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Genomic prediction provides an efficient alternative to conventional phenotypic selection

for developing improved cultivars with desirable characteristics. New and improved

methods to genomic prediction are continually being developed that attempt to deal with

the integration of data types beyond genomic information. Modern automated weather

systems offer the opportunity to capture continuous data on a range of environmental

parameters at specific field locations. In principle, this information could characterize

training and target environments and enhance predictive ability by incorporating weather

characteristics as part of the genotype-by-environment (G×E) interaction component

in prediction models. We assessed the usefulness of including weather data variables

in genomic prediction models using a naïve environmental kinship model across 30
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environments comprising the Genomes to Fields (G2F) initiative in 2014 and 2015.

Specifically four different prediction scenarios were evaluated (i) tested genotypes in

observed environments; (ii) untested genotypes in observed environments; (iii) tested

genotypes in unobserved environments; and (iv) untested genotypes in unobserved

environments. A set of 1,481 unique hybrids were evaluated for grain yield. Evaluations

were conducted using five different models including main effect of environments;

general combining ability (GCA) effects of the maternal and paternal parents modeled

using the genomic relationship matrix; specific combining ability (SCA) effects between

maternal and paternal parents; interactions between genetic (GCA and SCA) effects

and environmental effects; and finally interactions between the genetics effects and

environmental covariates. Incorporation of the genotype-by-environment interaction term

improved predictive ability across all scenarios. However, predictive ability was not

improved through inclusion of naive environmental covariates in G×E models. More

research should be conducted to link the observed weather conditions with important

physiological aspects in plant development to improve predictive ability through the

inclusion of weather data.

Keywords: genotype-by-environment interaction (G×E), Genomes to Fields (G2F) initiative, general combining

ability (GCA), specific combining ability (SCA), hybrid prediction, genomic prediction

INTRODUCTION

Genomic prediction and selection have become a powerful tool
for plant breeders to develop new improved varieties more
quickly and efficiently (Crossa et al., 2017). An initial set of
genotyped and phenotyped lines is needed for model calibration.
Then, the predictions of untested genotypes can be performed
using their marker profiles and the calibrated/developed model.
This methodology offers the opportunity to generate maize
hybrids by constructing synthetic genotypes from inbred lines
whose marker profiles are available (Kadam et al., 2016; Acosta-
Pech et al., 2017). Model calibration can also be performed using
phenotypic information from hybrids and inbreds previously
tested. The creation and prediction of hypothetical hybrids
provide a wider inference space to search for superior genotypes
with desirable characteristics (high yield, drought tolerance,
disease resistance, stable cultivars, etc.) without incurring
additional phenotyping costs. Numerous factors affect prediction
accuracy, including, among others, the quality of phenotypic
and genomic information, the genetic relatedness between
training and testing sets, and the trait’s genetic architecture
(Jarquin et al., 2014).

Generally, breeders are interested in the development of
superior cultivars for a wide range of environmental conditions
and, therefore, varieties are frequently tested across multiple
environments within a breeding program. The identification
of superior cultivars is affected by changes in the response
patterns of particular genotypes under different environmental
stimuli. These changes in the response patterns correspond to

changes in the rank performance of the genotypes from one

set of environmental conditions to another; the phenomenon
is also known as G×E interaction. The understanding of how
environmental factors can cause inconsistencies in phenotypic

responses of specific genotypes could aid breeders in designing
experimental trials inmore informedways. The development and
testing of models optimized to predict genotype-by-environment
interaction effects is an important area of active research.

Several studies have demonstrated the benefits of modeling
the G×E interaction in prediction models (Burgueño et al.,
2012; Jarquín et al., 2013; Pérez-Rodríguez et al., 2015; Lado
et al., 2016; Basnet et al., 2019). More specifically, Jarquín et al.
(2013) and Pérez-Rodríguez et al. (2015) modeled the G×E
interaction using an environmental kinship covariance structure
that describes the environmental similarities between pairs of
environments using weather data. In the absence of weather
data this model still allows the inclusion of the G×E interaction
by leveraging the interaction between molecular markers and
environments instead of the interaction between molecular
markers and weather covariates.

Others have extended these implementations allowing the
modeling of G×E interaction in a multi-trait context (Malosetti
et al., 2016; Montesinos-López et al., 2016). Efforts have also
been attempted to integrate genomic selection with crop growth
models to better understand the impact of G×E interactions
(Heslot et al., 2014; Technow et al., 2014; Onogi et al.,
2016; Rincent et al., 2017). Recently, Millet et al. (2019)
proposed a model for predicting grain yield as the product of
yield components. Such phenotypic dissection might allow the
identification of particular components that are less affected
by specific environmental conditions (e.g., grain weight). In
other cases, a trait (e.g., grain number) might exhibit a strong
dependence during key phenological phases such as the amount
of radiation intercepted during the vegetative phase, average
night temperature, and soil andwater potential over the flowering
phase. These authors showed that the dissection of grain number
via a factorial regression that depends on environmental indices
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(genotype-specific radiation, soil water potential, and meristem
temperature) can substantially enhance the predictive ability
compared to current alternatives. However, the computation
of some of the needed parameters requires the use of labor
intensive or sophisticated phenotyping platforms to record
plants’ responses and environmental conditions over time,
especially during key phenological phases, limiting applications
in current field breeding efforts.

The objective of this study was to assess the usefulness
of naively modeling environmental covariates (ECs) for the
genomic prediction of maize hybrids in different scenarios
involving varying levels of available information. Such scenarios
include calibrating tested hybrids in observed environments,
untested (new) hybrids in observed environments, tested
hybrids in unobserved environments, and untested hybrids
in unobserved environments. The dataset used here included
30 environments across 21 locations and 2 years (2014 and
2015) collected by the G2F initiative. Models were compared
on the basis of prediction accuracies calculated for different
cross-validation scenarios. This study will help to elucidate the
potential for, and limitations of, the application of environmental
data to the genomic prediction for plant breeding when
no information about the relationships between the different
phenological stages of plant development and the observed
weather conditions at these stages are considered. This can help
guide future research efforts aimed at optimizing the use of these
types of data.

MATERIALS AND METHODS

The G2F Project
The analyzed data were collected by the G2F initiative
(www.genomes2fields.org). The initiative started in 2014 with
the goal of providing a flexible structure that researchers could
participate in and take advantage of to test and evaluate
important research questions to help enhance phenotypic
predictability (AlKhalifah et al., 2018). This umbrella initiative
includes the maize G×E project that aims to annually document
and measure genotypes, phenotypes, and environmental data for
a collection of diverse maize hybrids at more than 20 locations in
North America.

Genotypes, Environmental Conditions, and
Experimental Design
A collection of 1,876 unique maize hybrids was tested in 19 and
24 locations in 2014 and 2015, respectively, representing 17 states
in the US and one province in Canada (doi: 10.7946/P2201Q
and 10.7946/P24S31, respectively) as part of the G2F Maize
G×E project (AlKhalifah et al., 2018). In 2014, hybrids were
generated by crossing a total of 380 unique inbred lines to
relevant testers. The set of inbred lines included 25 recently
expired plant variety protection (EXPVP) lines (Mikel, 2006), 302
were recombinant inbred lines (RILs) derived from biparental
populations, and the remaining 53 included lines from diverse
origins. For 2014, 23 testers included EXPVP inbred lines LH198,
LH195, LH185, and PB80, as well as CG102, which is an inbred
line released by the University of Guelph (Lee et al., 2001). As

described in Gage et al. (2017), the inbreds used as females
in the hybrid combinations for 2014 were classified into eight
sets based on their genetic background. A set of 553 unique
inbred lines were used in 2015, which included 55 EXPVP lines,
301 lines derived from biparental crosses, and the remaining
197 lines represented diverse lines from various origins and
genetic backgrounds. In 2015, the set of testers used also included
EXPVP lines PHB47 and PHZ51 for a total of 25 testers. The
locations where experiments were grown ranged from latitudes
between 30.546919◦ and 44.994356◦ and longitudes between
−75.465731◦ and −109.692471◦. For more details about specific
agronomic practices and growing conditions deployed for each
location, please refer to the metadata at dois: 10.7946/P2201Q
and 10.7946/P24S31 for 2014 and 2015, respectively. In 2014,
sets of ∼250 hybrids were grown at each location using two field
replications per location for a total of ∼500 plots per location.
The design was a modified split-plot design with individual sets
(based on genetic background) as the whole plot and hybrids
as the subplot. In 2015, each location also included ∼500 plots
but for that year, an incomplete randomized block design was
used to expand the number of diverse genotypes included at
each location. For each location, this design included 20 blocks.
Each location was separated into two replicated blocks with each
replicated hybrid planted once in each block. Each block was then
further divided into 10 incomplete blocks for placement of check
hybrids among the incomplete blocks. From the total 500 plots
per location, replications were included in 120 of those plots.
Additionally, a set of 10 hybrids (Supplementary Table 1) were
planted at each of the two replications at every location in 2014
and 2015. This represented the set of common check hybrids. For
both years, hybrids were assigned to specific locations based on
expected maturity with the exception of the set of common check
hybrids, which were grown across all locations and years, and the
locally adapted check hybrids, which were also included in every
location, each year, and were specific for each individual location.
The experimental design used was the outcome of a large multi-
institutional collaboration in which multiple objectives were
being addressed. The nature of the randomization and the
different type of randomization between years is not expected to
affect the answer to the main question of this study, which was
the relative benefit of using environmental covariates to increase
genomic prediction accuracy of multi-environment trials.

For this study, we used a set of 1,481 of the available
1,876 hybrids [Supplementary Table 2 (2014) and
Supplementary Table 3 (2015)] evaluated at least across 30
of the 43 available environments [location-by-year combination
(14 in 2014 and 16 in 2015)] for which climatic information
was available (see Supplementary Table 3 for details about
the setting up of the experiments at each environment).
These hybrids were derived by crossing 535 unique inbreds
to appropriate testers across both years (25 testers and 510
non-testers) and with 533 inbred lines acting as parent 1 and
25 as parent 2. Overlapping subsets of 206 to 368 hybrids
from the 1,481 available hybrids were tested in each of the
30 environments. As previously described (Gage et al., 2017),
DNA sequencing data for 232 of the lines used in this overall
study were downloaded from the ZeaGBSv2.7 Panzea release
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(http://www.panzea.org/#!genotypes/cctl). The remaining
inbred lines were genotyped with ∼900,000 genotyping-by-
sequencing (GBS) molecular markers built from the GBS 2.7
and following the protocol described by Elshire et al. (2011).
Inbred genotypes were called using the Tassel5-GBS Production
Pipeline, and the ZeaGBSv2.7 Production TagsOnPhysicalMap
(TOPM) file (AllZeaGBSv2.7_ProdTOPM_20130605.topm.h5,
available at panzea.org) was built using data from about
32,000 additional Zea samples (Glaubitz et al., 2014).
FILLIN40 (Swarts et al., 2014) was used to impute using
the available set of maize donor haplotypes with 8k windows
(AllZeaGBSv2.7impV5_AnonDonors8k.tar.gz, available at
panzea.org). All GBS samples used in this study are listed
in Supplementary Tables 2, 4 for the 2014 and 2015 trials,
respectively. The complete set of GBS data can be found at
doi: 10.7946/P2201Q Genomic information from parental
inbred lines was used to derive the hybrid progeny from these
crosses via the general and specific combining ability models.
The genotypes of the inbred parents were coded based on the
number copies of the major allele presents at each locus (0, 1, or
2) in each individual.

Phenotypes
A total of 8,555 phenotypic records for grain yield (GY)
expressed as kg ha−1 at 15.5% adjusted grain moisture across
30 environments remained in the analysis after applying
quality control measurements. Data points outside the range
of the mean within a specific environment plus or minus
three standard deviations were discarded as part of the quality
control applied for this study. The complete phenotypic
data set with information for all hybrids evaluated in 2014
and 2015 can be found at doi: 10.7946/P2V888, folder
a._2014_hybrid_phenotypic_data and doi: 10.7946/P24S31,
folder a._2015_hybrid_phenotypic_data. A total of 19.3% of
all potential combinations between hybrids and environments
were evaluated across the 30 locations as part of this study.
For 2014 (14 environments) and 2015 (16 environments), 27.7
and 35.6% of all the hybrid-environment combinations were
observed, respectively.

Climatic Information
Each location was equipped with a WatchDogTM Model
2700 (Spectrum Technologies Inc., East-Plainfield, Illinois,
60585, USA) weather station able to capture information on
eight environmental covariates (ECs): air temperature (◦C),
dew point (◦C), relative humidity (%), rainfall (mm), wind
speed (meters second−1), wind direction (degrees), wind gusts
(meters second−1; largest speed in a 30min period), and
solar radiation (Watts meter−2). Nearby stations from the
National Weather Service (NWS) Automated Surface Observing
Systems (ASOS) were used to verify calibration, identify
incorrect data points, and input missing information. Incorrect
data points were removed from the datasets and left as
missing values. Cleaned and calibrated weather data can be
found at doi: 10.7946/P2V888, folder c._2014_weather_data and
10.7946/P24S31, folder c._2015_weather_data for 2014 and 2015,
respectively. The calibrated dataset includes observations from

the NWS ASOS as well as a “calibrated” column for most
elements. In cases where a weather element did not require
calibration, the data were simply copied from the regular
data column. A more detailed description of the captured
environmental information can be found in AlKhalifah et al.
(2018) and McFarland et al. (2020).

Incorporating Climatic Data in Prediction
Models
Environmental data were considered in the analysis by including
raw climatic data (every data point recorded on an hourly
basis by the field weather stations). Setting planting day to zero
in all environments offered the opportunity to compare crop
performance under similar amounts of recorded weather data.
For the 30 environments, there were at least 131 days with (hourly
recorded) environmental data available during the growing
season. The total number of environmental covariates (ECs) was
25,152, and these were derived from hourly measurements (24)
recorded on eight ECs during 131 days (24× 8× 131).

Prediction Models
For modeling the genetic relationships among pairs of hybrids,
solely marker information from inbred lines was considered to
construct the genomic relationship matrices–[GRMs, VanRaden
(2008)] between pairs of hybrids via the general and specific
combining ability (GCA and SCA) terms. For the GCA terms,
the GRM of parent 1 and parent 2 were built using their
corresponding marker profiles (Bernardo, 1994; Technow et al.,
2014; Kadam et al., 2016). SCA, which describes the interaction
effect of crossing parent 1 with parent 2, was modeled as the
Hadamard product of their corresponding GRMs as showed by
Acosta-Pech et al. (2017). Finally, the interactions between the
GCA and SCA components with environment and ECs were
included according to Basnet et al. (2019) and using the reaction
norm model proposed by Jarquín et al. (2013). A total of five
models were used. The list of models, their components, and
corresponding assumptions are provided below:

M1. General Combining Ability Model for Main

Effects (GP1 + GP2)
This model is the baseline model. Its results are used as the
baseline to compare the alternative models (M2–M5). It uses
only genomic information from the inbred lines in the analysis
via the GCA of the parents (i.e., distinguishing male and female
effects) for developing hybrids. This model is composed of an
environmental effect Ei ∼ N(0,σ 2

E), two genetic scores and
an error term. The genetic scores are derived from the main
effects of the inbred markers that are involved in the hybrid
crosses. Here, for the jth hybrid, we denote the corresponding
scores for parent 1 and parent 2 as gP1j and gP2j, respectively,
these being the linear combinations between p (i=1, 2, . . . , m)
markers and their corresponding maker effects. With gP1j =
∑p

m=1 xP1jmbmP1 and gP2j =
∑p

m=1 xP2jmbmP2; XP1 = {XP1j},
XP2 = {XP2j} are the corresponding inbred marker matrices
for parent 1 and parent 2 (Bernardo, 1994; Technow et al.,
2014; Kadam et al., 2016); bmP1 and bmP2 are the corresponding
effects of the mth marker for parent 1 and parent 2 such
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that bmP1
iid
∼ N(0, σ 2

bP1
) and bmP2

iid
∼ N(0, σ 2

bP2
), σ 2

bP1
and

σ 2
bP2

act as the associated variance components, and iid stands
for independent and identically distributed random variables.
Using properties of the multivariate normal distribution, we
obtained the following linear predictor for modeling the hybrid
performance of the jth hybrid observed in the ith environment
via the GCA of the inbreds.

yij = µ + Ei + gP1j + gP2j + eij (1)

where gP1=
{

gP1j
}

∼N
(

0,GP1σ
2
P1g

)

and

gP2=
{

gP2j
}

∼N
(

0,GP2σ
2
P2g

)

with GP1 =
XP1XP1

′

p ,

GP2 =
XP2XP2

′

p , σ 2
P1g=p × σ 2

bP1
and σ 2

P2g = p × σ 2
bP2

as

the correspondent variance components of the parental effects;
and eij∼N

(

0, σ 2
e

)

with σ 2
e being the variance component

associated with the residuals. One of the disadvantages of this
model is that it does not take into consideration the specific
effect of crossing parent 1 with parent 2 (specific combining
ability, SCA), but rather the averaged effects of both parents.
In this model, a common genomic value is modeled across
environments for each hybrid genotype.

M2. General Plus Specific Combining Ability Model

(Main and Interaction Genetic Effects) (GP1 + GP2 +

GP1× P2)
This model is an extension of model M1 allowing the inclusion
of the SCA interaction effect of crossing a specific pair
of parents (Acosta-Pech et al., 2017). SCA was modeled
using the cell by cell product of the entries of the co-
variance structures from parent 1 and parent 2 such

that gP1×P2=
{

gP1j×P2j

}

∼N
(

0,GP1×P2σ
2
P1g×P2g

)

, where

GP1×P2 = GP1◦GP2 and σ 2
P1g×P2g is the variance component

associated with this interaction term, and “◦” denotes the cell by
cell product between two matrices, also known as the Hadamard
or Schur product.

Combining the assumptions from model M1 with the SCA
term, the following linear predictor is obtained.

yij = µ + Ei + gP1j + gP2j + gP1j×P2j + eij (2)

Although this model considers the interaction between the
parents, M2 still returns a common genomic value for hybrids
across environments, similarly to M1.

M3. General Plus Specific Combining Ability Model in

Interaction With Environments (GP1 + GP2 + GP1×P2

+ GP1× E + GP2× E + GP1×P2× E)
In an attempt to allow the model to deliver specific responses
of the same genotype at different environments, the interaction
between the genetic and the environmental components was
included. For this, M2 is extended to allow the inclusion of the
interaction between the GCA and SCA components with the
environments via a reaction norm model (Jarquín et al., 2013).

yij = µ + Ei + gP1j + gP2j + gP1j×P2j + gEP1j + gEP2j (3)

+gEP1j×P2j + eij,

where gEP1=
{

gEP1j
}

∼N
(

0,
(

ZgP1GP1Z
′

gP1

)◦ (

ZEZ
′

E

)

σ 2
gEP1

)

,

gEP2=
{

gEP2j
}

∼N
(

0,
(

ZgP2GP2Z
′

gP2

)◦ (

ZEZ
′

E

)

σ 2
gEP2

)

, and

gEP1×P2=
{

gEP1j×P2j

}

∼N
(

0,
(

ZgP1GP1Z
′

gP1

)◦

(

ZgP2GP2Z
′

gP2

)◦ (

ZEZ
′

E

)

σ 2
gEP1 × P2

)

with σ 2
gEP1, σ 2

gEP2 and σ 2
gE P1×P2 as the corresponding variance

components of the interaction between the GCA (parent 1 and
parent 2) and SCA (P1 × P2) terms with the environments;
and ZgP1, ZgP2 and ZE are the corresponding incidence matrices
to connect gP1, gP2 and E={Ei} with y= {yij} (the vector
of phenotypic responses). This model still does not allow the
interaction of the GCA and/or SCA components with ECs.

M4. General Plus Specific Combining Ability Model in

Interaction With ECs (GP1 + GP2 + GP1×P2 + GP1× W

+ GP2× W + GP1×P2× W)
This model considers the interaction between the GCA and SCA
components with the ECs. Here, M3 is modified by replacing the
interaction terms with gwP1j, gwP2j and gwP1j ×P2j (Jarquín et al.,
2013; Basnet et al., 2019).

yij = µ + Ei + gP1j + gP2j + gP1j×P2j + gwP1j + gwP2j + (4)

gwP1j × P2j + eij

Where gwP2∼N
(

0,
(

ZgP1GP1Z
′

gP1

)◦ (

ZE�Z
′

E

)

σ 2
gwP1

)

,

gwP2∼N
(

0,
(

ZgP2GP2Z
′

gP2

)◦ (

ZE�Z
′

E

)

σ 2
gwP2

)

and

gwP1×P2∼N
(

0,
(

ZgP1GP1Z
′

gP1

)◦ (

ZgP2GP2Z
′

gP2

)◦ (

ZE�Z
′

E

)

σ 2
gwP1×P2

)

with σ 2
gwP1, σ 2

gwP2 and σ 2
gwP1 × P2 being the

corresponding variance components for the interaction terms;

and � = WW′

q as the environmental relationships matrix whose

entries describe the environmental similarities between pairs of
environments, whereW is the matrix of q ECs.

M5. General Plus Specific Combining Ability Model in

Interaction With Environments and ECs (GP1 + GP2 +

GP1×P2 + GP1× E + GP2× E + GP1×P2 × E + GP1× W

+ GP2× W + GP1×P2× W)
This model is designed to prevent model misspecification due to
imperfect environmental data. Here, M3 and M4 are combined
into a single model.

yij = µ + Ei + gP1j + gP2j + gP1j × P2j + gEP1j + gEP2j (5)

+gEP1j × P2j + gwP1j + gwP2j + gwP1j × P2j + eij,

where all of the terms are as previously defined.
Supplementary Table 5 summarizes the models used in

this study and their corresponding terms. Two of the five
models are solely main effect models and the other three also
include interactions between the GCA/SCA components and the
environments, ECs or both.

Prediction Schemes
Four different prediction problems relevant to plant breeders
were simulated in an attempt to mimic real scenarios that
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breeders might face while predicting hybrid performance. For
the set of genotypes, two states were considered for the
training sets: (i) tested and (ii) untested to indicate whether
the genotype from the testing set had been previously tested in
another environment (at least once). Similarly, for environments,
two states (observed and unobserved) were considered. These
indicated whether any portion of the phenotypic information of
the target environment is included in the calibration set. The
four combinations derived from the combinations of the states
of these two factors (genotypes and environments) are: CV2
aiming to predict incomplete field trials mimicking the problem
of predicting tested genotypes in observed environments; CV1
attempts to predict newly developed genotypes in observed
environments; CV0 predicts already tested lines in unobserved
environments; and CV00 predicts untested genotypes in
unobserved environments.

Assessing Predictive Ability
Predictive ability was computed on an environmental basis. For
each scenario, the Pearson’s correlation coefficient (r) between
predicted and observed values was calculated for hybrids within
the same environment. In order to take the uncertainty around
predictions into account and to weight the importance of specific
environments based on their corresponding sample sizes, the
average predictive ability across environments was computed
according to Tiezzi et al. (2017) as:

rϕ =

∑I
i=1

ri
V(ri)

∑I
i=1

1
V(ri)

(6)

with ri being the Pearson’s correlation between predicted and

observed values at the ith environment, V (ri) =
1−r2i
ni−2 is the

sampling variance and ni is the number of observations in the
current environment.

RESULTS

For the total of 8,555 phenotypic (yield) records corresponding
to 1,481 hybrids tested in 30 environments that were part of the
2014 and 2015 G2F Maize G×E project, grain yield had a mean
of 9065.5 kg ha−1 and a standard deviation (SD) of 2979.2 kg
ha−1 (Supplementary Figure 1). In 2014, 842 unique hybrids
(Supplementary Table 6) were tested in 14 environments (mean
= 9273.9 kg ha−1, SD = 2871.6), whereas in 2015 928
unique hybrids (Supplementary Table 7) were tested in 16
environments (mean= 8904.0 kg ha−1, SD= 3033.0).Mean yield
ranged between 4910 and 13205.4 kg ha−1 across environments
showing empirical evidence of environmental differences among
trials (Supplementary Table 8). Supplementary Figure 1 depicts
the histogram and the empirical distributions for grain yield
in 2014, 2015, and both years combined. Figure 1 shows the
boxplot of grain yield for those environments observed in 2014
(left panel) and 2015 (right panel), and the environments were
ordered based on their medians.

Analysis of the Variance Components
In general, the environmental term E captured the largest
percentage of phenotypic variability 57.2–60.4%) across models

(Table 1). In M2, when the SCA term was included the amount
of variability explained by GCA was reduced by approximately
half. Models that account for interactions of GCA and/or SCA
by environment and/or ECs (M3–M5) substantially reduced
the amount of variation going into the error. In all cases, the
interaction of environment and/or ECs by GCA accounted for
more variation than interactions by SCA. When the ECs were
used to model the G×E interaction in M4, the amount of
variability explained by GCA×W (8.2%) was similar to GCA×E
(9.2%) in M3. However, SCA×W (2.9%) explained a larger
percentage compared with its counterpart (SCA×E) in M3
(0.1%). The amount of variability explained by the main effects
of the molecular markers of parent 1 and parent 2, was similar
within models for M1-M5. The same occurred for the GP1 × E
(4.8%) and GP2 × E (4.4%) terms in M3; however, in M5 GP1 ×

E (2.4%) explained at least three times more variability than GP2

× E (0.7%). In M4 and M5, GP2 ×W (5.0% and 4.0%) explained
close to twice as much variability as GP1 × W (3.2% and 1.9%).
The number of unique inbreds acting as parent 1 (533) was at
least 21 times more than the number of unique inbreds acting
as parent 2 (25) or testers, and 23 of these inbreds acted at least
once as parent 1 or parent 2. Perhaps the unbalanced number
of unique genotypes acting as parent 1 and parent 2 may have
caused these differences in the amount of variability captured by
the different components comprising the GCA×E and GCA×W
terms (i.e., GP1 × E, GP2 × E, and GP1 ×W, GP2 ×W).

Comparison of Models Under Different
Scenarios
CV2 Scheme
When attempting to predict tested genotypes in observed
environments under the incomplete field trials design (CV2),
M1 presented a weighted average correlation of 0.30 (Table 2).
Here, the inclusion of the SCA of the parents (M2) enhanced
predictive ability to 0.36, 18.6% higher than the baseline
model. When the GCA and SCA of the parents were
included in interaction with the environments and/or the
ECs (M3–M5) the correlation between predicted and observed
values was substantially improved to 0.53, 0.50, and 0.53,
respectively (66.6 to 76.6% higher than the baseline model).
The combination of both interactions gave similar results than
the interaction by environment alone. However, when only
the interactions between ECs and the GCA/SCA components
were included, the weighted average correlation was slightly
reduced compared with the other two cases. In this case, we
did not observe any clear advantage of including information
on ECs (Table 2). A closer look at the trial-by-trial results
showed that in 29 out of the 30 environments, M5 outperformed
M1 (Supplementary Figure 2).

CV1
When the objective was to predict new or untested hybrids
in already observed environments via other hybrids (CV1)
observed in the target and other environments, the average
correlation across trials for the reference model M1 was 0.25
(Table 2). As in CV2, the inclusion of the SCA component
(M2) enhanced the predictive ability of the reference model
to 0.31 (24% higher than M1). When the interactions between
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FIGURE 1 | Boxplot of grain yield (kg ha−1) of 1,481 unique maize hybrid tested in 30 environments (year-by-location combination; not all of the genotypes were

tested in all environments) observed in 2014 (842 genotypes in 14 locations) and in 2015 (928 genotypes in 16 locations) derived from crossing 535 inbreeds to

particular testers. Within each environment, those records outside of the interval [µ ± 3× SD] were discarded.

TABLE 1 | Percentage of the variability explained by model components of M1–M5.

Models Main effects Interaction effects Residual

E GP1 GP2 GP1×P2 GP1 × E GP2 × E GP1×P2 × E GP1 × W GP2 × W GP1×P2 × W e

M1 57.8 6.1 6.2 29.9

M2 60.4 2.9 3.3 4.2 29.9

M3 58.2 2.6 2.8 4.5 4.8 4.4 0.1 22.6

M4 57.0 2.8 2.9 4.3 3.2 5.0 2.9 21.9

M5 57.2 2.7 2.8 4.5 2.4 0.7 0.1 1.9 4.0 2.7 21.1

E represents the main effect of the environments. GP1 and GP2 are main effects of inbred markers accounting for paternal/maternal effects (GCA); GP1×P2 is the interaction between

inbred markers for paternal/maternal effects (SCA); GP1 × E and GP2 × E are interactions between inbred markers and environments; GP1 ×W and GP2 ×W are interactions between

inbred markers and ECs; GP1×P2 × E is the interaction between SCA effects and environments; GP1×P2 ×W is the interaction between SCA effects and Environmental Covariates (ECs).

TABLE 2 | Weighted average correlations, 95% and confidence intervals (CI) across 30 environments for five models.

Model CV2 CV1 CV0 CV00

Estim. 95% CI Estim. 95% CI Estim. 95% CI Estim. 95% CI

M1 0.30 [0.26, 0.34] 0.25 [0.21, 0.29] 0.29 [0.25, 0.34] 0.10 [0.05, 0.14]

M2 0.36 [0.31, 0.41] 0.31 [0.26, 0.36] 0.35 [0.30, 0.41] 0.20 [0.14, 0.25]

M3 0.53 [0.47, 0.58] 0.46 [0.40, 0.51] 0.45 [0.39, 0.51] 0.27 [0.23, 0.32]

M4 0.50 [0.44, 0.56] 0.43 [0.37, 0.49] 0.26 [0.19, 0.33] 0.17 [0.09, 0.24]

M5 0.53 [0.47, 0.59] 0.46 [0.41, 0.52] 0.47 [0.41, 0.53] 0.29 [0.24, 0.34]

M1: GP1 + GP2; M2: GP1 + GP2 + GP1×P2; M3: GP1 + GP2 + GP1×P2 + GP1 × E + GP2 × E + GP1×P2 × E; M4: GP1 + GP2 + GP1×P2 + GP1 × W + GP2 × W + GP1×P2 × W; and

M5: GP1 + GP2 + GP1×P2 + GP1 × E + GP2 × E + GP1×P2 × E + GP1 × W + GP2 × W + GP1×P2 × W. GP1 and GP2 represent the main effects of inbred markers for Parent 1 and

Parent 2, respectively. GP1×P2 emulates the specific combining ability of crossing Parent 1 and Parent 2. E and W, denote the environment and environmental covariates. The different

terms involving _× E and _× W represent the interaction between the corresponding marker profiles and the environment or environmental covariates.

inbred markers and environments and/or ECS were included
(M3–M5), the reference model was improved to 0.46, 0.43,
and 0.46, respectively, which corresponds to improvements

between 72 and 84% over M1, respectively. Again, the inclusion
of interactions using only weather data did not improve the
prediction ability, perhaps because the ECs considered were
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not appropriate to characterize environments (Table 2) or the
environmental signals related with critical stages of the plant
development were not clearly identified. Regarding the trial-
by-trial results, a similar pattern was observed as for the CV2
scheme, where in 29 of the 30 environments, M5 consistently
outperformed M1 (Supplementary Figure 3).

CV0 Scheme
Targeting the prediction of already tested hybrids in other
environments but not in a new unobserved environment (CV0),
the weighted average predictive ability of the M1 was 0.29
(Table 2). When the SCA term was added (M2), the mean
correlation was improved to 0.35 (or 21% over M1). The
inclusion of the interactions between the GCA and SCA terms
with environments (M3) improved the predictive ability to
0.45 (or 55%) compared with M1. In the previous cross-
validation schemes, the interactions between GCA and SCA with
environmental data (M4) slightly decreased the predictive ability
of M3. Here, this type of interaction reduced the predictive ability
to 0.26 (or 10%) for M4 compared to M1. Model M5 (0.47)
improved the baseline model’s result (M1: 0.29) by 62% (Table 2).
For individual trials, once again M5, outperformed M1 in 27 out
of the 30 environments. M4 outperformed M1 in only 13 out of
the 30 environments (Supplementary Figure 4).

CV00 Scheme
The prediction of untested hybrids in unobserved environments
(CV00) produced an average correlation of 0.10 for the baseline
model (M1) (Table 1). As expected, the prediction levels were
reduced in this prediction scheme due to (i) the lack of
phenotypic information of the hybrids to predict but observed in
any other environment, and (ii) the lack of phenotypic records
from other hybrids in the target environment. The inclusion
of the SCA term via M2 increased the predictive ability to
0.20 (or 100% over M1). M3 and M4 provided substantial
improvements when interactions of GCA and SCA components
with environments or ECs were included. However, results from
M4 model (0.17) were actually worse than those from M3 (0.27).
Combining the two types of interactions (M5) lead to a small
improvement (0.29) with respect to M3. Thus, the modeling
of interaction between ECs and genotypes did not improve
predictability. On a trial basis, M5 outperformed M1 in 26 out
of the 30 environments (Supplementary Figure 5).

DISCUSSION

In this study, we showed that genomic prediction models
could be improved by considering the interaction of GCA
components with environmental factors. These results vary
somewhat depending on the cross-validation scheme, but overall,
the inclusion of SCA increases predictive ability. However, these
improvements are likely due to the fact that both inter- and intra-
heterotic group crosses are included in the analyses. It is expected
that the benefit of modeling the SCA decreases when analyzing
only the inter-heterotic group crosses, which is what applied
and commercial breeders do (Melchinger, 1987; Melchinger and
Gumber, 1998). In contrast to typical maize breeding programs

the percentage of phenotypic variability explained by the SCA
term (4.2%) was surprisingly larger than what was explained
by the single components of the GCA term, GP1 (2.9%) and
GP2 (3.3%).

For the 1,481 hybrids of this study, there were only 25 unique
inbred lines used as parent 2, while 533 acted as parent 1 (of
535 total unique inbred lines). Only PHG35 and C103 inbred
lines were used exclusively as parent 2. The use of the SCA term
offers the possibility of indirectly capturing the effect of half of the
interaction between parent 1 and parent 2 in several crosses that
included any of these parents. For a particular hybrid, it is more
likely to observe any of the parents involved in the corresponding
cross paired with any other inbred than to observe the same
inbred combination in the same environment and/or in other
environments. Therefore, the sample size for training half of the
interaction between parents 1 and 2 involved in the hybrid is
increased allowing a better fit. This also facilitates borrowing
information within and between environments thus aiding the
fit of the models.

Larger improvements were observed when the GCA×E and
SCA×E terms were added in M3. The percentage of variability
explained by the SCA×E was negligible (0.1%) compared with
the 9.2% captured by the GCA×E term. In two (CV0 and CV00)
out of the four cross-validation schemes, the average correlation
obtained with M5 was slightly superior to the values obtained
with the other models (M1–M4). For CV2 and CV1 schemes, M5
returned similar results as M3. In all cross-validation schemes,
M2 always increased the average correlation compared to M1. As
was mentioned before, the largest portion of improvement was
achieved when the interactions between GCA and SCA with the
environments was included. Interestingly, when the interactions
between these combining ability components and the ECs were
included, the obtained average predictive ability was never better
than when no ECs were used for characterizing environments.
And for CV0, adding these interactions decreased the prediction
ability of the baseline model (M1). Combining both types
of interactions in M5 did not negatively affect the results
of M3.

The lack of improvement in predictive ability through
the modeling of environmental covariates contrasts previous
findings reported by Jarquín et al. (2013). Jarquín et al. (2013)
showed better improvements compared to the baseline model
using data on 139 wheat lines tested in 340 environments in
which data on 68 ECs based on five phenological phases were
collected. That study used similar models to those of this study
and improved M3 using M4 between 3 and 12% in CV1 and
CV2, respectively; and by around 13% when comparing M5 with
M3. Possible reasons why the ECs did not improve predictions
in this dataset are (i) small number of environments from a
greater range of conditions, (ii) a larger number of more diverse
genotypes from different genetic backgrounds, and (iii) the set of
environmental covariates included in the model did sufficiently
explain similarities among pairs of environments with respect
to maize growth and development. These contrasting results
from these two studies suggest that modeling ECs using the
methods of Jarquín et al. (2013) may benefit predictive ability
only when both the number of environments is very large and
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the range of environmental conditions is narrower compared to
those observed in this study. Also, the amount of genetic diversity
may have played a role, with greater levels of genetic diversity, as
was the case in this study, being harder to leverage for prediction
of G×E using ECs than the relatively narrow genetic diversity
of advanced breeding lines used in Jarquín et al. (2013). Finally,
these different results suggest that ECs should be better defined
and selected as they relate to crop growth and development, as the
naïve treatment of ECs as was done in this study did not provide
any advantage.

The data used in this analysis were collected as part of a
large, multi-location and multi-institution initiative and thus
the trials were designed to addressed multiple objectives beyond
the one that is the subject of this paper. Nevertheless, we feel
that the design used did not bias the answer to the main
question of this study, which was the determining the benefit
of using our “environmental kinship” models to capture G×E
effects and thus enhance genomic prediction accuracy for the
performance of specific genotypes in specific environments. Our
main finding was that these types of models do not benefit
prediction accuracy for the reasons we discuss. In fact, we believe
that the confounding of genetics with spatial variation would,
if anything, lead to an advantage of the environmental kinship
model because more related hybrids would be more likely to
experience similar environmental effects. Because we did not find
this result, we believe that the experimental design used did not
bias our results.

Basnet et al. (2019) performed a similar comparison
between M4 and M1 for grain yield (wheat) in only three
environments. These authors also did not find significant
improvements by adding weather information even when
dividing the growth cycle into periods of 10 days and then
grouping the maximum, minimum, and average temperatures,
precipitation, and growing degree-days. The equivalent to
models M4 and M1 in their study under the CV2 scheme
returned a predictability of 0.64 and 0.62, respectively. It is
expected that a better strategy would involve the inclusion
of ECs observed during crucial physiological stages of the
plant development rather than measurements across the entire
life cycle. However, that requires additional yield-related
measurements during specific developmental stages during the
growing season, which can be labor-intensive. New phenotyping
and monitoring technologies are likely to contribute to making
this possible.

Recently, Millet et al. (2019) proposed an implementation
that outperforms the results of models based on environmental
relationships when predicting the yield performance of untested
genotypes in unobserved environments. Their cross-validation
scheme is similar to our CV00 scheme. These authors modeled
grain yield as the product between the estimated individual grain
yield and grain number. They used sophisticated phenotyping
platforms and conducted repeated measures of the progression
of the leaf stage and flowering time for identifying three
sensitive indices associated with intercepted radiation, soil
water potential (measured with tensiometers), and meristem
temperature for dissecting grain number via factorial regressions.

These authors showed an improvement in predictive ability
of the new implementation with respect to the main effects
model of around 55% when predicting maize yield across
European environments.

Predictive Ability Under Different
Cross-Validation Schemes
This study considered four different cross-validation schemes
mimicking realistic scenarios that breeders face in field
research and of interest for improving efficiently in meeting
breeding goals. Although the results of these scenarios are
commensurable, a direct comparison between them is not
trivial since they resemble different prediction problems. As
expected, when more information about the genotypes and
environments was available, the predictive ability improved.
CV2 returned the largest weighted average correlation for all
models (M1-M5) compared with the other three schemes.
Predicting untested genotypes in unobserved environments
(CV00) is the hardest prediction problem. In consequence,
it returned the smallest weighted average correlations for all
models. The CV1 and CV0 schemes returned similar results
except for M4 that reduced its predictive ability by around
45% with respect to M3 in CV0, and by 6% under CV1. In
this case, for M1, the lack of information included through
unobserved environments in CV0 had a less negative effect
on predictive ability compared with the scenario that had
unobserved phenotypic record of the hybrids (CV1) in any
environment. It should also be considered that for CV0 less
information was masked as missing (1/30 ∼3.33%) than for
CV1 (∼20%).

CONCLUSIONS

This study showed the practical advantages of considering
G×E interactions for improving predictive ability of tested
and untested genotypes in observed and unobserved
environments via the GCA and SCA models. Although
the inclusion of the G×E interaction improved results
considerably with respect to the model that did not include
it, no clear advantages in predictive ability were observed
when the weather data was naively used for modeling this
interaction component. A larger set of environments was likely
needed. Previous literature suggests a more elaborate way
for including this information beyond an environmental
kinship matrix that characterizes the environmental
differences between pairs of environments without taking
into consideration the information of when or in which
stages of the plant development these pieces of information
were recorded.

Hence, the obtained results leave open venues to further
investigate how the environmental data will be most predictive
when included in the models. Possibilities include increasing
the environmental sample size, offering the opportunity to
consider weather data in a naïve manner, or whether the
inclusion of more informed mechanisms to add weather
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data that are specifically linked to important physiological
stages of plant development via environmental indices might
allow more accurate estimates even when relatively small sets
of environments.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/Supplementary Materials, further inquiries can be
directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

DJ wrote the manuscript and performed the prediction analysis.
CR did GBS SNP calling. AL, SK, and EB contributed
ideas for analysis and experimental design. Members of the
G2F Consortium selected germplasm, designed experiments,
phenotype plant materials, compiled, curated phenotypic, and
weather data sets. NL recognized the need for, conceived of, and
organized the experiment. All authors intellectually contributed
to this manuscript.

FUNDING

This project was supported by the Iowa Corn Promotion Board,
the Nebraska Corn Board, the Minnesota Corn Research and
Promotion Council, the Illinois Corn Marketing Board, the
Wisconsin Corn Promotion Board, the Ohio Corn Marketing
Program, the Texas Corn Producers Board and the National
Corn Growers Association. USDA-NIFA Hatch for a large
number of the cooperators. USDA-ARS base funds was also
provided for EB, JE, SF-G, JH, and JK. Support was also
provided through the Corn Promotion Board Endowed Chair in
Maize Genetics for PSS and the Eugene Butler Endowed Chair
for SCM.

ACKNOWLEDGMENTS

The authors would like to thank the entire G2F Consortium for
their help with this study, including the following contributors.
Alejandro Castro Aviles, Naser AlKhalifah, Emily Rothfusz and
Jane Petzoldt from the University of Wisconsin-Madison for
assisting with coordination of the project. Darwin Campbell
and Renee Walton from Iowa State University for weather
station configuration and data curation. Dustin Eilert andMarina
Borsecnik for assistance organizing and conducting field trials
at the University of Wisconsin-Madison. Miriam Lopez, Grace
Kuehne and Sarah Hennings from the USDA-ARS Corn Insects
and Crop Genetics Research Unit at Iowa State University;
Jacob Pekar at Texas A&M University. We also acknowledge
contributions from field manager Nicholas Kaczmar at Cornell
University. Many graduate students and undergraduate student
workers contributed to the field experiments and data collection;
their help was appreciated.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fgene.
2020.592769/full#supplementary-material

Supplementary Figure 1 | Histogram of grain yield for 2014, 2015 and the

combined data (2014 and 2015) and superimposed normal density (blue) for a

mean and a standard deviation of 9065.5 and 2979.2 units, respectively. The

corresponding densities for the histograms for 2014 (mean = 9273.9, SD =

2871.6) and 2015 (mean = 8904.0, SD = 3033.0) are represented by the black

and orange curves, respectively.

Supplementary Figure 2 | Predictive ability of models M1–M5 for each one of

the observed environments for the cross-validation scenario CV2 (Prediction of

tested hybrids in observed environments). M1: GP1 + GP2; M2: GP1 + GP2 +

GP1 × P2; M3: GP1 + GP2 + GP1 × P2 + GP1 × E + GP2 × E + GP1 × P2 × E; M4:

GP1 + GP2 + GP1 × P2 + GP1 × W + GP2 × W + GP1 × P2 × W; and M5: GP1 +

GP2 + GP1 × P2 + GP1 × E + GP2 × E + GP1 × P2 × E + GP1 × W + GP2 × W +

GP1 × P2 × W. GP1 and GP2 represent the main effects of inbred markers for

Parent 1 and Parent 2, respectively. GP1 × P2 emulates the specific combining

ability of crossing Parent 1 and Parent 2. E and W denote the environment and

environmental covariates. The different terms involving _× E and _× W represent

the interaction between the corresponding marker profiles and the environment or

environmental covariates. The gray dashed vertical line separates those locations

observed in 2014 and 2015, respectively.

Supplementary Figure 3 | Predictive ability of models M1–M5 for each one of

the observed environments for the cross-validation scenario CV1 (Prediction of

untested hybrids in observed environments). M1: GP1 + GP2; M2: GP1 + GP2 +

GP1 × P2; M3: GP1 + GP2 + GP1 × P2 + GP1 × E + GP2 × E + GP1 × P2 × E; M4:

GP1 + GP2 + GP1 × P2 + GP1 × W + GP2 × W + GP1 × P2 × W; and M5: GP1 +

GP2 + GP1 × P2 + GP1 × E + GP2 × E + GP1 × P2 × E + GP1 × W + GP2 × W +

GP1 × P2 × W. GP1 and GP2 represent the main effects of inbred markers for

Parent 1 and Parent 2, respectively. GP1 × P2 emulates the specific combining

ability of crossing Parent 1 and Parent 2. E and W denote the environment and

environmental covariates. The different terms involving _× E and _× W represent

the interaction between the corresponding marker profiles and the environment or

environmental covariates. The gray dashed vertical line separates those locations

observed in 2014 and 2015, respectively.

Supplementary Figure 4 | Predictive ability of models M1-M5 for each one of the

observed environments for the cross-validation scenario CV1 (Prediction of tested

hybrids in unobserved environments). M1: GP1 + GP2; M2: GP1 + GP2 + GP1 × P2;

M3: GP1 + GP2 + GP1 × P2 + GP1 × E + GP2 × E + GP1 × P2 × E; M4: GP1 + GP2

+ GP1 × P2 + GP1 × W + GP2 × W + GP1 × P2 × W; and M5: GP1 + GP2 +

GP1 × P2 + GP1 × E + GP2 × E + GP1 × P2 × E + GP1 × W + GP2 × W +

GP1 × P2 × W. GP1 and GP2 represent the main effects of inbred markers for

Parent 1 and Parent 2, respectively. GP1 × P2 emulates the specific combining

ability of crossing Parent 1 and Parent 2. E and W denote the environment and

environmental covariates. The different terms involving _× E and _× W represent

the interaction between the corresponding marker profiles and the environment or

environmental covariates. The gray dashed vertical line separates those locations

observed in 2014 and 2015, respectively.

Supplementary Figure 5 | Predictive ability of models M1-M5 for each one of the

observed environments for the cross-validation scenario CV00 (Prediction of

untested hybrids in unobserved environments). M1: GP1 + GP2; M2: GP1 + GP2 +

GP1 × P2; M3: GP1 + GP2 + GP1 × P2 + GP1 × E + GP2 × E + GP1 × P2 × E; M4:

GP1 + GP2 + GP1 × P2 + GP1 × W + GP2 × W + GP1 × P2 × W; and M5: GP1 +

GP2 + GP1 × P2 + GP1 × E + GP2 × E + GP1 × P2 × E + GP1 × W + GP2 × W +

GP1 × P2 × W. GP1 and GP2 represent the main effects of inbred markers for

Parent 1 and Parent 2, respectively. GP1 × P2 emulates the specific combining

ability of crossing Parent 1 and Parent 2. E and W denote the environment and

environmental covariates. The different terms involving _× E and _× W represent

the interaction between the corresponding marker profiles and the environment or

environmental covariates. The gray dashed vertical line separates those locations

observed in 2014 and 2015, respectively.
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