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Web Conferencing Application
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Multi-party Contferencing Scenario

Every user wants to view audio/video
from all other users and is a source of
its own audio/video stream

Maximize Quality-of-Experience (QoE)

Challenges
Network bandwidth limited

Require low end-to-end delay

2D

Network conditions time-varying

Distributed solution not requiring global
network knowledge |

Existing Products

@Apple iChat AV, €4 , YRHOO! MESSENGER
DsichiSpeed., Bl Halo, s TelePresence,
Windows Live Messenger , MS Live Meeting



Comparison of Distribution Approaches

MCU-assisted
multicast

Y

=

>

High load on MCU,
expensive, not
scalable with
increasing number
of peers or groups

/2] Halo

Simulcast

As group size and
heterogeneity
increases, video
quality deteriorates
due to peer uplink
bandwidth constraint

€D Apple iChat AV

Peer-assisted
multicast

A4

5 8

Optimal utilization
of each peer’s
uplink bandwidth,
no MCU required
but can assist as
helper



Problem Formulation

» Source s transmitting at rate z, to all its receivers

» U, (z,): (concave) utility associated with video stream of source
S

Example: PSNR curve
» Only uplinks of peers are bottleneck links

» Maximize total utility of all receivers subject to peer uplink
constraints
Joint rate allocation and routing problem

Linear constraints through introduction of routing variables 8

Concave optimization problem

Need distributed solution for deployment in the Internet
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Logarithmic Modeling for Utility (PSNR)

» Utility of one peer node defined as U (z,) = f3, log(z,) strictly concave
» Large amount of motion =» large [,

» Peers’ utility might change from time to time as they speak/move...
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Convex Optimization Problem

max; Y |Re|U(zs)

seS
s.t. the achievable set of z

» S:set of sources
» R,:set of receivers for source s

» What is the feasible region for rates {z .} ?
Only peer uplink capacities are bottleneck

Allow intra-source or inter-source network coding ?



Rate region with Network Coding

» Arbitrary link capacities

Routing L] Intra-source coding L Inter-source coding

» Node uplink capacities only, single source
Mutualcast Theorem [Li-Chou-Zhang 05]

Routing along linear number of trees achieves min-cut capacity

1 Y
Ry—{s.r} Rs—{s}
Type (1) tree Type (2) tree Type (3) tree



Rate region with Network Coding ...

» Node uplink capacities only, multiple sources

No inter-source coding: Linear number of MutualCast trees
per source achieve rate region [Sengupta-Chen-Chou-Li 08]

Allow inter-source coding;

Linear number of i mesh |

MutualCast trees per source : H
achieve rate region §
[Sengupta-Chen-Chou-Li 08] —

(some restriction on No edges between Rnd R

structure of receiver sets) full mesh

? ) /
/
/ full mesh
Ri



New Tree-rate Based Formulation
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» (Non-strictly) Convex optimization problem with linear
constraints
y; : Uplink usage of peer |
x.. (m [ s): Rate on tree m of source s

C, : Uplink capacity of peer j



Related Work

» Utility maximization framework for single-path multicast
without network coding [Kelly-Maullo-Tan 98]

» Extensions (without network coding)
Multi-path unicast [Han et al 06, Lin-Shroff 06,Voice 06]
Single-tree multicast [Kar et al 01]

» Extensions (with single-source network coding)
Multicast [Lun et al 06,Wu-Chiang-Kung 06, Chen et al 07]

» This work

P2P multicast with multi-source network coding



Need Distributed Rate Control Algorithm

» Best possible rate region achieved by depth-| and depth-2 trees
Determine rate z, for each source s

Determine rates x,, for each source (how much to send on each tree)

» Global knowledge of network conditions or per-source utility
functions should not be required
Adapt to uplink cross-traffic

Adapt to changes in utility function (user moving or still)
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Packet Marking Based Primal Algorithm

» Capacity constraint relaxed and added as penalty function
to objective
ma:{Z |Rs|Us (25) Z Gn(yn) Z / ) dw
{Zm} heH e J

b gi(w) = =527 (packet loss rate or ECN marking

probability)

» Simple gradient descent algorithm

tm = fm(@m) (H Ulz) = 3 B Gh(wn) = 3 b7, J)

hem JEm

» Global exponential convergence



Queueing Delay Based Primal-Dual
Algorithm

> Lagrangian muItipIiers p, for each uplink
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seS Jjed
» Primal-dual algorithm
1
. _ / - Lm
Xm = km | Ug(zs)— Rj; b7 pj
. 1 n
= i =Gy,

> p can be interpreted as queueing delay on peer uplink j

> |R | ZiEm b7 p; can be interpreted as average queueing
delay of a branch on tree m
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Convergence behavior of Primal-Dual
algorithm

» There exist cases where primal-dual system does not
converge in multi-path setting [Voice 06]

» Positive Results [Chen-Ponec-Sengupta-Li-Chou 08]

For P2P multi-party conferencing, all (x,p) trajectories of the
system converge to one of its equilibria if for source s, all its k
(m LI s) take the same value

m

For P2P content dissemination , all (x,p) trajectories of the
system converge to one of its equilibria if a mild condition
(involving k,, and C)) is satisfied



Convergence behavior of Primal-Dual
algorithm

» Trajectories of the system converge to an invariant set,
which contains equilibria and limit cycles

On the invariant set, the non-linear system reduces to a
marginally stable linear system

» Trajectories of the system converge to its equilibria if p is
completely observable through [z, y"] in the reduced
linear system

» Mild condition for P2P dissemination scenario
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Implementation of Primal-Dual Algorithm

» What each peer node does!?
Sending its video through trees for which it is a root
Adapting sending rates
Forwarding video packets of other peers
Estimating queuing delay
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Implementation Details

» What each peer node does!?
Sending its video through trees for which it is a root
Adapting sending rates
Forwarding video packets of other peers
Estimating queuing delay

3 peers 9 multicast trees



Implementation Details

» What each peer node does!?
Sending its video through trees for which it is a root
Adapting sending rates

Forwarding video packets of other peers
) ) . Helper’s functionality
Estimating queuing delay
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Sending & Forwarding Video

Each packet contains a timestamp and a tree number
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Sending & Forwarding Video




Estimating Queuing Delay Based on
Relative One Way Delay (OWD) Measurements

Relative OWD 4
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propagation delay + clock offset

»
»

measurements

Relative OWD = propagation delay (constant) + clock offset (constant)
+ queuing delay (variable)

No clock synchronization across peers
22



Queuing delay information
piggybacked to video packets

- A’s estimation of queuing
AA delay of tree 2

s+ IFo

Compute relative OWD Compute relative OWD
between A and B between B and C

23 An OWD report at most hops one extra peer (helper case)




Internet experiments

» Three peers across US continental: Bay area, lllinois, NYC
Uplink capacities: 384,256, 128 Kbps
Estimated one way delay: 40, 20, 33 ms
Average packet delivery delay: 95, 105, 128 ms
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Concluding Remarks

» Framework and solution for utility maximization in P2P
systems

Packing linear number of trees per source is optimal in P2P
topology

Tree-rate based formulation results in linear constraints
» Distributed algorithms for determining source rates and
tree splitting
Packet marking based primal algorithm
Queueing delay based primal-dual algorithm

» Practical implementation of primal-dual algorithm and
Internet experiments
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