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ABSTRACT

Animal models of rheumatoid arthritis (RA) are widely
used for testing potential new therapies for RA. However,
the question of which animal model is most predictive of
therapeutic efficacy in human RA commonly arises in data
evaluation. A retrospective review of the animal models
used to evaluate approved, pending RA therapies, and
compounds that were discontinued during phase II or III
clinical trials found that the three most commonly used
models were adjuvant-induced arthritis (AIA) in rats and
collagen-induced arthritis (CIA) in rats and mice. Limited
data were found for more recently developed genetically
modified animal models. Examination of the efficacy of
various compounds in these animal models revealed that
a compound’s therapeutic efficacy, rather than prophy-
lactic efficacy, in AIA and CIA models was more
predictive of clinical efficacy in human RA than data from
either model alone.

Rheumatoid arthritis (RA) is a chronic, inflamma-
tory, systemic autoimmune disease that affects
about 1% of the general population in Western
countries and is two to three times more common in
women than in men.1 Although the aetiology and
pathogenesis of RA is not yet fully understood, the
disease is characterised by aggressive synovial hyper-
plasia (pannus formation) and inflammation (syno-
vitis), which, if left untreated, lead to progressive
destruction of joint cartilage and bone. The destruc-
tive lesions result from immune responses and non-
antigen-specific innate inflammatory processes.2

Studies of synovial tissue taken during different
phases of the disease have increased our under-
standing of the mechanisms involved in joint
destruction and response to treatment.3 In addi-
tion, efficacy of specific therapeutic reagents gives
us a greater understanding of the disease process in
RA. For example, the efficacy of abatacept, which
blocks activation of T cells through the CD28
costimulatory receptor is evidence for the patho-
genic role of T cells in RA.4 Blocking proinflamma-
tory cytokines such as tumour necrosis factor
(TNF)a, interleukin (IL)1 and IL6 has led to
improvement in disease scores in patients with
RA. A critical role for B cells has been validated by
the recent clinical success of B cell depleting agents
for the treatment of RA.5 6 Activated synoviocytes
produce many key cytokines and mediators that
may contribute to the inflammation and joint
destruction associated with RA as illustrated in
fig 1. Many therapies designed to inhibit these
cytokines and mediators are currently in clinical
trials for RA (tables 1–3). Current approaches to
drug therapy for RA include non-steroidal anti-
inflammatory drugs (NSAIDs) for pain treatment,

disease-modifying antirheumatic drugs (DMARDs)
and newer biological agents that target specific
proinflammatory cytokines, cell surface receptors
or various cell types (table 4).1

Animal models of arthritis have been used to
provide insight into the underlying disease process
to identify new targets for drug therapy, and to
identify potential new therapeutic agents for RA.7 8

These animal models share features with human
RA,9 but they also have differences.8 It is important
to select an animal model that has similar pathology
and/or pathogenesis to human RA and that has the
capacity to predict efficacy of a given therapeutic
agent in humans. Additionally, it is desirable to have
a model that is reproducible in mechanism and
outcome. Wherever possible, the target should be
validated in the animal model and human disease.
The objective of this retrospective review article was
to determine whether evaluation in widely used
animal models could predict a compound’s efficacy,
or lack of efficacy, in human RA. To achieve this, we
identified those animal models used to evaluate the
efficacy of approved and pending RA therapies. We
also discuss additional animal models of RA that can
be used to evaluate potential therapeutics. These
data can be used to establish guidelines for the use of
these animal models in the preclinical development
of RA therapies.

METHODS

For this review, we searched databases of publicly
available information from 2000 to 2007 (most
recent search was in January 2007) to identify
animal models of arthritis and determine which
models were most commonly used. There were
only a few reports of compounds tested in models
other than adjuvant-induced arthritis (AIA) and
collagen-induced arthritis (CIA); therefore, we
focused our subsequent searches for information
in these animal models. We focused on compounds
either on the market, or in phase II or III of clinical
development since phase I trials are usually
designed to evaluate safety and not clinical
efficacy. Subsequently, the literature was searched
by each compound name, including generic names
and numbers, and crossreferenced with the various
animal models. The data were then examined to
try to determine whether efficacy in human RA
could be predicted by the animal model and
treatment protocol chosen. Compounds that failed
in phase II or phase III clinical trials were also
included to determine whether efficacy in any
particular model had a higher failure rate.
However, the reasons for clinical failure may be
due to toxicity or other issues unrelated to efficacy,
and this information is often not disclosed. Several
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compounds that are in clinical trials for RA were not tested in
the AIA or CIA models, but may have been tested in other
models of arthritis due to species-specificity or pharmacokinetic
issues. Other compounds have moved into RA clinical trials
based on clinical success in other areas, such as hydrochlor-
oquine, which is an antimalarial drug. Genetically modified
animals have also provided proof-of-concept for other com-
pounds to move forward in development. Table 1 summarises
compounds in phase II or phase III clinical trials for RA that
have moved forward without data in AIA or CIA models.10–19

COMMONLY USED ANIMAL MODELS

Numerous animal models of arthritis exist, many of which have
been used to evaluate compounds that may be potential new
therapies for RA. We identified that the three most commonly
used models of RA for the testing of potential therapeutic
agents are AIA in rats, CIA in rats and CIA in mice. Although
newer models exist, sufficient data linking preclinical efficacy
with proven clinical efficacy in RA is not typically available in
these models. Thus, we limited our extensive clinical data
collection to the AIA and CIA models.

Figure 1 Schematic of a synoviocyte
indicating potential therapeutic targets,
including many that are targeted by drugs
currently in clinical trials or on the market.

Figure 2 Histology of ankle joints and
spleens from control Lewis rats and rats
with adjuvant-induced arthritis (AIA).
Normal synovium (s), normal distal
growth plate (large arrow) and normal
tarsals (small arrow) are represented in
panel A. An ankle from an arthritic rat
demonstrating marked bone resorption in
the distal tibia (large arrow) and minimal
resorption in small tarsals (small arrow) in
association with severe synovitis and
periarticular inflammation (B).
Magnification= 166. The spleen from a
normal rat with normal white (w) and red
(R) pulp is shown in (C). The spleen from
an arthritic rat shown in (D) has moderate
pyogranulomatous inflammation (I),
moderate lymphoid atrophy (W) and
marked extramedullary haematopoiesis
(EMH) in red pulp (R).
Magnification= 506. (Photomicrographs
provided by Bolder BioPATH, Inc.,
Boulder, Colorado, USA.)
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Rat AIA

AIA in rats was the first animal model of RA to be described,20

and it is still widely used in the preclinical testing of new agents
for arthritis, especially NSAIDs. Classic AIA is induced in Lewis
rats by a single intradermal injection of complete Freund

adjuvant (CFA).7 The AIA model is characterised by reliable,
rapid onset and progression of a robust and easily measurable
polyarticular inflammation, marked bone resorption and peri-
osteal bone proliferation.7 Severe polyarthritis develops rapidly –
clinical signs of arthritis usually appear about 10 days after

Table 1 Compounds progressed in clinical development without preclinical data in adjuvant-induced arthritis (AIA) or collagen-induced arthritis (CIA)

Compound Mode of action Clinical phase In vivo validation Reference

Rituximab Anti-CD20 Approved B cell depletion in non-human primates Looney10

Infliximab Anti-TNF Approved Effects on Inflammatory processes Maini and Feldman11

Adulimimab (D2E7) Anti-TNF Approved None found on this particular compound

Hydrochloroquine Antimalarial Approved None found on this particular compound

Belimumab Anti-Blys III B cell depletion in non-human primates Halpern et al
12

TRU-015 Anti-CD20 II B cell depletion in non-human primates Trubion Pharmaceuticals13

HuMax-CD20 Anti-CD20 II B cell depletion in laboratory tests and animal studies Genmab14

Cimzia F(ab9)PEGylated anti-TNF III None found on this particular compound

AVE9897 (MLN 3897) CCR1 antagonist II None found on this particular compound, however, CCR1
antagonism works therapeutically in mouse CIA

Amat et al15

Rhu-Dex Anti-CD80 II None found on this particular compound

CRx-102 Dipyridimole and prednisolone II None found on this particular compound

681323 (GSK) p38 inhibitor II None found on this particular compound GlaxoSmithKline16

856553 (GSK) p38 inhibitor II None found on this particular compound GlaxoSmithKline16

247150 iNOS inhibition II None found on this particular compound

Rosiglitazone XR (GSK) PPAR agonist II None found on this particular compound, however, PPAR
agonism works prophylactically in mouse CIA

Tomita et al
17

RJW 445380 Cathepsin S inhibitor II Decreased CIA in cathepsin S deficient mice Nakagawa et al
18

UK 427857 CCR5 inhibitor II None found on this particular compound, however, CCR5
antagonism works prophylactically in mouse CIA

Yang et al
19

CCR, Chemokine (C-C motif) receptor; iNOS, inducible nitric oxide synthase; PEG, polyethylene glycol; PPAR, peroxisome proliferator-activated receptor; TNF, tumour
necrosis factor.

Table 2 Efficacy (therapeutic or prophylactic) in animal models of candidate rheumatoid arthritis (RA) drugs currently in phase II and III trials

Mechanism of action Example

Rat AIA Rat CIA Mouse CIA

ReferencesProphylactic Therapeutic Prophylactic Therapeutic Prophylactic Therapeutic

Phase III:

Dual COX/LT inhibitor Licofelone (ML-3000) + Laufer et al, Gay
et al

93 94

IL1 and IL6 synthesis inhibitor TA-383 ++ ++ + Ueno et al
95

Phase II:

P38 MAP kinase inhibitor Scio-469 + Brahn et al
96

B cell activation antagonist Atacicept (TACI-Ig) + Gross et at
97

Calcineurin inhibitor ISAtx-247 + Isotechnika98

Inhibits production of cytokines
(IL1b, TNFa, IL6)

K-832 ++ ++ ++ ++

Antibody to IL15 AMG 714 (HuMax-
IL15)

+

IL1 receptor antagonist AMG 719 +

IL12, IL23 inhibitor Apilimod mesylate
(STA-5326)

++ ++ ++ ++

Adenosine A3 receptor agonist CF-101 + + Baharav et al
99

Oestrogen receptor-b agonist Prinaberel (ERB-041) + Steffan et al,
Harris et al

100 101

COX inhibitor, NO donor Nitronaproxen + Cicala et al
102

PGE2 antagonist SMP-114 ++ ++

5-lipoxygenase (LTB4
antagonist)

CP-195543 + (IL1 model) Showell et al103

Syk kinase inhibitor R788 + +

JAK 3 inhibitor CP-690,550 + + Milici et al104

Anti-RANKL Denosumab 2 Kamjo et al
105

CCR2 antagonist INCB3284 + Brodmerkel et
al

106

+, Efficacy; 2, no effect . Where there is a ++ sign covering prophylactic and therapeutic efficacy, efficacy was demonstrated but it was not possible to determine whether it was
prophylactic or therapeutic efficacy from the information available.
AIA, adjuvant-induced arthritis; CIA, collagen-induced arthritis; CCR, chemokine (C-C motif) receptor; COX, cyclo-oxygenase; IL, interleukin; JAK, Janus kinase; LT, leukotriene; LTB,
lymphotoxin beta; MAP, mitogen activated protein; NO, nitric oxide; PGE2, prostaglandin E2; RANKL, receptor activator for nuclear factor kB ligand; Syk, spleen tyrosine kinase; TNF,
tumour necrosis factor.
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adjuvant injection – but rarely lasts longer than a month.21

Histology of a paw taken from a rat with AIA on day 14 post
immunisation is shown in fig 2. The cell infiltration, particu-
larly neutrophils, and the joint destruction are evident.
AIA is a T cell-dependent disease that shares some features

with human RA, including swelling of the extremities, cartilage
degradation, loss of joint function and lymphocyte infiltration
of the joints. Bone resorption is prominent in AIA; damage to
cartilage occurs to a lesser degree than in rat CIA and human
RA.22 Unlike human RA, the spine, the gastrointestinal and
genitourinary tracts, the skin and the eyes9 21 are also affected,
similar to human spondyloarthropathies. The AIA model is
T cell and neutrophil dependent, and complement-independent.
There is also no documented role for B cells.22–26 In addition,
T helper (Th)1 and Th17 inflammatory cytokines have been
associated with AIA. Increased levels of TNF, interferon c

(INFc), IL1, IL6 and IL17A mRNA have been detected in lymph
nodes and/or inflamed joints of rats with AIA.27 28 Blockade of
TNF, IL1, IL21 and IL17A in rats with AIA ameliorates the
disease, indicating that these cytokines contribute to the
pathology in this model.29–31 For a more detailed review of the
AIA model, see van Eden and Waksman.32

Rat CIA

CIA was first described in rats33 and is a commonly used model
for assessing the efficacy of potential new therapeutic agents for
RA. Severe polyarthritis is induced in rats by intradermal/
subcutaneous injections of homologous or heterologous type II
collagen emulsified in IFA.33 It is characterised by marked
cartilage destruction associated with immune complex deposi-
tion on articular surfaces, bone resorption and periosteal
proliferation, together with synovitis and periarticular inflam-
mation as shown in fig 3.7 The robust immune response
involves CII-specific T cells and B cells; the latter produce
antibodies to type II collagen.34

Rat CIA has many similarities to human RA.9 35 As in human
RA, females are more susceptible. The onset of arthritis is rapid,
typically developing 10–13 days after immunisation, peaking at
about day 20 and then gradually declining.7 36 Rat CIA differs
from human RA in that it is self-limiting and not characterised
by exacerbations and remissions. In addition, the inflammatory
cell infiltrate in rat CIA consists predominantly of polymorpho-
nuclear cells, whereas a high proportion of mononuclear cells are
seen in human RA.37 The rat CIA model differs from the AIA
model in several ways: arthritic disease is less common and less
severe,38 there is greater involvement of B cells,39 and the CIA
model is complement dependent.24

Mouse CIA

CIA can be induced by immunisation of genetically susceptible
strains of mice with heterologous type II collagen in CFA.40

Following immunisation, the animals develop an autoimmune
polyarthritis that is characterised by severe cartilage and bone
erosions. The lesions in affected joints are similar to those seen
in rat CIA.7 Mouse CIA shares several clinical, histopathological
and immunological features with human RA: clinical features
include erythaema and oedema; histopathological features
include synovitis, pannus formation and cartilage and bone
erosion as shown in fig 4. Immunological features include high
levels of antibody to type II collagen, production of rheumatoid
factors41 and hyper c-globulinaemia.42 Typically, mouse CIA is
characterised by symmetrical joint involvement with the
peripheral joints affected.9 The cell infiltration into the joint

space, synovial hyperplasia and marginal erosions are similar to
those observed in AIA and in human RA. By contrast, periostitis
is present in CIA, but not in human RA.43 Susceptibility to CIA
and RA is strongly associated with the expression of specific
major histocompatability complex (MHC) class II molecules,37

specifically, I-Aq and I-Ar in the mouse, and human leukocyte
antigen (HLA)-DR1 and DR4 in the human.43–45

Studies of CIA in mice have indicated that autoantibodies,
inflammatory cytokines and multiple cell types including
T cells, although T cells play a role in the pathogenesis of
CIA.40 As in human RA, several pro and anti-inflammatory
cytokines are expressed in the joints of mice with CIA, including
TNFa and IL1b, IL6, IL1Ra, IL10 and transforming growth
factor (TGF)b.46 IL12 and IL23 also appear to be involved in the
pathogenesis of mouse CIA.47 48

The mouse CIA model has a slower onset and a more
prolonged duration than the rat CIA model.49 Moreover,
differences exist in the immune response between the two
species.50 The mouse has the advantage that there are extensive
immunological and genetic tools available to manipulate the
disease in this species.51 There are several different protocols for
inducing CIA in mice. Typically, the mice are immunised with
bovine or chick type II collagen is emulsified in CFA followed by
a boost of collagen approximately 3 weeks later.52 In some cases,
the mice are given lipopolysaccharide (LPS) around the time of
the boost to induce the disease to occur more rapidly with less
variability in onset.53 We found that most compounds discussed
in this review were tested in CIA models induced with
heterologous cartilage and without an LPS boost. However, all
data are included, regardless of the CIA model used.

Treatment regimens

In this review, we considered treatment regimens to be
prophylactic when dosing with the study drug was started at
or before immunisation, or before disease onset. When dosing
with study drug was started only after clinical signs of disease
were observed, we considered the treatment regimen to be
therapeutic.

COMPOUNDS APPROVED AND IN DEVELOPMENT

We identified several therapies approved for use in the US,
Europe and Japan from the initial database search. Table 4
summarises these approved therapies by their therapeutic and/
or prophylactic efficacy in the three most commonly used
animal models.22 36–38 51 54–92 DMARDs such as methotrexate,
ciclosporine, gold compounds and penicillamine have been
tested in all three animal models, generally for prophylactic
efficacy rather than therapeutic efficacy. However, the majority
of these DMARDs did not follow a classical drug development
pathway. These drugs were being used in other disease areas (eg,
oncology for methotrexate) or they had anecdotal efficacy.
Penicillamine has been used to treat arthritis for over 50 years,
whereas gold compounds have been used to treat arthritis for
more than 75 years. Thus, these compounds were not rigorously
tested for efficacy in vivo prior to use in the clinic. The in vivo
data that are available was typically generated after these
compounds were being used as therapeutics for RA. The AIA
model was commonly used to evaluate corticosteroids, NSAIDs
and selective cyclo-oxygenase-2 (COX-2) inhibitors; these
classes of agent showed therapeutic efficacy in this model.
The NSAID indomethacin also showed therapeutic efficacy
when tested in the rat and mouse CIA models.36 62 65 70–72 It is
important to note that NSAIDs are effective in treating the pain
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associated with arthritis, but these drugs do not inhibit
progression of joint damage, despite demonstrating efficacy in
the rodent models of arthritis. In order to identify compounds
that will affect disease progression as well as affect signs and
symptoms of disease, biomarkers need to be identified in the
arthritis models.
Newer RA therapies such as the IL1 receptor antagonist (IL1Ra)

anakinra and the TNF antagonist etanercept have shown
therapeutic efficacy in all three animal models of RA.22 42 79–83

Drugs with various mechanisms of action currently in clinical
development for the treatment of RA (ie, in phase II or III
clinical trials) have been evaluated for prophylactic and/or
therapeutic efficacy in the AIA and rodent CIA models
(table 2).93–106 Many of these newer drugs are targeted to specific
aspects of the underlying pathophysiology, and the animal
model used usually depends on the mechanism of action of the
drug being tested. For example, anti-inflammatory agents tend
to be tested in the rat AIA model, whereas the more recent

mitogen activated protein (MAP) kinase inhibitors were tested
in the rat CIA model.
Taken together, the data from RA drugs that are approved or

are progressing in clinical development suggest that therapeutic
efficacy in animal models of RA predicts clinical efficacy. Most
approved drugs have data on therapeutic efficacy from AIA and
CIA models, indicating that data from both types of animal
models are more predictive of clinical efficacy than are data
from either model alone.

COMPOUNDS DISCONTINUED OR SUSPENDED

Table 3 summarises the efficacy data from animal models of RA
for compounds suspended in phase II and III clinical
trials.24 65 107–130 Most of these compounds were targeted towards
specific aspects of the pathophysiology of RA. Some of the
compounds discontinued during clinical development showed
efficacy in either the AIA or CIA models of RA. However, most

Table 3 Efficacy (therapeutic or prophylactic) in animal models of rheumatoid arthritis (RA) of drugs suspended from phase II or III clinical
development as treatments for RA

Mechanism Example

Rat AIA Rat CIA Mouse CIA

ReferencesProphylactic Therapeutic Prophylactic Therapeutic Prophylactic Therapeutic

Phase III:

TACE inhibitor DPC 333 (BMS-
561392)

+ + Lorenz et al107

Anti-cytokine, anti-T cell Esonarimod ++ ++ Noguchi et al108

NSAID Amiprilose ++ ++ ++ Kieval et al109

Increase T suppressor cells Nuclomedone + 2 Komoriya et al
110

PGE synthesis inhibitor FK 3311 + + Harris et al, Tsuji
et al

101 111

MMP inhibitor Cipemastat
(Trocade)

2 – 2 Ishikawa et al
112

Phase II

Th2 induction, NFkB inhibition IL11 + + + Albert et al,
Walmsley et al

113 114

Decrease IL1 release TOK-8801 + + ++ ++

VLA-4 antagonist ZD-7349 +

Dual COX/LT inhibitor Tepoxalin + Argentieri et al74

Complement inhibitor
(humanised anti-C5) monoclonal
antibody)

Eculizumab (5G1.1) + Linton and Morgan,
Wang et al

24 115

Antibody to IL12p40 IL12 mAb (ABT
874)

+

O2 radical scavenger Superoxide
dismutase

++ ++ Shingu et al
116

P38 MAP kinase inhibitor Doramapimod
(BIRB 796)

+ Nabozny et al
117

P38 MAP kinase inhibitor TAK 715 + Miwatashi et al118

Bisphosphonate, IL1 antagonist TRK 530 + + Tanahashi et al,
Takaoka et al

119–121

ICE inhibitor Pralnacasan
(VX740)

+ Linton, Ku et al
122 123

IL4 (B cell stimulatory factor 1) IL4 + + Cottard et al, Kim
et al

124 125

Oral TNFa inhibitor AGIX-4207 + Sundell et al126

MCP-1 inhibitor Bindarit + Guglielmotti et al127

Immunomodulator SM 8849 ++ ++ + Nagai et al128

IFNb Rebif + van Holten et al
129

Targets a (v) b 3 RGD-
4C_D(KLAKLAK)2

+ Gerlag et al
130

+, Efficacy; 2, no effect. Where there is a ++ sign covering prophylactic and therapeutic efficacy, efficacy was demonstrated but it was not possible to determine whether it was
prophylactic or therapeutic efficacy from the information available.
AIA, adjuvant-induced arthritis; CIA, collagen-induced arthritis; COX, cyclo-oxygenase; ICE, interleukin 1b converting enzyme; IFN, interferon; IL, interleukin; LT, leukotriene; mAb,
monoclonal antibody; MAP, mitogen activated protein; MCP, monocyte chemoattractant protein-1; MMP, matrix metalloproteinase; NFkB, nuclear factor kB; NO, nitric oxide;
NSAID, non-steroidal anti-inflammatory drug; PGE2, prostaglandin E2; RA, rheumatoid arthritis; TACE, TNFa converting enzyme; Th, T helper; TNF, tumour necrosis factor; VLA-4,
very late antigen-4.
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compounds suspended in phase II or III clinical trials did not
show therapeutic efficacy in one or more RA animal models.
In addition, there are many compounds that did not

demonstrate efficacy in animal models of arthritis and there-
fore, were not tested in humans. Thus, animal models can be
very important to determine lack of efficacy, as well as efficacy.
These data are not captured in this review as this review focuses
on compounds that were tested in clinical trials.

OTHER AVAILABLE MODELS

Primate model

CIA in the rhesus monkey is a non-predictable and often severe
model of human RA.131 Consequently, the use of the model is
often limited to species-specific reagents that can not be tested
in lower species. Therapies that have shown efficacy in the
primate model include the anti-IL6R antibody, Toclizumab, the
humanised monoclonal antibody against the IL2 receptor,
Daclizumab, and the chemokine (C-C motif) receptor (CCR)5
antagonist SCH-X.132–134

Rabbit model

Antigen-induced arthritis in rabbits, first described by Dumonde
and Glynn,135 has joint pathophysiology similar to RA and is
especially important for evaluating intra-articular therapies.
This model has been successfully used to test various gene
therapy strategies.136 137

Rat models
Other rat models of RA include the streptococcal cell wall
(SCW) model, and the HLA-B27 transgenic model. The SCW
model is induced by a single intraperitoneal injection of
streptococcal cell wall fragments. This results in a non-T cell
dependent phase followed by a chronic, inflammatory, T cell
dependent phase associated with the production of high levels
of inflammatory cytokines and erosive cartilage damage in the
arthritic joints.138–140 The spontaneous remissions and exacerba-
tions of chronic inflammation that occur in the joints of the
SCW model are similar to those observed in RA.
In the HLA-B27 rat model, rats that are transgenic for HLA-B27

express high levels of human HLA-B27 and b2 microglobulin
proteins.141The ratsarenormal at birthbutdevelopTcell-mediated,
spontaneous chronic inflammation of many organ systems as they
age, including arthritis, inflammatory bowel disease and psoria-
sis.142 143The disease is similar to human spondyloarthropathies and
is dependent on bacterial flora and the immune system.144 Because
the HLA-B27 rat model is relatively new, few compounds for
treating RA have been tested in this model.

Mouse models
Several additional models of arthritis in mice have also been
developed, including the HLA-DR4 mouse, the K/BxN mouse,
the proteoglycan (PG) model, the severe combined immunode-
ficiency (SCID) model, the TNF transgenic model, the SKG
mouse and DNase II–/– interferon (IFN)iR–/– mice. The HLA-
DR4 mouse model that was recently described, lacks all
endogenous mouse class II genes and expresses the RA
susceptibility allele HLA-DRB1*0401.145 Disease is predomi-
nantly in females and there are rheumatoid factors, plus the
expression of class II molecules on antigen-presenting cells and
T cells, similar to human RA.
The K/BxN mouse model, was first described in 1996.146 K/

BxN mice spontaneously develop a severe, chronic, progressive
inflammatory arthritis at about 27 days old without the need
for administration of an external antigen. This model is similar
to human RA in many respects and involves not only T cells but
also B cells, which secrete autoantibodies that promote joint
destruction.147 Moreover, transfer of serum or purified Ig from
arthritic K/BxN mice to recipient normal mice induces a rapid
and profound erosive synovitis, similar to human RA, that is
dependent on neutrophils, mast cells, macrophages and
inflammatory mediators.148–150

Another very valuable model is the PG (human proteoglycan
or aggrecan) model in the mouse. This model is chronic and
relapsing and, like the K/BxN model, is also T cell and antibody
mediated.151 152

In the SCID model, RA synovial tissue or cultured fibroblasts
and normal cartilage are co-implanted under the renal capsule of
SCID mice.153–155 Many of the features of the rheumatoid
synovium last for at least 12 weeks. As a result, this model can
be used to test human specific agents that may be potential
therapeutic agents for RA, such as humanised monoclonal
antibodies.156 The SCID mouse model has been used in gene
transfer studies to identify potential therapeutic targets for
RA, including cytokines, activating factors of synovial cells,
matrix-degrading enzymes and regulators of cell survival and
apoptosis.157 158

Chronic inflammatory polyarthritis also develops in mice
expressing 39 modified human TNF transgenes.159 The role of
TNF in this model has been confirmed using monoclonal
antibodies. This model may be particularly useful for assessing
efficacy of reagents that are species-specific for human TNF.

Figure 3 Histology of the ankle joint from a rat with collagen-induced
arthritis (CIA) on day 35 (A) after initial immunisation demonstrating the
cellular infiltration and cartilage destruction in this model and from a
naı̈ve rat (B). Magnification= 206.
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The SKG mice have a single mutation on the zeta-chain-
associated protein kinase (ZAP)-70 gene that leads to the
production of arthritogenic T cells.160 These mice develop T cell
mediated arthritis that has many features resembling human
RA, including severe arthritis and synovitis involving the digits,

ankles and base of the tail. SKG mice also develop extra-articular
lesions, such as pneumonitis and dermatitis. The serum of
affected mice has high titres of IgG rheumatoid factor and
autoantibodies to type II collagen.161 Mice deficient in the
DNase II gene and IFNiR gene (DNase II–/– IFNiR–/– mice) and

Table 4 Efficacy (therapeutic or prophylactic) of approved rheumatoid arthritis (RA) therapies in rat AIA, rat CIA and mouse CIA

Compound

Rat AIA Rat CIA Mouse CIA

Mechanism ReferencesProphylactic Therapeutic Prophylactic Therapeutic Prophylactic Therapeutic

Methotrexate + 2 + + DMARD Walz et al, Sakuma et al,
Magari et al, Jaffee et

al, Williams et al,
Neurath et al

54–59

Ciclosporine A + + 2 + 2 DMARD Williams et al, Takagishi
et al, Phadke et al,
Magari et al, Theisen-
Popp et al, Kaibara et al,
Cannon et al37 50 51 56 60–62

Gold compounds +/2 +/2 2 DMARD Probert et al, Carlson et

al, Phadke et al, Cannon
et al

36 38 51 63

Penicillamine + +/2 2 DMARD Probert et al, Carlson et

al, Phadke et al, Lewis
et al, Nishikaku and
Koga36 38 51 64 65

Prednisone + + + Corticosteroid Walz et al, Ward and
Cloud, Sloboda et al,
Paska et al

54 66 67 68

Cyclophosphamide + 2 +/2 + Antimetabolite Probert et al, Cannon et

al, Walz et al, Cannon et
al, Sloboda et

al
36 49 54 62 67

Indomethacin + + + NSAID Probert et al, Walz et al,
Theisen-Popp et al,
Cannon et al, Nishikaku
and Koga, Ward and
Cloud, Winter and Nuss,
Yamaki et al, Griswold
et al, Inou et

al
36 54 60 62 65 66 69–72

Naproxen + (d10) + 2 NSAID Phadke et al, Bendele et

al, Argentieri et al,
Takashita et al

51 73–75

Celecoxib + COX-2 inhibitor Penning et al
76

Rofecoxib (withdrawn) + COX-2 inhibitor Chan et al
77

Flobufen + Dual COX/LT
inhibitor

Bulej et al78

Anakinra + (d8) + + IL1 receptor
antagonist

Bendele et al, Joosten et
al

22 79 80

Etanercept (human sTNFR-
Ig)

+/2 + + TNF blockade Wooley et al, Bendele et
al, McComb et al,
Bendele et al, Williams
et al

42 79 81–83

Abatacept (CTLA4-Ig) + + Blocks T cell
costimulation

Williams et al, Webb et

al
83 85

Toclizumab (MRA) + IL6 receptor
antagonist*

Takagi et al86

Approved in Japan:

Mizoribine ++ ++ + DNA synthesis
inhibitor

Kamada et al
87 88

Actarit + + IL2 agonist Fujisawa et al
89

FK 506 (tacrolimus) + + ++ ++ Immunosuppressant

Sakuma et al, Magari et al,
Arita et al, Takagishi et
al

55 56 90 91

Iguratimod (Y-614) + + COX-2, TNF
inhibitor

Inaba et al
92

+, Demonstrated efficacy; +/2, efficacy in some, but not all, studies; 2, no effect. Where there is a ++ sign covering prophylactic and therapeutic efficacy, efficacy was
demonstrated but it was not possible to determine whether it was prophylactic or therapeutic efficacy from the information available.
*, Positive in monkey CIA. IL6 deficient mice are resistant to CIA.
AIA, adjuvant-induced arthritis; CIA, collagen-induced arthritis; COX, cyclo-oxygenase; DMARD, disease-modifying antirheumatic drug; IL, interleukin; LT, leukotriene; NSAID, non-
steroidal anti-inflammatory drug; TNF, tumour necrosis factor.
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mice with a deletion of the DNase II gene develop a chronic
polyarthritis as they age.162 There is increased expression of the
gene encoding TNFa early in the pathogenesis and administra-
tion of anti-TNFa antibody has prophylactic and therapeutic
efficacy in these mice.
Many of these animal models, particularly some of the mouse

models, have been developed recently, thus, the usefulness for
predicting efficacy of potential RA therapeutics still needs to be
determined.

CONCLUSIONS
Animal models play a critical role in the development of drugs
for treating RA. During preclinical evaluation of the efficacy of
compounds, it is important to use animal models that are not
only appropriate and highly reproducible, but also have been
shown to predict clinical efficacy in humans. In this review, we
have shown that therapeutic efficacy in animal models seems to
be the best predictor of clinical efficacy in human RA. Some of
the newer animal models may also prove to be valuable for
assessing efficacy of potential therapeutic reagents for RA.
Model choice should be performed carefully, taking into account
the biology of the animal model and the therapeutic target
under evaluation.
It is important to note compounds with activity in the animal

models that failed in the clinic may have activity in a subset of
patients, such as early RA, but not in the composite RA
population. However, due to the population of patients with

RA enrolled in the clinical trials, this efficacy could be masked.
Moreover, the conclusion that compounds demonstrating
therapeutic efficacy in the animal models are more likely to
have success in the clinic does not imply that these compounds
will be more active if used therapeutically in patients with RA.
Indeed, these compounds may be far more effective if used
earlier in the disease process. Efforts to understand the early
disease processes in RA are invaluable. Identifying or generating
animal models that replicate the various mechanisms and
pathways of all aspects of RA, including early RA and using
these models to test potential therapeutics will help us to make
better predictions of efficacy in human RA.
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