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Abstract. Downscaling of climate model data is essential to

local and regional impact analysis. We compare two meth-

ods of statistical downscaling to produce continuous, grid-

ded time series of precipitation and surface air temperature

at a 1/8-degree (approximately 140 km2 per grid cell) reso-

lution over the western U.S. We use NCEP/NCAR Reanaly-

sis data from 1950–1999 as a surrogate General Circulation

Model (GCM). The two methods included are constructed

analogues (CA) and a bias correction and spatial downscal-

ing (BCSD), both of which have been shown to be skillful

in different settings, and BCSD has been used extensively

in hydrologic impact analysis. Both methods use the coarse

scale Reanalysis fields of precipitation and temperature as

predictors of the corresponding fine scale fields. CA down-

scales daily large-scale data directly and BCSD downscales

monthly data, with a random resampling technique to gener-

ate daily values. The methods produce generally comparable

skill in producing downscaled, gridded fields of precipita-

tion and temperatures at a monthly and seasonal level. For

daily precipitation, both methods exhibit limited skill in re-

producing both observed wet and dry extremes and the dif-

ference between the methods is not significant, reflecting the

general low skill in daily precipitation variability in the re-

analysis data. For low temperature extremes, the CA method

produces greater downscaling skill than BCSD for fall and

winter seasons. For high temperature extremes, CA demon-

strates higher skill than BCSD in summer. We find that the

choice of most appropriate downscaling technique depends

on the variables, seasons, and regions of interest, on the

availability of daily data, and whether the day to day cor-

respondence of weather from the GCM needs to be repro-
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duced for some applications. The ability to produce skillful

downscaled daily data depends primarily on the ability of the

climate model to show daily skill.

1 Introduction

Climate models are the primary tool to evaluate the pro-

jected future response of the atmosphere-land-ocean system

to changing atmospheric composition (MacCracken et al.,

2003; Stocker et al., 2001), and they underpin most climate

change impacts studies (Wilby and Harris, 2006). However

there is a mismatch between the grid resolution of current cli-

mate models (generally hundreds of kilometers), and the res-

olution needed by environmental impacts models (typically

ten kilometers or less). Downscaling is the process of trans-

forming information from climate models at coarse resolu-

tions to a fine spatial resolution. Downscaling is necessary,

as the underlying processes described by the environmental

impact models are very sensitive to the nuances of local cli-

mate, and the drivers of local climate variations, such as to-

pography, are not captured at coarse scales.

There are two broad categories of downscaling: dynamic

(which simulates physical processes at fine scales) and sta-

tistical (which transforms coarse-scale climate projections to

a finer scale based on observed relationships between the

climate at the two spatial resolutions) (Christensen et al.,

2007). Dynamic downscaling, nesting a fine scale climate

model in a coarse scale model, produces spatially complete

fields of climate variables, thus preserving some spatial cor-

relation as well as physically plausible relationships between

variables. However, dynamic downscaling is very computa-

tionally intensive, making its use in impact studies limited,

and essentially impossible for multi-decade simulations with
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different global climate models and/or multiple greenhouse

gas emission scenarios. Thus, most impacts studies rely on

some form of statistical downscaling, where variables of in-

terest can be downscaled using historical observations. There

has been extensive work developing and intercomparing sta-

tistical downscaling techniques for climate impact studies

(Giorgi et al., 2001; Wilby and Wigley, 1997).

Statistical downscaling is typically used to predict one

variable at one site, though some techniques for simultane-

ous downscaling to multiple sites for precipitation have been

developed (Harpham and Wilby, 2005; Wilks, 1999). How-

ever, for studies of some climate impacts such as river basin

hydrology, it is important to downscale simultaneous values

of multiple variables (such as precipitation and temperature)

over large, heterogeneous areas, while maintaining physi-

cally plausible spatial and temporal relationships, though few

downscaling techniques have been developed to do this.

In this study we compare two methods of statistical down-

scaling to produce gridded time series of precipitation and

surface air temperature at a fine resolution over a large spa-

tial domain. These two methods are termed constructed ana-

logues (CA, Hidalgo et al., 2008; van den Dool, 1994) and

bias correction and spatial downscaling (BCSD, Wood et al.,

2004). The CA method has been shown to have significant

skill in reproducing the variability of daily precipitation and

temperature over the contiguous United States (U.S.), in par-

ticular in the western coast (Hidalgo et al., 2008). The BCSD

method has been shown to provide downscaling capabilities

comparable to other statistical and dynamical methods in the

context of hydrologic impacts (Wood et al., 2004).

The main conceptual difference between the two methods

compared here is that the daily correspondence of the coarse

resolution and the fine resolution patterns is maintained in

the CA method, while in the BCSD the monthly patterns

are conserved but daily (intra-month) patterns are resam-

pled randomly, and therefore the correspondence between

downscaled and historic daily observations is not conserved.

In this way, CA is designed to use the simulated daily se-

quences from a climate model (at a coarse spatial resolution)

and downscales each simulated day, while BCSD downscales

monthly simulated climate model output and randomly gen-

erates daily sequences to match the monthly values. While

randomly resampling daily sequencing within a month has

been shown to have a negligible impact for monthly and sea-

sonal river basin hydrologic statistics (Wood et al., 2002),

for impacts related to shorter-term extremes (e.g. heat waves,

air quality episodes, flood peaks), changes in daily sequenc-

ing may be important. Where a climate model exhibits skill

in simulating daily variability, CA would capture that skill,

while BCSD would reflect climatological intra-month vari-

ability. Thus, for daily statistics, the two methods will be ex-

pected to distinguish themselves only inasmuch as the large-

scale climate model exhibits skill at the daily time scale.

By using these two techniques, and by using a Reanalysis

as a surrogate for a best-case (unbiased) GCM, we aim in

this study to explore the potential gain in downscaled daily

skill by downscaling daily, as opposed to monthly, GCM out-

put. While there are other candidate methods that could have

been utilized in an intercomparison exercise, these two meth-

ods were selected since the have been implemented over the

Western United States, and will be included in future work

on climate change impacts in California (Cayan et al., 2008).

2 Data sources and methods

2.1 Data sources

Daily precipitation, maximum and minimum temperature at

1/8◦ resolution (approximately 140 km2 per grid cell) were

obtained from the University of Washington Land Surface

Hydrology Research group (http://www.hydro.washington.

edu), the development of which is described in Maurer et

al. (2002). The data are daily station observations interpo-

lated onto a regular grid, with temperature lapsed to grid cell

center elevations and with precipitation adjusted for compat-

ibility with the Parameter-elevation Regressions on Indepen-

dent Slopes (PRISM, Daly et al., 1994) dataset, following

Widmann and Bretherton (2000). This constitutes the main

dataset used in the calibration and evaluation of the perfor-

mance of the downscaling processes in this study.

We use the National Center of Environmental Predic-

tion and the National Center of Atmospheric Research

(NCEP/NCAR) reanalysis (hereinafter reanalysis, Kalnay et

al., 1996) as a surrogate for a General Circulation Model

(GCM), similar to the application of Widmann et al. (2003),

which is then downscaled and compared to observations. Re-

analysis data are available on a T62 Gaussian grid (approxi-

mately 1.9◦ square), a resolution comparable to current gen-

eration of GCMs. A favorable characteristic of reanalysis

data is the availability of daily precipitation and temperature

data, which is often not archived for long, climate change

simulations by modeling groups.

While the objective of these methods is to downscale ac-

tual GCM output, intercomparing these two techniques using

GCM output would be problematic since the skill assessment

could not distinguish between biases related to downscaling

and biases related to GCM process simulation. Thus, using

reanalysis data provides a more objective measure of the skill

of the downscaling techniques.

In the NCEP/NCAR reanalysis, observations of air tem-

perature are assimilated into the model, resulting in reanal-

ysis temperatures that are close to observations. Precipita-

tion, on the other hand, does not benefit from assimilation of

observations, and is a product of the reanalysis model, and

can thus exhibit substantial regional biases (Maurer et al.,

2001; Widmann and Bretherton, 2000; Wilby et al., 2000).

Arguably, due to the assimilation of atmospheric observa-

tions, reanalysis represents the best possible simulation capa-

bility of a GCM. Because reanalysis temperature is strongly
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connected to observations, the comparisons of temperature

skill will reflect differences almost exclusively in the down-

scaling techniques; because reanalysis precipitation is not

related to observations, the intercomparison will reflect dif-

ferences between the downscaling methods, plus some in-

fluence of the reanalysis precipitation bias. The precipita-

tion and temperature daily variability in the reanalysis has

been shown to be plausible in some locations in the Western

U.S. (Widmann and Bretherton, 2000), and the existence of

skill in daily statistics of GCM output will be a major fac-

tor distinguishing the downscaling methods compared in this

study.

2.2 “Observed” and “projected” time period definitions

We used 1950–1976 reanalysis precipitation and temperature

as the period representing the “observations,” and 1977–1999

as “projections,” similar to past studies (e.g. Salathé, 2003;

Wilby et al., 2000). These two periods have differing char-

acteristics, with the second period reflecting the temperature

increase of recent decades, as well as a phase shift in the Pa-

cific Decadal Oscillation (PDO, Mantua et al., 1997) from

cool phase (through 1976) to warm phase (1977 through at

least the mid-1990s) (Mantua and Hare, 2002). The PDO in-

fluences North American climate in a similar manner to the

El Niño Southern Oscillation (ENSO), with discernable dif-

ferences in precipitation, temperature, and streamflow, un-

der different PDO phases (Cayan, 1996; Hamlet and Let-

tenmaier, 1999). By contrast with ENSO, however, PDO

persists for decades. The magnitude of observed warming

trends in the Western U.S. of 1–3◦C over the second half of

the 20th century are non-uniform through the region and are

not fully explained by the PDO shift (Stewart et al., 2005).

Precipitation trends over recent decades are even more non-

uniform spatially and variable through time (Mote et al.,

2005), though a large-scale wetting trend is evident through

the last few decades of the 20th century (Groisman et al.,

2004). For the spatial domain used in this study, the latter

period is warmer by 0.2◦C and wetter by 7%, with the means

of the two periods differing with high confidence (>90%,

based on a 1-tailed t-test). In this way, while not dramatically

warmer, the period used as projections in this study serves as

a proxy for a changed climate from the one used to train the

downscaling methods.

2.3 Bias-correction and spatial downscaling (BCSD)

The bias-correction and spatial downscaling (BCSD) method

of Wood et al. (2004) is an empirical statistical technique in

which the monthly precipitation and temperature output from

a GCM are downscaled. The method was originally devel-

oped for adjusting GCM output for long-range streamflow

forecasting (Wood et al., 2002) and was later adapted for

use in studies examining the hydrologic impacts of climate

change in the Western U.S. (Christensen et al., 2004; Payne

et al., 2004; Van Rheenen et al., 2004). The technique uses

a quantile-based mapping (Panofsky and Brier, 1968) of the

probability density functions for the monthly GCM precipi-

tation and temperature onto those of gridded observed data,

spatially aggregated to the GCM scale. This same mapping

is applied to future GCM projections. This allows the mean

and variability of a GCM to evolve in accordance with the

GCM simulation, while matching all statistical moments be-

tween the GCM and observations for the base period. This

technique has compared favorably to different statistical and

dynamic downscaling techniques (Wood et al., 2004) in the

context of hydrologic impact studies. The method is com-

putationally efficient and has thus been applied to studies

downscaling multiple, extended GCM simulations for hydro-

logic and other impact studies (Cayan et al., 2008; Hayhoe et

al., 2004; Maurer and Duffy, 2005; Maurer, 2007). Recently

112 150-year GCM projections were downscaled over much

of North America using the BCSD method (Maurer et al.,

2007), demonstrating its applicability to downscaling large

ensembles of GCM simulations.

To recover daily values historical months are selected at

random and each day in the selected month is rescaled iden-

tically (using a multiplicative factor for precipitation and

an additive factor for temperature) to match the projected

monthly total precipitation and average temperature. Fol-

lowing Wood et al. (2004), screening of scale values for pre-

cipitation were applied to avoid unreasonable precipitation

values. For example, if the randomly selected month has

two or fewer days with precipitation and the scale factor is

greater than three, another year with more wet days is ran-

domly selected to avoid creating unreasonably intense pre-

cipitation. As discussed by Wood et al. (2002), while in prin-

ciple daily GCM output could be used directly, the BCSD

method was developed to streamline the translation of GCM

output into fine-scale land surface meteorological forcing,

and the assumption of climatological daily variability has

proven reasonable for hydrological applications. In this way

the BCSD method, as applied in this study, does not account

for changes in the statistics of climate variability at scales

less than monthly that may be projected by a GCM, and is

not expected to exhibit skill at projecting statistics of daily

extremes above simply assuming climatological daily vari-

ability. In other, more spatially limited settings, adjusting the

random selection of the historic sequence used in rescaling

based on climate similarity has been used (Salathé, 2005).

However, applying that conditioning technique requires the

ability to characterize the entire domain by mean monthly

precipitation, which is only possible on much smaller do-

mains than that used in this study.

This method is in essence a model output statistics (MOS)

approach (Glahn and Lowry, 1972; Wilks, 2006) at the

monthly level, providing a post-processing of model output

to correct for model biases relative to observations, where

biases may due, for example, to imperfect model parame-

terization of physical processes or inadequate topographic
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description in the model. The types of biases that can be

accommodated by the BCSD approach are restricted by the

method’s use of large scale precipitation and temperature, as

opposed to, for example, remote predictors such as geopo-

tential heights that could in theory be used to correct for

model biases in large scale circulation. However, Widmann

et al. (2003) note that using local predictors such as precipi-

tation can perform adequately compared to other downscal-

ing methods. When applied to GCM output in a climate

change context, the BCSD method, as with any MOS-type

approach, is model dependent and assumes that the relation

between model scale and disaggregated, fine scale climate is

constant; the method will be less effective where the relation-

ship changes.

2.4 Constructed analogues

The CA method, described in detail by Hidalgo et al. (2008),

is essentially a “perfect prog” method (Glahn and Lowry,

1972; Klein et al., 1959), and is thus fundamentally differ-

ent from the MOS-type BCSD approach (Widmann et al.,

2003; Wilks, 2006). In particular, CA, as with any perfect

prog approach, makes no adjustment to correct for biases,

but rather relates model-simulated variables (in this appli-

cation, anomalies of daily precipitation and temperature) to

predicted variables, using relationships established with ob-

servations. As discussed in Sect. 2.1 above, this distinction

bears on the interpretation of the intercomparison of CA with

BCSD, which statistically corrects for model biases, since

where Reanalysis exhibits substantial biases, attributing the

differences to these biases or downscaling approaches may

be problematic. Since CA is based not on absolute simulated

values but on anomalies, the primary biases that would af-

fect the downscaling results would be related to spatial and

temporal variability, for which no adjustment is made to ac-

count for differences between the simulated (reanalysis) and

observed values.

The application of the CA technique begins with a li-

brary of observed coarse-resolution and corresponding high-

resolution climate anomaly patterns, where the library con-

tains the variable to be downscaled. During development of

the CA method, many candidate predictors were assessed

(including geopotential heights of 700 and 500 hPa levels,

500 hPa divergence, sea level pressure, precipitation and tem-

perature), and the greatest skill was found using precipitation

and temperature as predictors, despite the documented bi-

ases in reanalysis precipitation. Thus, for downscaling pre-

cipitation (temperature) the library is composed of precipita-

tion (temperature) anomaly patterns at both coarse and fine

scales. In our case the fine-resolution (1/8◦) library patterns

are based on the daily climate patterns from the Maurer et

al. (2002) data from 1950–1976. The coarse-resolution li-

brary patterns are composed of the same data aggregated to

the resolution of the Reanalysis (T62). Anomalies are used,

rather than absolute values, to avoid concentrating patterns in

areas with high values, and to avoid the influence of absolute

biases in large-scale simulations. Just as BCSD in principle

could be applied on daily scales, CA could theoretically be

applied at a monthly scale. However, CA was developed to

enable to direct downscaling of daily large-scale model out-

put to capture the evolution of daily precipitation and temper-

ature statistics as simulated by a model. Furthermore, since

constructing analogues requires a large library from which to

draw similar patterns, as discussed below, an observational

record longer than the 1950–1999 period used in this study

would be needed to support a robust monthly application of

CA.

To downscale a daily pattern from the 1977–1999 Reanal-

ysis (the “target pattern”) a subset of 30 patterns (predictors)

are found from the library that show similitude at the coarse-

resolution with the pattern to be downscaled (based on the

pattern root mean square error, RMSE). A linear combina-

tion of the coarse-resolution version of the predictors is used

to produce a linear estimate of the target pattern, called the

constructed analogue (which is at the coarse-resolution scale,

T62 in this case). The spatially downscaled estimate pattern

(1/8◦) is then created by applying the same regression coef-

ficients from the construction of the analogue, to the high-

resolution versions of the predictors.

The estimation of the target pattern was constructed using

as predictors the “best” 30 predictors (based on the pattern

RMSE) selected from a window of potential patterns within

±45 days from the target date. Precipitation was transformed

by taking the square root to make its statistical distribution

more Gaussian (Box and Cox, 1964; Dettinger et al., 2004;

Panofsky and Brier, 1968).

Mathematically, for each day and variable (temperature

and precipitation) to be downscaled, if we define Zanalogues as

the matrix of 30 best predictors from the 1950–1976 library

at the coarse resolution (predictors) and define Zobs as the

target pattern, an analogue of that pattern (Ẑobs) can be con-

structed as a linear combination of the (preferred 30-member

most-suitable subset of) predictor patterns, according to:

Zobs ≈ Ẑobs = ZanaloguesAanalogues (1)

where Zanalogues is a matrix of the column vectors comprising

the most-suitable subset of coarse-resolution patterns identi-

fied above specifically for Zobs, and Aanalogues is a column

vector of fitted least-squares estimates of the regression coef-

ficients that are the linear proportions of the contributions of

each column of Zanalogues to the constructed analogue. The

dimensions of the Zobs matrix are pcoarse×1, where pcoarse

is the number of considered gridpoints contained in each

coarse-resolution weather pattern; that is, Zobs is a column

vector. The dimensions of Zanalogues are pcoarse×n, where

n is the number of patterns in the most suitable predictors

subset (i.e. 30). The dimension of Aanalogues is n×1. As-

suming Zanalogues has full rank (n) and using the definition
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of the pseudo-inverse (Moore-Penrose inverse), Aanalogues is

obtained from Eq. (1) by:

Aanalogues =

[

(

Z′

analoguesZanalogues

)−1
Z′

analogues

]

Zobs (2)

where the ′ superscript denotes the transpose of the matrix.

The inversion of the matrix was performed using singular

value decomposition routine (Press et al., 2007) in which

small values of the decomposition were set equal to zero to

avoid near-singular matrices.

To downscale the Zobs pattern, the coefficients Aanalogues

from Eq. (3) are applied to the high-resolution weather pat-

terns corresponding to the same days as the coarse-resolution

predictors Zanalogues, according to:

P̂downscaled = PanaloguesAanalogues (3)

From Eq. (2):

P̂downscaled =

Panalogues

[

(

Z′

analoguesZanalogues

)−1
Z′

analogues

]

Zobs (4)

where P̂downscaled is a constructed high-resolution analogue

(e.g. a precipitation pattern on the 1/8◦ grid) and Panalogues

is the set of high-resolution historical patterns correspond-

ing to the same days as the Zanalogues. The dimension of

the P̂downscaled vector is pVIC×1, and the dimension of the

Panalogues matrix is pVIC×1, where pVIC is the number of

gridpoints in the high-resolution weather patterns. Note that

the matrix, Z′

analoguesZanalogues, inverted with each applica-

tion of the procedure is only of dimension n×n, and there-

fore the computational resources needed to downscale the

weather patterns are determined by the number of the pat-

terns included in the most-suitable subset (in this case n=30)

and can be quite small.

2.5 Comparison of methods

First, we assess the ability of the different methods to sim-

ulate average monthly precipitation and temperature. Sec-

ond we compare both downscaling methods using metrics of

daily P and temperature extremes.

2.5.1 Monthly and annual assessment

The monthly skill is characterized using correlations between

the monthly averages of the downscaled estimates and the

monthly averages of the Maurer et al. (2002) data. In addi-

tion, the biases in the climatological precipitation and tem-

perature were computed. Scatter plots for different locations

in California are also produced for assessment of the perfor-

mance of the methods at point scales.

Table 1. Indices of daily extremes used in this study.

Index Name Description

pq20 20th percentile of rainday amounts

pq90 90th percentile of rainday amounts

tavq10 10th percentile of daily average temperature

tavq90 90th percentile of daily average temperature

pxcdd Maximum number of consecutive dry days

pxcwd Maximum number of consecutive wet days

2.5.2 Comparison based on daily precipitation and temper-

ature indices

To characterize precipitation and temperature at the daily

scale, we use a subset of the indices that were developed

as part of the Statistical and Regional dynamical Downscal-

ing of Extremes for European regions (STARDEX) project,

which provides standard diagnostics that have been used

for the systematic inter-comparison of different downscal-

ing methods (e.g., Harpham and Wilby, 2005; Haylock et

al., 2006; Schmidli et al., 2006). Table 1 lists the indices

used in this study, which are from the STARDEX framework,

with the exception of the two temperature indices, which

are tailored here to apply to daily average values. Statistics

were computed on a seasonal (December–February; March–

May; June–August; September–November) and annual level

at each 1/8◦ grid cell in the western United States. In com-

puting the statistics (for the projection period of 1977–1999)

for each grid cell, if fewer than 15 years were available for

calculation of the statistic (such as many occurrences of zero

precipitation amounts), that index was excluded for that grid

cell.

Correlations were calculated for the years 1977–1999 be-

tween downscaled (CA or BCSD) and the gridded observed

data (Maurer et al., 2002) for each statistic. Correlations are

computed for daily data for each season. For plotting, the

square of the correlation coefficient r2 is used. To test the

hypotheses that the correlation at each grid cell was zero,

a Fisher’s transform was applied to the Pearson correlation

coefficients and a p-value (the probability that a non-zero

correlation was reported when the downscaled and observed

data are actually uncorrelated) was computed. A similar ap-

proach was used to test the hypotheses that the correlations

produced by the two downscaling techniques are statistically

the same.

3 Results and discussion

3.1 Monthly and seasonal skill

The correlation between monthly averages of downscaled

precipitation and temperature and the Maurer et al. (2002)
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Fig. 1. Month to month correlation coefficients between observa-

tions from Maurer et al. (2002) dataset and downscaling estimates

using three different approaches: the CA (left panel), the BCSD

(middle panel) and a cubic interpolation of the large scale field.

observations is shown in Fig. 1. An interpolation of the re-

analysis data to the fine scale (1/8◦) grid is also shown as a

reference or as a third “method” of downscaling the coarse

scale data. For precipitation, the BCSD shows a larger area

with very strong correlations, but the BCSD and CA down-

scaling methods are generally comparable when contrasted

with the lower skill of the interpolated reanalysis. Figure 2

shows the root mean square error (RMSE) for the BCSD and

CA are comparable for precipitation, and the BCSD method

has lower RMSE over a larger region than CA for tempera-

ture. However, both methods exhibit much lower RMSE than

the interpolated reanalysis, indicating that both downscaling

methods provide substantial increases in skill at generating

local climate features at the monthly scale.

Three points were selected to provide an example of the

performance of the methods for different climate regimes:

snow-controlled regions, snow-free regions and arid regions.

For the Mojave Desert gridpoint, Fig. 3a shows that the

correlations for precipitation and temperature are compa-

rable for the CA and BCSD methods, with both methods

Fig. 2. Same as Fig. 1 but for the RMSE. Values in (mm day−1)1/2

for precipitation and ◦C for temperature.

slightly underestimating precipitation and temperature but

with high correlations. For the Madera gridpoint (Fig. 3b),

located in California’s Central Valley, the CA method shows

weaker correlations than the BCSD for precipitation and

slightly stronger correlations for temperature, though again

the two methods are very similar. For Madera and Yosemite

(Fig. 3c), the CA method generally underestimates precipita-

tion, while the BCSD generally underestimates temperature.

Comparing the three sites, it appears that skillful downscal-

ing to dry areas is more difficult than to wet locations.

A plot of the biases in precipitation and temperature can

be found in Fig. 4. In general the precipitation biases are

of similar magnitude for BCSD and CA, with larger bi-

ases occurring in similar locations for both methods (both

generally along prominent mountain ranges), highlighting

the difficulty in downscaling large-scale precipitation in ar-

eas of complex terrain. BCSD underestimates temperature

to a greater degree than CA for the Upper Colorado River

Basin, California’s San Joaquin Valley and the Canadian

portion of the Columbia River Basin, though there is some
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Fig. 3. Scatter plot of observed versus downscaled precipitation (P )

and air temperature (T ) for three grid cells. Locations of the three

points are shown in the relief map in the lower right panel.

spatial correspondence in the regions with over- and under-

estimation of temperature in both methods.

The overall similarity of skills between the CA and BCSD

techniques for downscaled monthly precipitation and tem-

perature should be interpreted in light of the distinctive prop-

erties of the methods. As noted above, the “perfect prog”

CA approach makes no adjustment for biases in the large-

scale spatial and temporal variability of reanalysis precipi-

tation and temperature, while the “MOS” BCSD explicitly

corrects any biases at the monthly level. Thus, the similarity

in skills for downscaling monthly temperature and precipita-

tion, where daily variability is not yet considered, indicates

that the biases in reanalysis at this scale are not large enough

to affect in a substantial way the downscaling skill.

Trends produced by a GCM are not explicitly corrected

toward observations with either the CA or BCSD methods.

Thus, as illustrated in Fig. 5, the large-scale temperature

trends (which are not large for the projected period) are trans-

lated to the fine scale without generating fine-scale detail that

may be present in the observations. BCSD, by extracting

the temperature trend prior to bias-correction and replacing

it afterward, exactly reproduces the large scale trends, while

CA has a tendency to somewhat suppress them. The dif-

ferences between large-scale trends simulated by reanalysis

and observed station trends have been extensively explored

(Kalnay and Cai, 2003; Kalnay et al., 2006). These differ due

to many factors, notably because reanalysis does not reflect

impacts of land use changes as well as other local and re-

gional changes to clouds, snow, soil moisture, or instrumen-

Fig. 4. Biases in mean precipitation (mm day−1) and temperature

(◦C) using CA and BCSD methods, based on monthly data for

1977–1999.

tal changes (Trenberth, 2004; Vose et al., 2004). Regardless,

in general, trend simulation by a coupled GCM during the

20th century is not directly comparable to observed trends,

since low-frequency natural oscillations can masquerade as

trends (Knowles et al., 2006), and the phase of oscillations

in an unconstrained GCM simulation would not be expected

to mimic observations. Thus, correcting trends in a GCM

toward observed trends would be a questionable practice.

www.hydrol-earth-syst-sci.net/12/551/2008/ Hydrol. Earth Syst. Sci., 12, 551–563, 2008



558 E. P. Maurer and H. G. Hidalgo: Daily vs. monthly climate data in statistical downscaling

 

°
Fig. 5. Comparison of trends produced by downscaling with CA,

BCSD, observed trends, and trends in the interpolated reanalysis

data set. Values are in ◦C/decade for the projected period of 1977–

1999.

3.2 Daily skill

There is only modest skill with either the CA and BCSD

method for dry (20th percentile) daily precipitation extremes

in winter (Fig. 6), and this limited skill is generally focused

in coastal areas of the Pacific Northwest. Other seasons

show lower skills, with much greater extent of area with

insufficient data to calculate the statistics (as described in

Sect. 2.5.2 above). There is no statistically confident differ-

ence between the methods for this measure. For wet (90th

percentile) daily precipitation conditions both methods show

some skill in winter, when most precipitation occurs (Fig. 7).

As with Fig. 6, in general most of the domain has insuffi-

cient data for calculating this statistic during seasons other

than winter. The CA method exhibits slightly higher cor-

relations over certain regions such as the Sierra Nevada in

California, but as with dry daily extremes, there is no sta-

tistically significant difference in the skills exhibited by the

two methods. The lack of statistical significance to the differ-

ences suggests there is limited skill for extreme precipitation

anomalies in the reanalysis, and neither method can recover

daily skill. Where skill is exhibited, it is thus attributable to

skill at longer time scales (monthly and seasonal), equiva-

lently captured with both methods.

The stationarity of the transfer scheme is the key to the

success of either the BCSD or CA method in translating

 

Fig. 6. r2 values between observations and CA (left panel) and

BCSD (center panel) for the 20th percentile (dry) daily precipitation

statistic for winter season (as indicated in left panel). Right panel

shows the difference between the two. The contour line delineates

regions where the r2 values achieve 90% confidence. Areas are

absent if they have an inadequate number of years to compute the

statistic.

large-scale climate to a fine scale. While the skill in simu-

lating fine-scale dry or wet daily extremes (shown in Figs. 6

and 7) is generally low with either method, it is evident that

wet extremes are captured more accurately for both methods,

as also had been exhibited at the monthly level in Fig. 3. This

suggests that the relationship established for the spatial trans-

fer scheme, based on 1950–1976, holds to a greater degree

under wet conditions than dry for the latter period of 1977–

1999. One possible factor influencing such a change could

be the PDO phase shift from negative in the earlier period

to positive in the latter. The PDO has been shown to have a

strong hydroclimatic teleconnection to the Pacific Northwest

(Mantua and Hare, 2002), especially in its negative phase

(Maurer et al., 2004), and the phase of PDO strongly influ-

ences the effect of ENSO on the region, amplifying dry ex-

tremes under a PDO warm phase (Hamlet and Lettenmaier,

1999). While many factors beside PDO influence this rela-

tionship, the differing skill in spatially downscaling precipi-

tation under wet and dry extremes indicates that the transfer

scheme may be disrupted more for dry extremes than wet for

the periods used in this study.

In Fig. 8 the r2 values between observations and the two

downscaling methods for simulating the maximum number

of consecutive dry days per season is shown. Most promi-

nent is that, in contrast to the plots of precipitation skill, most

of the domain (for both methods) shows significant r2 val-

ues. The starkest difference is in winter, where in the south-

ern half of the domain the CA downscaling technique bet-

ter captures dry day sequences than the BCSD. In approxi-

mately 22% of the grid cells where CA has better skill than

BCSD, the difference is also statistically significant (p<0.1).

For seasons other than winter, the CA technique still shows

marginally better skill than BCSD overall, though there are
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Fig. 7. Same as Fig. 6 but for the 90th percentile (wet) daily precip-

itation statistic.

more grid cells where BCSD shows better skill and the dif-

ference between the methods loses significance over the do-

main. Overall, at an annual level the two techniques are sta-

tistically indistinguishable, with only 5% of the grid cells

showing differences in correlation between observations and

each of the two methods that are statistically significant at

the p=0.1 level, far fewer than would be expected by chance.

This shows that temporal aggregation of daily extreme statis-

tics can mask seasonal skill differences.

The skill of the methods at simulating the observed maxi-

mum number of consecutive wet days in each season, while

not shown, has results similar to those of Fig. 8, where the

highest skill and the greatest difference between the two

methods is in winter, and in the Southern half of the domain.

In winter, 23% of the grid cells exhibit statistically signifi-

cant differences between the skill levels of the two methods.

Again, at the annual level, the skill at reproducing observed

patterns of maximum consecutive numbers of wet days is

much less statistically distinguishable than in the Winter.

Many others have identified the connection of precipita-

tion patterns to large-scale circulation patterns (e.g., Leung et

al., 2003; Robertson and Ghil, 1999; Widmann et al., 2003);

CA, because it utilizes domain-wide patterns can capture

these relationships, while BCSD, defining only the spatial

relationship between one large-scale grid box and the fine-

scale grid boxes within it, is less able to. Reanalysis, due

to its assimilation of observed atmospheric state variables, is

known to represent better the large-scale atmospheric vari-

ables than derived quantities such as grid-cell precipitation

(Widmann et al., 2003). Thus, the higher correlations exhib-

ited by the CA method for dry- and wet-day sequencing in

some locations may be a manifestation of the ability to relate

these domain-wide patterns to local precipitation, at least to

the extent that these effects are reflected accurately in the re-

analysis.

In Fig. 9 the skill at reproducing extreme low temperature

statistics, expressed as the 10th percentile daily temperature

in each season is shown. In winter and fall, the CA method

 

Fig. 8. Same as Fig. 6, but for maximum number of consecutive dry

days per season. Each row corresponds to the season indicated in

the right panel of that row.

has higher skill than BCSD, with 30% of the grid cells show-

ing statistically significant differences between the methods.

In the North, roughly corresponding to the Columbia River

basin, the difference is most apparent. In this same region,

however, the BCSD method shows greater skill in spring.

Thus, the choice of most appropriate downscaling technique

may depend not only on the statistic being analyzed, but also

the region and season of focus.

In Fig. 10 the downscaling skill for reproducing observed

daily warm anomalies, expressed as the 90th percentile tem-

perature is illustrated. As was demonstrated above, the skill

of the downscaling for daily temperature extremes exceeds
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Fig. 9. Same as for Fig. 8, but for 10th percentile (cool) daily tem-

perature in each season.

that for precipitation extremes. While the downscaling of av-

erage seasonal temperatures for the two downscaling meth-

ods was shown to be comparable, high temperature extremes

are better simulated with the CA downscaling, most notably

in Central California and the Great Basin in summer. For

seasons other than summer, less than 7% of the grid cells

showed differences between the skills of the two downscal-

ing techniques, much less than would be expected by chance

at 90% confidence, indicating the methods are statistically

indistinguishable for these seasons.

As discussed in Sect. 2.1, since temperature observations

are assimilated into reanalysis, there is much lower bias

in reanalysis temperature than in reanalysis precipitation, a

 

Fig. 10. Same as for Fig. 8, but for 90th percentile (warm) daily

temperature in each season.

model-derived variable. Thus, downscaled daily temperature

extremes, specifically high extremes in summer and low ex-

tremes in winter and fall, show improved skill with CA as

compared to BCSD, while correlation at the monthly level

was comparable (or even higher for BCSD) (Figs. 1 and 2),

reflecting the translation of reanalysis daily skill to the fine-

scale. In contrast, similarly to the monthly level, daily down-

scaled precipitation is generally indistinguishable between

the two downscaling techniques, with the exception of some

statistics related to sequencing of daily precipitation, show-

ing that as large-scale daily simulations become less skillful,

the downscaling based on daily model output will be less dis-

tinguishable from a random daily distribution.
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It is interesting to note in Fig. 10 that the lack of significant

skill with either method along large portions of the coast in

the summer and fall. This shows that the assumptions of sta-

tionarity embedded in either statistical downscaling method

(where large-scale weather patterns are related to historically

observed fine scale observations) at the scale used in this

study may not be valid for the coastal climate in this region,

where local effects due to sea breeze and coastal upwelling

affect extremes, and the relationship between large scale and

fine scale climate may be changing (Lebassi et al., 2007).

4 Conclusions

At a monthly time scale, the two downscaling methods con-

sidered here, CA and BCSD, produce comparable skills in

producing downscaled, gridded fields of precipitation and

temperatures given coarse-scale reanalysis data as a surro-

gate GCM. The skill for temperature downscaling is consid-

erably greater than that for precipitation, with precipitation

showing much greater spatial variability in skill level.

Considering daily precipitation, both methods exhibit

some skill in reproducing observed wet and dry extremes,

generally in the Pacific Northwest, and the difference be-

tween the methods is not significant. This reflects the gen-

eral low skill in daily precipitation variability in the large-

scale reanalysis data over the domain, thus neither method

can generate the skill absent in the large-scale signal. For re-

producing fine scale observed consecutive sequences of wet

and dry days, the CA method shows greater skill in winter

in the Southwest, reflecting the presence of some reanalysis

skill in simulating these daily precipitation characteristics.

For other seasons and in other regions the methods are in

general not statistically different.

The skill in downscaling daily temperature extremes ex-

ceeds that for precipitation extremes, which is not surpris-

ing given that temperature observations are assimilated in

the reanalysis product, but precipitation is simulated. For

low temperature extremes, the CA method produces greater

downscaling skill than BCSD for fall and winter seasons.

For high temperature extremes, CA demonstrates higher skill

then BCSD in summer, though for other seasons differences

are not significant. Contrasting the results from daily tem-

perature and precipitation downscaling with these two meth-

ods, it is clear that as model (GCM) daily skill declines, the

difference between using a downscaling technique based on

daily model output versus applying a random daily distribu-

tion becomes less evident. As daily GCM skill, especially in

regard to extreme events, continues to be assessed (Kharin

et al., 2007; Tebaldi et al., 2006), the extent to which the

daily GCM output exhibits skill in a region of interest will

determine the utility of incorporating daily GCM output in a

downscaling technique.

The choice of most appropriate downscaling technique de-

pends in part on the variables, seasons, and regions of in-

terest. For precipitation, and impacts driven predominantly

by precipitation, there is little distinction between the two

methods, and the general lack of skill at a daily timescale

in the large-scale reanalysis-simulated climate provides little

incentive to favor either downscaling method. The presence

of skill in the daily reanalysis temperature data allows the

CA method to show superior skill compared to BCSD at re-

producing local temperature extremes in some seasons and

locations.

One drawback to using the CA technique with daily pre-

cipitation and temperature fields from a GCM is that the bi-

ases in the spatial and temporal variance exhibited by the

GCM will be reconstructed in the downscaled fields. While

the reanalysis data used here as a surrogate GCM can be con-

sidered a best possible GCM, since it assimilates observed

temperature data, there are still substantial biases in some

surface variables, and in particular for this study, precipi-

tation. Actual GCM output reproduces extremes less reli-

ably than reanalyses (Kharin et al., 2005), which will reduce

the skill of the CA method, as applied here. Although the

CA method works with anomalies and therefore biases in the

mean of the GCM are not transferred to the fine scale results,

some kind of bias correction is needed to remove biases in

the variance of the GCM when the CA is to be applied to

actual GCM data.

A limitation common to both methods is that the skill

is tied to the simulated precipitation and temperature fields

of the GCM, used as “predictors.” While these fields may

be depicted less accurately than other potential predictor

variables in the GCM (for example atmospheric circulation

fields), using GCM precipitation has the advantage of cap-

turing the complexity of physical processes (as represented

in the GCM) producing precipitation in a way that using only

large-scale circulation indices may not. These considerations

are model dependent and should be kept in mind when down-

scaling data from actual GCM. Regardless of the technique, a

final caveat is that of Charles et al. (1999), who noted the val-

idation of a downscaling technique using historic data does

not imply it will be equally valid under changed future cli-

mate conditions. While both techniques used in this study are

shown to provide skill in downscaling, any future changes to

the relationships between large scale and fine scale climate

cannot be anticipated by them.
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Salathé, E. P.: Downscaling simulations of future global climate

with application to hydrologic modelling, Int. J. Climatol., 25,

419–436, 2005.

Schmidli, J., Frei, C., and Vidale, P. L.: Downscaling from GCM

precipitation: A benchmark for dynamical and statistical down-

scaling, Int. J. Climatol., 26, 679–689, 2006.

Stewart, I. T., Cayan, D. R., and Dettinger, M. D.: Changes toward

earlier streamflow timing across western North America, J. Cli-

mate, 18, 1136–1155, 2005.

Stocker, T. F., Clarke, G. K. C., Le Treut, H., Lindzen, R. S.,

Meleshko, V. P., Mugara, R. K., Palmer, T. N., Pierrehumbert,

R. T., Sellers, P. J., Trenberth, K. E., and Willebrand, J.: Physical

climate processes and feedbacks, in: Climate Change 2001: The

Scientific Basis, edited by: Houghton, J. T., Ding, Y., Griggs,

D. G., et al., Cambridge University Press, Cambridge, 417–470,

2001.

Tebaldi, C., Hayhoe, K., Arblaster, J. M., and Meehl, G. A.:

An intercomparison of model-simulated historical and future

changes in extreme events, Climatic Change, 79, 185–211,

doi:110.1007/s10584-10006-19051-10584, 2006.

Trenberth, K. E.: Rural land-use change and climate, Nature, 427,

p. 213, 2004.

van den Dool, H. M.: Searching for analogues, how long must one

wait?, Tellus, 2A, 314–324, 1994.

Van Rheenen, N. T., Wood, A. W., Palmer, R. N., and Lettenmaier,

D. P.: Potential implications of PCM climate change scenarios

for Sacramento-San Joaquin River Basin hydrology and water

resources, Climatic Change, 62, 257–281, 2004.

Vose, R. S., Karl, T. R., Easterling, D. R., Williams, C. N., and

Menne, M. J.: Impact of land-use change on climate, Nature,

427, 213–214, 2004.

Widmann, M. and Bretherton, C. S.: Validation of mesoscale pre-

cipitation in the NCEP reanalysis using a new grid-cell precipi-

tation dataset for the Northwestern United States, J. Climate, 13,

1936–1950, 2000.

Widmann, M., Bretherton, C. S., and Salathe, E. P.: Statistical pre-

cipitation downscaling over the Northwestern United States us-

ing numerically simulated precipitation as a predictor, J. Climate,

16, 799–816, 2003.

Wilby, R. L. and Wigley, T. M. L.: Downscaling general circulation

model output: a review of methods and limitations, Prog. Phys.

Geography, 21, 530–548, 1997.

Wilby, R. L., Hay, L. E., Gutowski, W. J., Arritt, R. W., Takle,

E. S., Pan, Z., Leavesley, G. H., and Clark, M. P.: Hydrologi-

cal responses to dynamically and statistically downscaled climate

model output, Geophys. Res. Lett., 27, 1199–1202, 2000.

Wilby, R. L. and Harris, I.: A framework for assessing un-

certainties in climate change impacts: low-flow scenarios for

the River Thames, UK, Water Resour. Res., 42, W02419,

doi:10.1029/2005WR004065, 2006.

Wilks, D. S.: Multisite downscaling of daily precipitation with a

stochastic weather generator, Clim. Res., 11, 125–136, 1999.

Wilks, D. S.: Statistical Methods in the Atmospheric Sciences, 2

ed., Academic Press, New York, NY, USA, 627 pp., 2006.

Wood, A. W., Maurer, E. P., Kumar, A., and Lettenmaier,

D. P.: Long-range experimental hydrologic forecasting for

the eastern United States, J. Geophys Res., 107, 4429,

doi:10.1029/2001JD000659, 2002.

Wood, A. W., Leung, L. R., Sridhar, V., and Lettenmaier, D. P.: Hy-

drologic implications of dynamical and statistical approaches to

downscaling climate model outputs, Climatic Change, 62, 189–

216, 2004.

www.hydrol-earth-syst-sci.net/12/551/2008/ Hydrol. Earth Syst. Sci., 12, 551–563, 2008


