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Abstract

Background: Lack of sufficient molecular markers hinders current genetic research in peanuts (Arachis

hypogaea L.). It is necessary to develop more molecular markers for potential use in peanut genetic

research. With the development of peanut EST projects, a vast amount of available EST sequence data has

been generated. These data offered an opportunity to identify SSR in ESTs by data mining.

Results: In this study, we investigated 24,238 ESTs for the identification and development of SSR markers.

In total, 881 SSRs were identified from 780 SSR-containing unique ESTs. On an average, one SSR was found

per 7.3 kb of EST sequence with tri-nucleotide motifs (63.9%) being the most abundant followed by di-

(32.7%), tetra- (1.7%), hexa- (1.0%) and penta-nucleotide (0.7%) repeat types. The top six motifs included

AG/TC (27.7%), AAG/TTC (17.4%), AAT/TTA (11.9%), ACC/TGG (7.72%), ACT/TGA (7.26%) and AT/

TA (6.3%). Based on the 780 SSR-containing ESTs, a total of 290 primer pairs were successfully designed

and used for validation of the amplification and assessment of the polymorphism among 22 genotypes of

cultivated peanuts and 16 accessions of wild species. The results showed that 251 primer pairs yielded

amplification products, of which 26 and 221 primer pairs exhibited polymorphism among the cultivated

and wild species examined, respectively. Two to four alleles were found in cultivated peanuts, while 3–8

alleles presented in wild species. The apparent broad polymorphism was further confirmed by cloning and

sequencing of amplified alleles. Sequence analysis of selected amplified alleles revealed that allelic diversity

could be attributed mainly to differences in repeat type and length in the microsatellite regions. In addition,

a few single base mutations were observed in the microsatellite flanking regions.

Conclusion: This study gives an insight into the frequency, type and distribution of peanut EST-SSRs and

demonstrates successful development of EST-SSR markers in cultivated peanut. These EST-SSR markers

could enrich the current resource of molecular markers for the peanut community and would be useful

for qualitative and quantitative trait mapping, marker-assisted selection, and genetic diversity studies in

cultivated peanut as well as related Arachis species. All of the 251 working primer pairs with names, motifs,

repeat types, primer sequences, and alleles tested in cultivated and wild species are listed in Additional File

1.
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Background
Cultivated peanut (Arachis hypogaea L.) is grown on 25.5
million hectares with a total global production of about
35 million tons. It is an allotetraploid (2n = 4× = 40) and
belongs to Arachis genus, which can be grouped into nine
sections and includes approximately 80 species [1]. A
large amount of morphological and agronomic variation
is evident among accessions of cultivated peanuts, but
extremely low levels of polymorphism were observed
using restriction fragment length polymorphism (RFLP),
randomly amplified polymorphic DNA (RAPD) and
amplified fragment length polymorphisms (AFLP) [2-5].
Only simple-sequence repeats (SSRs) showed a potential
for use in genetic studies of cultivated peanuts [6-11].
However it is expensive, labor-intensive and time-con-
suming to develop SSR markers from genomic DNA
libraries [12]. To date, the number of available SSRs is
grossly inadequate for mapping studies. Although several
peanut genetic maps have been published [13-16], the
existing maps do not have sufficient markers to be highly
useful for genetic studies. Thus, there is great need for
development of novel SSR markers.

Recently, EST-SSRs have received much attention as the
increasing amounts of ESTs being deposited in databases
for various plants [17-19]. EST-SSR can be rapidly devel-
oped from EST database by data mining at low cost, and
due to their existence in transcribed region of genome,
they can lead to the development of gene-based maps
which may help to identify candidate function genes and
increase the efficiency of marker-assisted selection [20]. In
addition, EST-SSRs show a higher level of transferability
to closely related species than genomic SSR markers
[17,21] and can be served as anchor markers for compar-
ative mapping and evolutionary studies [22]. Similar
advantages of EST-SSRs have been reported for a number
of plant species, such as grape [17], Medicago species [23],
soybean [24], sugarcane [25], maize [18,19,24,26], rice
[18,27-29], rye [29-31], and wheat [27,32,33], indicating
that EST-SSR markers have potential for use in peanut
genetic studies.

In peanut, only two studies described the development of
EST-SSR in cultivated peanut and wild species [34,35].
Luo et al (2005) developed 44 EST-SSR markers from
1,350 cultivated peanut ESTs, nine of which exhibited
polymorphism among 24 cultivated peanut lines. Proite
et al (2007) developed 188 EST-SSRs from 8,785 A. steno-
sperma (Arachis species) ESTs, of which, 21 were polymor-
phic for an AA genome mapping population and 4 for a
range of cultivated peanut genotypes. In this study, we
screened a much larger number of ESTs (24, 238) from
cultivated peanut with the following objectives: (1) to
analyze the frequency and distribution of SSRs in tran-
scribed regions of cultivated peanut genome; (2) to assess
the validity of developed EST-SSR markers for detection of
the polymorphism in cultivated peanut genotypes and
their transferability to related wild species; (3) to develop
new EST-SSR markers for both cultivated peanut and wild
species.

Results
Type and frequency of peanut EST-SSRs

A total of 24,238 ESTs with an average length of 550 bp
were used to evaluate the presence of SSR motifs. To elim-
inate redundant sequences and improve the sequence
quality, the TIGR Gene Indices Clustering Tools (TGICL)
[36] was employed to obtain consensus sequences from
overlapping clusters of ESTs. A cluster was defined here as
a group of overlapping EST sequences (at least 50 nucle-
otides with 90% identity and unmatched length less than
20 nucleotides). Totally, 11,431 potential unique ESTs
including 1,434 contigs and 9,997 singletons were gener-
ated. As shown in Table 1, a total of 881 SSRs were identi-
fied from 780 unique ESTs, with an average of one SSR per
7.3 kb. Of those, 85 (about 10.9%) ESTs contained more
than one SSR and 59 (about 7.6%) were compound SSRs
that have more than one repeat type. Analysis of SSR
motifs revealed that the proportion of SSR unit sizes was
not evenly distributed. The occurrences of different repeat
units were tri- (63.9%), di- (32.7%), tetra- (1.7%), penta-
(0.7%), and hexa-nucleotide (1.0%). The mean SSR
length of each unit varied between 18 and 37 bp. The

Table 1: Summary of SSR search after sequences assembled and categorized

Contigs(bp) Singlets(bp) Total (bp)

EST after assembled 1434(12372129) 9997(5197116) 11431(6434245)

Identifed SSRs 180 701 881

ESTs having SSRs 156 624 780

ESTs having more than 1SSR 19 66 85

Compound SSRs 16 43 59

Bi-type 73 215 288

Tri-type 98 465 563

Tetra-type 7 8 15

Penta-type 1 5 6

Hexa-type 1 8 9
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overall average SSR length was 20 bp with a maximum of
86 bp di-nucleotide repeat (AG/CT). A total of 27 SSR
motifs were listed in Table 2. The AG/CT was the most fre-
quent motif and accounted for 27.7%, followed by AAG/
TTC (17.37%), AAT/TTA (11.9%), ACC/TGG (7.7%),
ACT/TGA (7.26%) and AT/TA (6.3%). The remaining
motifs presented a frequency of 23.3%. GC-only repeat
was not observed.

Primer design and validation

Among the 780 SSR-containing ESTs, 490 did not qualify
for primer design as the flanking sequences were too short
or poor quality. Therefore, only 290 primer pairs were
designed and employed for validation of genic SSR mark-
ers (Table 3). Of these EST-SSRs, 65, 178 and 47 were
observed in 5' untranslated terminal regions (UTR), trans-
lated regions and 3' UTR, respectively. After optimization,
251 primer pairs (86.5%) were successfully amplified in
all cultivated peanut and wild species tested (Table 3),
while the rest failed to give PCR products at various
annealing temperature and Mg2+ concentrations. Out of
251 working primer pairs, 182 amplified the expected size

of amplicons, 41 yielded PCR products larger than
expected, revealing that an intron is inside the amplicons,
and the amplified products of the remaining 28 primer
pairs were smaller than expected, suggesting the occur-
rence of deletion within the genomic sequences or a lack
of specificity (Additional File 1).

EST-SSR polymorphism

In the present study, 251 valid EST-SSR primer pairs were
used for assessment of the polymorphism among culti-
vated and wild Arachis species. Within cultivated peanuts,
26 (10.3%) EST-SSRs exhibited polymorphism (Table 3).
A total of 55 alleles were detected and the average number
of alleles per SSR marker was 2.1 with a range of 2–4 alle-
les based on the dominant scoring of the SSR bands char-
acterized by the presence or absence of a particular band
(Additional File 1). The PIC values ranged from 0.09 to
0.69 with an average value of 0.33. The greatest variation
of SSR alleles was found for EM-78, which interacted with
4 alleles in 22 cultivated peanuts genotypes and the PIC
value was 0.69.

Table 2: Occurrence and number of repeats of 27 SSR motifs in cultivated peanut (Arachis hypogaea L.)

Repeats Number of repeat units Total repeat

5 6 7 8 9 10 11 12 13 Above

AC/GT - - 6 2 3 2 1 14

AG/CT - - 56 43 31 11 13 15 2 47 218

AT/AT - - 15 11 5 3 2 2 1 17 56

AAC/GTT 22 7 1 2 5 37

AAG/CTT 71 44 13 10 7 4 2 2 153

AAT/ATT 54 26 8 3 3 2 1 3 5 105

ACC/GGT 31 22 9 5 1 68

ACG/CTG 10 4 2 1 17

ACT/ATG 35 17 9 1 2 64

AGC/CGT 17 8 1 2 1 29

AGG/CCT 19 8 1 1 29

AGT/ATC 25 11 4 2 1 43

CCG/CGG 13 3 1 1 18

AAAG/CTTT 3 3 1 7

AAAT/ATTT 2 2

AATC/AGTT 2 1 3

AATT/AATT 1 1

ACAT/ATGT 1 1 2

AAAAG/CTTTT 1 1

AAAAT/ATTTT 2 2

AGTAT/ATATC 3 3

AAAAAG/CTTTTT 1 1

AAGACG/CTGCTT 2 2

AATAGT/ATCATT 1 1

AATGAT/ACTATT 1 2 3

AGCAGT/ATCGTC 1 1

AGCTCC/AGGTCG 1 1

Total 317 155 127 88 56 23 19 19 6 71 881
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The polymorphism of 251 cultivated peanut-derived EST-
SSR in 16 accessions of wild species was evaluated. The
results showed that 221 of 251 EST-SSR loci (88%) were
polymorphic (Table 3), with a total of 867 alleles (Addi-
tional File 1). Allelic diversity was estimated for those pol-
ymorphic EST-SSR markers. The number of alleles
detected among 16 wild species ranged from 2 to 9, with
an average of 3.9 alleles per locus (Additional File 1). A
maximum of 9 alleles were observed for primer EM-71.
The PIC values varied between 0.594 and 0.820 with an
average value of 0.721.

Sequence comparison of SSR bands

For further understanding of the EST-SSR polymorphism
at the nucleotide level, the amplified products of primer
EM-31 from two genotypes of cultivated peanuts and
three accessions of wild species were cloned and
sequenced (Figure 1, Figure 2). All the sequenced alleles

from both cultivars and wild species were highly identical
to the original locus (EST sequence) from which the EST-
SSR marker EM-31 was mined. Sequence alignment
showed that all the primer-binding regions are highly
conserved. Allelic diversity could be attributed mainly to
differences in repeat type and length in the microsatellite
regions, although some variations such as repeat number
or insertions of additional motifs were observed in the
microsatellite regions. In addition, a few single base sub-
stitutions were observed in the microsatellite flanking
regions. Out of them, one occurred in A. cardenasii, one in
A. duranensis, and two in A. pintoi.

Discussion
Frequency and distribution of EST-SSRs

The frequency of SSRs in SSR-ESTs more accurately reflects
the density of SSRs in the transcribed region of the
genome. However, random sequencing within cDNA

Table 3: Characteristics of cultivated peanut (Arachis hypogaea L.) EST-SSR and efficiency of markers development

Motif No. of EST-SSRs No. of designed 
primers

No. amplified EST-SSRs (%) No. polymorphic EST-SSRs (%)

Cultivated peanut Wild species Cultivated peanut Wild species

Di 288 55 42 42 10 34

AC/GT 14 6 5 5 2 4

AG/CT 218 39 29 29 8 24

AT/AT 56 10 8 8 0 6

Tri 563 221 196 196 14 174

AAC/GTT 37 14 11 11 0 9

AAG/CTT 153 59 51 51 2 43

AAT/ATT 105 27 24 24 4 23

ACC/GGT 68 32 29 29 2 28

ACG/CTG 17 4 3 3 0 3

ACT/ATG 64 26 24 24 2 21

AGC/CGT 29 10 9 9 3 9

AGG/CCT 29 16 15 15 0 11

AGT/ATC 43 23 21 21 1 19

CCG/CGG 18 10 9 9 0 8

Tetra 15 5 5 5 1 5

AAAG/CTTT 7 1 1 1 0 1

AAAT/ATTT 2 2 2 2 1 2

AATC/AGTT 3 1 1 1 0 1

AATT/AATT 1 0 0 0 0 0

ACAT/ATGT 2 1 1 1 0 1

Penta-type 6 3 3 3 0 3

AAAAG/CTTTT 1 1 1 1 0 1

AAAAT/ATTTT 2 0 0 0 0 0

AGTAT/ATATC 3 2 2 2 0 2

Hexa-type 9 6 5 5 1 5

AAAAAG/CTTTTT 1 1 1 1 0 1

AAGACG/CTGCTT 2 1 1 1 1 1

AATAGT/ATCATT 2 2 1 1 0 1

AATGAT/ACTATT 3 1 1 1 0 1

AGCAGT/ATCGTC 1 0 0 0 0 0

AGCTCC/AGGTCG 1 1 1 1 0 1

Total 881 290 251 251 26 221
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libraries usually resulted in a high proportion of redun-
dant ESTs. In this study, to reduce the dataset size and
avoid overestimation of the EST-SSR frequency, SSR
search were performed following redundancy elimina-
tion. A total of 11,432 potential unique EST sequences
(about 6.4 Mb) were used for SSR search and 6.8% (780)
of ESTs contained specified SSR motifs, generating 881
unique SSRs. This is a relatively higher abundance of SSRs
for peanut ESTs, compared to the previous reports for
maize (1.4%), barley (3.4%), wheat (3.2%), soyghum
(3.6%), rice (4.7%) [18], Medicago truncatula (3.0%) [23]
and wild Arachis species [34]. The different abundance of
SSRs was known to be dependent on the SSR search crite-

ria, the size of the dataset, the database-mining tools and
different species [22]. In this work, the frequency of occur-
rence for EST-derived SSRs was one EST-SSR in every 7.3
kb. In previous reports, an EST-SSR occurs every 13.8 kb
in Arabidopsis thaliana, 3.4 kb in rice, 8.1 kb in maize, 7.4
kb in soybean, 11.1 kb in tomato, 20.0 kb in cotton and
14.0 kb in poplar [37]. The variations of frequencies
among different studies were mainly due to the criteria
used to identify SSR in the database mining.

In earlier reports, tri-nucleotide repeats were generally the
most common motif found in both monocots [22] and
dicots [23]. During the process of mining EST-SSRs in the

Polyacrylamide gel electrophoresis patterns of microsatellite alleles amplified with the primer EM-31Figure 1
Polyacrylamide gel electrophoresis patterns of microsatellite alleles amplified with the primer EM-31. The 
bands indicated by the arrows were sequenced. M represents the DNA molecular weight marker, and 1–38 represent PI 
393531 (1), PI 390693 (2), Qiongshanhuasheng (3), Liaoningsilihong (4), Dedou (5), Guangliu (6), Sanyuening (7), Yueyou 20 (8), 
Spancross (9), Tennessee Red (10), Xiaoliuqiu (11), Yangjiangpudizan (12), Xihuagoudo (13), Padou (14), Bo-50 (15), Yingdeji-
douzai (16), Heyuanbanman (17), Tuosunxiaohuasheng (18), Sunoleic 97R (19), Tifrunner (20), Georgia Green (21), NC940-22 
(22), A. villosa (23), A. stenosperma (24), A. correntina (25), A. cardenasii (26), A. magna (27), A. duranensis (28), A. chacoensis (29), 
A. batizocoi (30), A. helodes (31), A. monticola (32), A. pintoi (33), A. paraguariensis (34), A. pusilla (35), A. rigonii (36), A. appressipila 
(37), A. glabrata (38).

Alignment of sequences obtained from five SSR bands amplified by EM-31 primers and original SSR-derived EST sequence(EM-31)Figure 2
Alignment of sequences obtained from five SSR bands amplified by EM-31 primers and original SSR-derived 
EST sequence(EM-31). Primer sequences are indicated by underlined arrows. Repetitive sequences are indicated in dashed 
box. Point mutations and indel regions are marked by box with solid line.
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various plant species, tri-nucleotide was also observed to
be most frequent [26], regardless of the EST-SSR search
criteria. Until now, only one report described that di-
nucleotide repeats were most abundant followed by tri- or
mono-nucleotide repeats in dicots [38]. In the present
investigation, tri-nucleotide repeat was found to be abun-
dant followed by di-nucleotide. In term of single SSR
motif, the di-nucleotide motif (AG/TC)n was highest fre-
quent [18,39]. Among the di-nucleotide motifs, the two
most dominant motif types were AG and AT, representing
an average frequency of 24.7% and 6.4%, respectively.
This was in agreement with recent studies in cultivated
peanut (Arachis hypogaea L.) [35] and wild Arachis species
[34]. In this work, the AAG with 17.4% of frequency fol-
lowing di-nucleotide motif AG was the most abundant in
the ten tri-nucleotide motifs. In other plant species, the
most frequent tri-nucleotide repeat motifs were (AAC/
TTG)n in wheat, (AGG/TCC)n in rice, (CCG/GGC)n in
maize, (AAG/TTC)n in soybean, and (CCG/GGC)n in bar-
ley and sorghum [18,19,39,40]. The previous studies of
Arabidopsis [37] and soybean [24] also suggested that the
tri-nucleotide AAG motif may be common motif in dicots.
In contrast, the abundance of the tri-nucleotide CCG
repeat motif was favored overwhelmingly in cereal species
[18,19,32] and also considered as a specific feature of
monocot genome, which may be due to increasing the G
+ C content [26].

Validation and polymorphism of EST-SSR markers

In this study, a total of 290 designed primer pairs were
used for validation of the EST-SSR markers. Of these, 251
(86.5%) yielded amplicons in both cultivated peanut and
wild species. This result was similar to previous studies in
which a success rate of 60–90% amplification has been
reported [21,25,40-42]. In those studies, they also
reported a similar success rate of amplification for both
genomic SSRs and EST-SSRs. However, EST-SSRs were
reported to be less polymorphic than genomic SSRs in
crop plants due to greater DNA sequence conservation in
transcribed regions [17,28,43-46]. Previous studies high-
lighted the fact that EST-SSR markers have higher transfer-
ability and better applicability than genomic SSR markers
[17,47-49]. In addition to high transferability, EST-SSRs
were good candidates for the development of conserved
orthologous markers for genetic analysis and breeding of
different species [22]. Pervious reports showed that the
transferability of EST-SSRs from one species to another
ranged from 40–89% [21,23,24,27,29,40,41,50,51]. Our
results indicated that 100% of EST-SSR amplifiable prim-
ers for cultivated peanut can produce amplicons in Arachis
wild species.

In the present investigation, the mean percentage of poly-
morphic loci of EST-SSR markers was 9.96% in cultivated

peanuts. This value was lower than those of genomic SSR
found in earlier studies [7,12,47], but higher than the per-
centage of polymorphic loci in cultivated peanut observed
using RAPD (6.6%) [5] and AFLP (6.7%) [4]. No major
difference was observed in terms of allele numbers and
PIC values for the EST-SSR markers among the cultivated
genotypes, while significant difference was observed
among wild species. Therefore, the low level of EST-SSR
polymorphism detected in cultivated peanuts may be
compensated by their higher potential for cross-species
transferability to wild species. In the present study, 100%
transferability of EST-SSR with 86.6% polymorphism
from cultivated peanut to wild Arachis species was
observed. The value is higher than that of genomic SSR
cross-transferability [10]. The high level of transferability
indicated that these markers would be highly effective for
molecular study of Arachis species. Since current molecu-
lar markers display a low level of genetic polymorphism
in cultivated peanuts [2-4,6,52,53], it is difficult to con-
struct a high-density genetic linkage map for cultivated
peanut which could be used in breeding programs. How-
ever, a genetic map constructed using wild species
together with transferable molecular markers derived
from cultivated peanuts would contribute to understand-
ing the introgression of genes from wild species to culti-
vated peanuts [10,13]. Therefore, the development of a set
of transferable EST-SSR markers from cultivated peanuts
will be a great benefit to construct a high-density genetic
map of wild species. The map would allow the identifica-
tion of markers, especially transferable EST-SSR markers,
associated with resistance or other agronomic traits in
wild species, and in turn, help to discover corresponding
markers or genes in cultivated peanuts.

Additionally, a comparison of sequences of cross-species
amplicons generated by primer EM-31 further confirmed
the conservation and transferability of the developed EST-
SSR loci. In general, the amplified regions were found to
be similar to the original peanut EST sequences from
which the SSRs were developed and their comparisons
across species (Figure 2) correlated the observed 'cross-
species alleles' precisely with the expected length varia-
tions. Furthermore, in addition to the variation of the
number of SSR repeat, the allele sequences also indicated
that a few additional point mutation in the SSR motifs
flanking regions. Similar variation has been reported in
earlier studies [39,47,54,55]. This phenomenon is sup-
posed to be the innate evolving nature of the genome, and
thus can be indicative of the evolutionary relationships of
the tested taxa [47].

Conclusion
EST-SSR markers developed in this study will complement
the genomic SSR markers and provide a valuable resource
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for linkage mapping, gene and QTL identification, and
marker-assisted selection in peanut genetic study. Since
these markers were developed based on expressed
sequence and they are conserved across Arachis genus,
they may be valuable for comparative genome mapping
and functional analysis of candidate genes. In addition,
these markers may be potentially useful for study of pods
traits because majority of these EST sequences were
derived from pods at three developmental stages.

Methods
Plant materials and DNA extraction

In the present study, twenty-two accessions of cultivated
peanut(A.hypogaea L.) corresponding to two subspecies
(hypogaea and fastigiata) and sixteen accessions of wild
species from seven sections of the genus Arachis were used
(Additional File 2). The leaf samples of each accession
were collected from Peanut Germplasm Bank located in
Crops Research Institute, Guangdong Academy of Agricul-
ture, Guangzhou, China. the genomic DNA was extracted
as described by Sharma [56].

Data mining for SSR marker

A total of 24,238 EST sequences including 20,160 devel-
oped by Guo et al (2008)[57] and 4078 retrieved from
National Center of Biotechnology Information (NCBI)
were used in this study. These ESTs were assembled using
the TGICL program [36]. A Perl script known as MIcroSAt-
ellite (MISA http://pgrc.ipk-gatersleben.de/misa/.) was
used to mine microsatellites. In this work, SSRs were con-
sidered for primer design that fitted the following criteria:
a minimum length of 14 bp, excluding polyA and polyT
repeat, at least 7 repeat units in case of di-nucleotide and
at least 5 repeat units for tri-, tetra-, penta- and hexa-nucle-
otide SSRs. Therefore, the paired numbers representing
SSR motif length and the minimum repeat number in the
MISA configuration file (misa.ini) were modified to 2–7,
3–5, 4–5, 5-5 and 6-5 (mono-type excluded).

Primer design and PCR amplification

Using Primer Premier 5 program (Whitehead Institute for
Biomedical Research, Cambridge, Mass), primers were
designed based on the following core criteria: (1) melting
temperature (Tm) between 52°C and 63°C with 60°C as
optimum; (2) product size ranging from 100 bp to 350
bp; (3) primer length ranging from 18 bp to 24 bp with
amplification rate larger than 80%; (4) GC% content
between 40% and 60%. The parameters were modified
when unsuitable primer pairs were retrieved by the pro-
gram. PCR analysis was performed in a total volume of 20
μl with the following cycling profile: 1 cycle of 5 min at
94°C, an annealing temperature of 55°C for 35 cycles (1
min at 94°C, 30 s at 55°C, 45 s at 72°C) and an addi-
tional cycle of 10 min at 72°C. Each of the primer pairs
was screened twice to confirm the repeatability of the

observed bands in each genotype. PCR products were sep-
arated on 6% polyacrylamide denaturing gels. The gels
were silver stained for SSR bands detection.

Sequencing of PCR bands

The SSR alleles amplified in two cultivars and three wild
species for EM-31 primer were individually cloned and
sequenced. PCR amplification products were separated by
6% polyacrylamide gel and target allele bands were
excised and dipped in 10 μl of nuclease free water for 30
min. Another round of PCR was made following the same
protocol with recycled DNA as template. The second-
round PCR products were separated in a 2% agarose gel
and the target band was purified using TIANGEN Gel
Extracting Kit (TIANGEN Inc. Beijing China). The purified
PCR fragment from agarose gel was cloned using the
Takara TA cloning kit pMD-18 (Takara, Dalian, China).
The ligation product was transformed into competent
Escherichia coli cells. The positive clones identified by PCR
were sequenced by Invitrogen Company. The final edited
sequences belonging to different genotypes were com-
pared with the original SSR containing EST sequence
using Omiga program [58], and the exported multiple
sequence alignment was modified by Genedoc http://
www.nrbsc.org/gfx/genedoc/index.html.

Data scoring and statistical analysis

The allelic and genotypic frequencies were calculated for
the samples analyzed. The genetic diversity of the samples
as a whole was estimated based on the number of alleles
per locus (total number of alleles/number of loci), the
percentage of polymorphic loci (number of polymorphic
loci/total number of loci analyzed) and polymorphism
information content (PIC). The polymorphism was deter-
mined according to the presence or absence of the SSR
locus. The value of PIC was calculated using the formula

where Pi is the frequency of an individual genotype gener-
ated by a given EST-SSR primer pair and summation
extends over n alleles.
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