
〈Q̂, X̂T1A ∧ n〉 ≤ 〈Q̂, X̂t1A〉

for all n > 0, since Dr is weak-star dense in D. Letting n → ∞, we obtain

〈Q̂, X̂T1A〉 ≤ 〈Q̂, X̂t1A〉
hence (X̂t) is a “supermartingale” under the finite additive measure Q̂, therefore also a “martin-
gale”.

Proof of the Main Theorem: The existence of the optimal Q̂y for the dual problem, and
the optimality of X̂ for the primal problem have already been shown. We already know that
u(x) ≤ v(y) + xy, so that (4.8) implies (3.3). Then (3.2) is a consequence of the classical convex
duality theory, as is the differentiability of u.

It only remains to show (3.4). From the argument above we obtain |u(x)| < ∞ for all x > x0.
This implies that there exists X ∈ C0 such that x + X + eT ≥ 0, hence 〈Q, x + X + eT 〉 ≥ 0, and
x ≥ 〈Q,−eT 〉, for all Q ∈ D. It follows that x0 ≥ supQ∈D〈Q,−eT 〉, hence x0 = supQ∈D〈Q,−eT 〉
from Lemma 4.3. �

5 Conclusions

We characterize the optimal solution to the problem of maximizing utility from terminal wealth for
an agent with random endowment, in general incomplete markets. This is done by appropriately
defining the domain of the dual problem, as a subset of (L∞)∗. As the referee points out, this result
can be regarded as a necessary step towards the elusive general theory of equilibrium in incomplete
semimartingale market models. Moreover, it can also serve as a stepping stone for the utility based
approach to pricing contingent claims in incomplete markets, as in Hodges and Neuberger (1989).
We leave these problems for future research.

A Appendix. Some properties of (L∞)∗+
We state and prove here some well-known properties of (L∞)∗+, for the convenience of the reader.
A more complete discussion can be found in Dunford and Schwartz (1967) (henceforth DS[67]) or
Rao and Rao (1983).

Let (Ω,F , P) be our underlying probability space and (L∞)∗ be the dual space of L∞(Ω,F , P),
and denote by (L∞)∗+ the set of all the nonnegative elements in (L∞)∗. The set (L∞)∗+ can be
identified as the set of all the nonnegative finitely additive bounded set functions on F which vanish
on the sets of P-measure zero (Theorem IV.8.16 of DS[67]). For any Q ∈ (L∞)∗+, there exists a
unique decomposition

Q = Qr + Qs, Qr ≥ 0, Qs ≥ 0,
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where Qr is countably additive (regular part) and Qs is purely finitely additive (singular part);
see Definition III.7.7 and Theorem III.7.8 of DS[67] for relevant information. The measure Qr is
absolutely continuous to P, and we denote its Radon-Nikodym derivative dQr

dP .

Lemma A.1. Q ∈ (L∞)∗+ is purely finitely additive (i.e. Qr = 0) if and only if for every ε > 0,
there exists set Aε ∈ F such that P(Aε) > 1 − ε and 〈Q, 1Aε〉 = 0.

Proof: Sufficiency. Let Q = Qr + Qs and dQr

dP = f . Clearly f = 0 on Aε for any ε > 0. But
P(Aε) −→ 1, and we have f = 0 almost surely, or Qr = 0.

Necessity. Suppose Qr = 0. We define the following new additive set function

ν(A)
�
= inf {〈Q, 1E〉 + P(A \ E); E ⊆ A, E ∈ F} ; ∀A ∈ F .

It is fairly easy to show that ν is finitely additive; we omit the details. However, ν is actually
countably additive (or, a measure) since ν(Bn) ≤ P(Bn) → 0 whenever {Bn; n ≥ 1} is a decreasing
sequence of sets in F with ∩∞

n=1Bn = ∅. But ν ≤ Q = Qs, which yields ν = 0 by definition.
Let ε > 0. Since ν(Ω) = 0, there exists set An ∈ F for any n > 0 such that

〈Q, 1An〉 <
ε

2n
and P(Ac

n) <
ε

2n
.

Let Aε
�
= ∩∞

n=1An. Note Aε ∈ F and 〈Q, 1Aε〉 ≤ 〈Q, 1An〉 < ε
2n , which implies that 〈Q, 1Aε〉 = 0.

On the other hand, P(Ac
ε) ≤

∑∞
n=1 P(Ac

n) < ε, or P(Aε) > 1 − ε. This completes the proof. �

Proposition A.1. Suppose a sequence {Qn} ⊆ (L∞)∗+ is such that dQr
n

dP −→ f almost surely for
some f ≥ 0. Then any weak-star cluster point Q of {Qn} satisfies dQr

dP = f .

Proof: By Lemma A.1, for any ε > 0, there exists a set Aε ∈ F such that P(Aε) > 1 − ε and
〈Qs, 1Aε〉 = 0. Moreover, there exist sets Bn ∈ F such that P(Bn) > 1 − ε

2n and 〈Qs
n, Bn〉 = 0. By

Egorov’s Theorem, there exists a set Cε such that P(Cε) > 1 − ε and dQr
n

dP −→ f uniformly on Cε.

Now for any A ∈ F such that A ⊆ Ωε
�
= Aε

⋂∞
n=1 Bn

⋂
Cε, we have for a subsequence of {Qn} (still

denoted as {Qn})∫
A

f dP = lim
∫

A

dQr
n

dP
dP = lim〈Qr

n, 1A〉 = lim〈Qn, 1A〉 = 〈Q, 1A〉 = 〈Qr, 1A〉 =
∫

A

dQr

dP
dP.

(The reason we can extract a subsequence is that 〈Q, 1A〉 is a cluster point of 〈Qn, 1A〉.) Therefore,
dQr

dP = f almost surely on Ωε, but P(Ωε) > 1 − 3ε. Letting ε −→ 0, we complete the proof. �

Corollary A.1. Let Qn be a sequence of purely finitely additive set functions with Q as a weak-star
cluster point. Then Q is purely finitely additive.
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