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Coccidiosis induced necrotic lesions impair digestive capacity and barrier function in

concurrence with increased risks for secondary bacterial infections. The industry has

been successful in controlling coccidiosis with anticoccidials and vaccination. However,

concerns over Eimeria species resistant to anticoccidials, gaps in vaccination and

restriction on antibiotics is stimulating research and application of alternative and/or

complimentary strategies for coccidiosis control. The aim of this paper is to appraise

literature on the utility of feed enzymes and yeast derivatives in modulating coccidiosis.

Feed enzymes can complement endogenous enzymes (protease, amylase, and lipase)

that may become insufficient in coccidiosis afflicted birds. Coccidiosis in the upper small

intestine creates conditions that enhances efficacy of phytase and there are reports

indicating supplemental phytase can mitigate the negative impact of coccidiosis on bone

quality. Increase in intestinal short chain fatty acids due supplemental fiber degrading

enzymes has been linked with reduced survivability of Eimeria. There is evidence

whole yeast (live or dead) and derivatives can modulate coccidiosis. Immunomudulation

properties of the yeast derivatives have been shown to enhance cellular and humoral

immunity in Eimeria challenge models which is critical for effectiveness of coccidial

vaccination. Moreover, yeast nucleotides have been shown to be beneficial in stimulating

healing of intestinal mucosal surface. Other novel work has shown that certain yeast

cells can produce derivatives with anticoccidial compounds effective in attenuating

oocysts shedding. Yeast cell surface has also been shown to be an effective oral

Eimeria vaccine delivery vehicle. Overall, while further refinement research is warranted to

address inconsistencies in responses and commercial application, there is evidence feed

enzymes and yeast derivatives could complement strategies for maintaining intestinal

function to bolster growth performance in broilers compromised with coccidiosis.
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However, broilers receive diets containing several feed additives with distinct mode of

actions and yet there is dearth of empirical data on the expected responses.Future

evaluations should consider combinations of additives to document animal responses

and potential synergies.

Keywords: Eimeria, coccidiosis, feed enzymes, intestinal health and function, feed efficiency, yeast derivatives

INTRODUCTION

Global human population is estimated to reach 9.6 billion
by 2050, during this period, broiler chicken production is
expected to grow by 121% to satisfy animal protein demand (1).
However, animal protein production sector is under pressure to
produce food products in ways that are ethical, environmentally
sustainable, and wholesome. For example, animal agriculture
uses significant amounts of antibiotics for therapy, prevention
of bacterial infection, and growth promotion. There are growing
concerns around the world on indiscriminate use of antibiotics
and linkage to the emergence of antibiotic resistant pathogens.
These concerns have necessitated consumer and legislative
cessation and/or restrictions on use antibiotics for growth
promotion (AGP). Moreover, there is a growing consumer
demand for speciality poultry products reared on organic, all
vegetable diet and pasture feeding regimens. These changes in
the ways of poultry production are bringing new challenges
and exacerbating old ones related to bird health, animal
welfare, and regulations. In the context of poultry health and
nutrition, the primary concerns are increased incidences of
enteric diseases such as coccidiosis, necrotic enteritis, impaired
nutrient digestion, and absorption ultimately leading to poor
feed conversion efficiency as well as increased mortalities and
condemnation at the processing plant. All these aspects converge
to vindicate the importance of effective control and prevention
of enteric pathogens to guarantee food safety and security for a
growing human population.

Caused by protozoan parasites of the phylum apicomplexan,
genus Eimeria, coccidiosis is inexplicably linked to the
advancement and modernization of poultry production
and annual global impact amounts to more than $3 billion in
morbidity and mortality losses (2, 3). The protozoa invades
intestinal cells as part of life cycle leading to impaired digestion
and absorption, barrier function and secondary bacterial
infections (4–6). The parasites exhibits remarkable species-
specific sites of development and foci of pathology within the
intestinal tract (5, 7–9). Eimeria acervulina, E. maxima, and
E. tenella are the most frequently found species in commercial
broiler chickens production systems (8). High animal densities
seen in these production systems are favorable for transmission
of Eimeria (8). Eimeria infection also exacerbates intestinal
proliferation of pathogens such as Clostridium, perfringens, and
Salmonella enterica serovars Enteritidis or Typhimurium (9–12).
It follows that coccidiosis not only has implication on birds
health but can also compromises food safety (13).

In recognition of the negative effects of coccidiosis in poultry
production, the industry has long developed and adopted
anticoccidials or live vaccination or combinations of these

strategies for control (6, 14). However, concerns over Eimeria
species resistant to anticoccidials and public concern over drug
use in animal production is limiting chemotherapy options (15).
Vaccination is dependent on optimal Eimeria cycling through
each flock, is management intensive, and cross-protection to
wild-type strains is not 100% effective (11, 16, 17). Moreover,
vaccination involves provision of live Eimeria species within the
first day of chick life which may increase the risk of enteric
disturbances (18). There are numerous alternative feed additives
to traditional coccidiosis control strategies that are claimed to
attenuate, or remedy structural and functional intestinal damage
occasioned by coccidiosis (19). The intent of this review is to
appraise the body of published data on the role of feed enzymes
and yeast derivatives in modulating coccidiosis.

FEED ENZYMES

The proposal of application of exogenous enzymes in poultry
nutrition was initially suggested almost 100 years ago (20),
however, the prohibitive cost did not allow their application in
animal nutrition until many decades later (21). Xylanases and β-
glucanases were pioneer commercial feed enzymes to deal with
problematic viscous feedstuffs such as barley and wheat (22–25).
Early experimentations showed that supplementation of these
enzymes in diets rich in viscous feedstuffs improved digestibility,
growth performance and reduced feed costs (21–23). These
studies helped scientists to understand the modes of action and
stimulated further research and development efforts to innovate
novel activities targeting specific substrates and stabilized to
withstand the rigors of feed processing and gastrointestinal
conditions (26). Indeed, the utility of feed enzymes in non-
ruminant nutrition is widely accepted (21–23, 25, 27). Feed
enzymes are largely applied in monogastric feeding programs on
the premise that animals are not able to digest 100% of dietary
components. For example, broilers excrete 25–30% of ingested
dry matter in the manure (28). This is because of anti-nutritional
factors (ANF) such as phytic acid or indigestible fractions by
the conditions and the array of digestive enzymes in the GIT
(29, 30). Most commercial feed enzymes are developed and
applied to target such ANF (25). Moreover, application in young
birds is driven by the fact that the gastrointestinal tract is not
well-developed because of (1) an immature immune system, (2)
limited endogenous enzyme secretory capacity, and (3) unstable
gut microbiota (31–33). Thus, the original uptake of feed enzyme
technology in poultry nutrition was to degrade ANF in feedstuffs
and to complement endogenous enzymes in gut of compromised
animals particularly the newly hatched chicks.
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EVOLVING ROLE OF FEED ENZYMES IN
POULTRY NUTRITION

Pressure on feed costs is and will remain a decisive factor
for profitable and sustainable poultry production, and feed
enzymes have an established role in reducing feed costs by
increasing the flexibility of feed ingredient choices. Moreover,
the need to reduce nutrients excretion in animal protein value
chain elevates the utility of feed enzyme in poultry operations.
However, emerging issues such as the restriction on the use
of AGP have stimulated new directions and perspectives for
application of feed enzymes. Emerging evidence revolve around
evaluation of feed enzymes as part of an integrated program of
gut health management (24). The peculiarity is that intestinal
microbiota nourishes on luminal nutrients (dietary and/or
endogenous) (34). Due to differences in substrate preference
and growth requirements, the composition and structure of
the digesta largely influences GIT microbiome (24). It follows
that, microbiome profile and metabolic function is partly
reflective of feed composition (34). It is therefore plausible that
manipulating diet digestibility will influence GIT microbiome
(24). Furthermore, fiber degrading enzymes could release
hydrolysis products “prebiotic” that can modulate intestinal
microbiota (24, 35–37).

WHOLE YEAST AND DERIVATIVES

Yeasts are unicellular, 5–10µm in size, eukaryotic
microorganisms belonging to fungi kingdom (38). Yeasts
are important in many complex ecosystems and are involved in
symbiotic, mutualistic, parasitic, and competitive interactions
with other microorganisms. Since first observation by A.
van Leeuwenhoek in 1680 and discovery of their function in
fermentation by Louis Pasteur in 1850s, humans have exploited
yeast for food and beverage production among many other
applications for eons (39). Interestingly, although, there are more
than 1,000 known species of yeast, very few are commercially
exploited (40). The majority of yeast species are neither harmful
nor beneficial, and few are known to be pathogenic to humans
and/or animals (40). The genus Saccharomyces has ∼20 species
that are of significant industrial importance e.g., ethanol,
bread, single cell protein, and vitamin production (40). The
annual global production of Saccharomyces cerevisiae has
been estimated to exceeds production of all other industrial
microorganisms (41). Candida utilis (formerly classified as
Torulopsis utilis) and commercially known as “Torula Yeast”
is unique as it utilizes pentose sugars, making it very useful
in processing wood pulp to paper. Another important yeast
is Kluyveromyces marxianus or the “whey yeast” for dairy
processing. Although commercial exploitation of yeast is
largely on traditional fermentation processes, advancement
in molecular biology has opened tremendous opportunities
for developing yeast strains for diverse applications. For
example, Komagataella (Pichia) pastoris, S. cerevisiae, Ogataea
(Hansenula) polymorpha, for the heterologous production of
proteins (40–42).

There are many yeast associated feed ingredients and feed
additives that are produced, marketed, and applied in animal
agriculture around the world (43). Major feed ingredients such as
distillers’ grains with solubles (DDGS), brewers yeast, whey yeast,
and bakery co-products are derived from yeast fermentation
processes (44, 45). Yeasts are used as rich sources of protein,
minerals, vitamins (particularly B vitamins), and other nutrients
for humans and animals. Production of single cell protein from
yeast has been suggested to have tremendous advantages relative
to plant, animal, and other microbial sources of protein because
of their rapid growth rate on a wide variety of substrates,
including industrial and agricultural waste (46). Moreover, the
relatively large cell size and flocculation abilities of yeasts makes
them easier to harvest than bacteria in fermentation media
(46). Other speciality yeast products include yeast selenium and
Phaffia rhodozyma yeast that improves flesh color in salmon
and trout (43). Nutritional yeasts and products are used in feed
industry as sources of amino acids and micronutrients (43).
However, the utility of yeast products in animal agriculture
has evolved to exploit their functional attributes. Of particular
interest are the functional components of cell contents such
as peptides, enzymes, nucleotides and cell wall constituents
such as β-glucans, glycoproteins, mannans, and chitin (47, 48).
Subsequent sections will briefly describe the functional attributes
of yeast and derivatives that have been shown to influence health
and immune status in poultry.

Live Whole Yeast
Many yeast species are recognized safe by many regulatory
authorities such as Qualified Presumption of Safety status
assigned by the European Food Safety Authority, the Association
of American Feed Control Officials and Canadian Food
Inspection Agency. However, in general, most commercial
probiotic feed additives for poultry are of bacterial preparations
e.g., (49–53). The few non-bacterial (yeast or fungal) probiotics
includes Aspergillus oryzae (54, 55), Candida pintolopesii
(54), Candida saitoana, Saccharomyces bourlardii (56),
and S. cerevisiae (57). Arguably, yeast-based probiotics are
indispensable in ruminant nutrition for their effectiveness in
modulating rumen microbiome (58, 59). Active dry yeast is
one of the most common viable yeast used as a probiotic in
livestock production. Yeast probiotics that are used in animal
agriculture as feed additive products typically contain carrier
materials such as limestone, rice hulls and/or distillers solubles.
These products typically contain 5 × 109 colony forming units
per gram representing 20–25% of the CFU’s of pure, active dry
yeast (43). Commercial yeast-based probiotics are primarily
manufactured in dry form and concerns have been raised over
their stability in feed manufacturing processes (55, 60–62). For
example, feed supplemented with active yeast cells was subjected
to pelleting (82◦C) or extrusion (72◦C for 31s) (61). Pelleting
did not affect total yeast counts but viable yeast numbers were
reduced 10-fold. However, extrusion reduced both total and
viable yeast counts. Majority of poultry diets are subjected
to rigorous feed processing including particle size reduction
and hydrothermal processing to improve feed efficiency and
hygiene (26). Suggesting that survival of unprotected yeast
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cells would be expected to be low in poultry feed subjected to
hydrothermal processing.

Yeast Derivatives
Yeast derivatives are collectively referred to as yeast cultures and
are largely composed of a combination of yeast biomass and
fermentation products produced in conditioned fermentation
processes. Traces of viable residual yeast cells may also be
present. Their production entails inoculation of specific culture
media with live yeast cells and subsequent fermentation under
specific conditions, upon which the entire fermented media is
subsequently dried. The harvested mass is often formulated into
feed additive or subjected to downstream processing to produce
speciality products. Production of speciality products is seen as a
key differentiator of many yeasts based functional feed additives
available to the poultry industry. As heterotrophic organisms,
energy and carbon metabolism are intimately interconnected
giving yeast cells ability to produce wide variety of derivatives
depending on the composition of the fermentation media and
the fermentation conditions (63). It follows that yeast culture
production can be manipulated to produce unique feed additives
that contain single or combination of derivatives beneficial to
animal nutrition and health.

Enzymes
Enzymes were first discovered by French chemist Anselme
Payen in 1833 (64). Decades later, Louis Pasteur concluded
that fermentation was correlated with the life and organization
of the yeast cells but not with the cell death (65). It can
then be argued that yeasts were the pioneer organisms for
enzymes production, however, the feed market is dominated
by bacteria and filamentous fungi derived enzymes (21, 24,
25, 37). This is mainly because non-yeast microbial expression
system are advantageous in terms of certain product and
process developments (66). However, with advancement in
biotechnology some yeasts for example, K. (Pichia) pastoris,
S. cerevisiae, O. (Hansenula) polymorpha, and certain other
yeast species have been developed for industrial production of
enzymes and proteins (66–68). These refined yeast proteins are
however, applied in the production of specialized chemicals such
as pharmaceutical intermediates (69).

Nucleotides
The total nucleic acids concentration in whole yeast ranges
from 3 to 12% dry cell weight (70, 71). Yeast are also rich in
endogenous nucleases and proteases that can degrade nucleic
acids, DNA, and RNA into nucleotides through autolysis (71, 72).
By controlling pH, temperature, and duration as well as use
of additives such as salt and exogenous enzymes, the yeast cell
autolysis can be an optimized and standardized for consistent
product quality (73). These modifications are increasingly being
used to produce yeast nucleotide products for various industrial
application. For example, under normal autolysis conditions, the
RNA is mainly degraded to three primary nucleotides, however,
under controlled enzymatic hydrolysis, 5 prime nucleotides of
guanine, adenine, cytosine and uracil are produced (73, 74).

Cell Wall (YCW) Components
The YCW represents about 15 to 20% of yeast dry weight and
are rich in β-glucans and mannans as well as traces of chitin.
Structurally, YCW is made up of inner layer of insoluble β-
glucans and mannans, middle layer of soluble β-glucans, and the
external layer of glycoprotein (75). However, it should be noted
these layers are not discrete but rather form complex structures
that are recalcitrant to breakdown (75). β-1,3 glucans with β-
1,6 branch linkages are the primary polysaccharide component
in YCW and have been shown to display immune-modulating
effects (76). In this context, there is increasing interest in refined
extraction of β-glucans through mechanical (e.g., bead milling,
sonication, high-pressure homogenization) and non-mechanical
(e.g., thermolysis, osmotic shock, chemical, and enzymatic)
methods (75, 77, 78). Mannans consist of α-1,6 bonds with side
chains of mannose in α-1,2 bonds (79).

UTILITY OF FEED ENZYMES AND YEAST
DERIVATIVES IN MITIGATING NEGATIVE
EFFECTS OF COCCIDIOSIS

Experimental Challenge Models
Production losses, increased mortality, reduced animal welfare
and increased risk of contamination of poultry products due
to enteric diseases is of great concern to the poultry industry
(9, 10, 12, 13). There are many research investigations that used
enteric pathogen challenge models to examine effectiveness of a
feed additive or dietary strategy (80, 81). Such an in vivo model
allows evaluation of a given feed additive in the context of an
infectious pathogenic agent being part of the gastrointestinal
ecosystem. However, in terms of identifying the most influential
predisposing factors, a reliable and reproducible infection model
is critical. Coccidia infection with live sporulated oocysts via
oral gavage (crop) or litter contamination is commonly used
in experimental coccidiosis models and is reasonably reliable
in general (82). However, there are variation in experimental
approaches related to dosing, species specification, timing and
composition (wild-type or attenuated) for vaccination overdose
and co-infection with Clostridium perfringen among others (82,
83). For nutrition research, it is imperative to have a coccidiosis
model that is not only reproducible but target sections of the
gut that have significant ramifications on nutrient digestion
and absorption.

Our laboratory has developed a model to examine effects of
coccidiosis on digestion and absorptive capacities and subsequent
effects on GIT ecology. The rationale is to use this infection
model to test dietary strategies during acute phase and recovery
phases (84–88). The general approach is to challenge sub-samples
of birds in a pen with high dose (100,000 E. acervullina and
60,000 E. maxima sporulated oocysts) to generate macroscopic
lesions and the rest of birds with a low dose (25,000 E. acervulina
and 5,000 E. maxima sporulated oocysts) in order to examine
the consequences of altered nutrient digestion and absorption.
Briefly, Eimeria parasites are propagated and purified according
to Shirley (89) and dose is based on titration trials at Dr.
John Barta’s parasitology laboratory (University of Guelph). As
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FIGURE 1 | Intestinal lesion scores in broiler chicks challenged with Eimeria.

All birds were challenged with 100,000 E. acervullina and 60,000 E. maxima

sporulated oocysts on day 10 of age with exception of Kim et al. (84) in which

case birds were challenged on day 5. Birds were necropsied 5 days

post-challenge to assess lesion scores as described by Price et al. (90) using a

scale of 0 (none) to 4 [high; Johnson and Reid (91)].

shown in Figure 1, we have been able to reproduce consistent
lesion scores in alignment with the biology of the challenge
organisms, indicating high reproducibility of the challenge
model. Eimeria destruction of intestinal lining results in poor
growth performance, loose excreta and death in extreme cases
(5, 14). The failure of parasitized animals to grow is partially
due to loss of appetite and nutrient malabsorption (84, 86, 92–
94). Structural and functional damages to the small intestine are
indicated by the histomorphology, digestive enzymes, nutrients
transporters, and nutrient retention in our model (84, 86, 87).
Moreover, E. acervulina and E. maxima infection down regulates
expression of digestive enzymes and nutrient transporters (84,
87, 93–95). Subsequent sections will evaluate literature where
coccidiosis challenge was used to evaluate impact feed enzymes
and yeast derivatives in modulating the expression of coccidiosis.

UTILITY OF FEED ENZYMES IN
MODULATING COCCIDIOSIS IN BROILERS

Coccidiosis effectively reduces nutrients digestion and absorption
linked to anorexia in concurrence with morphological and
functional intestinal damage (Figure 2) (84, 86, 87). Increased
mucogenesis and enterocyte turnover (84), as well as post-
absorptive metabolic changes and immune system activation,
likely influence nutrient needs of broilers (9). For example,
Eimeria infection increased proliferation of jejunal mucosal cells
by 40% in concomitant with increased crypt depth indicating
the birds prioritized gut development following intestinal insult
(84). An increase in cell proliferation was also observed in
the crypt base of Eimeria challenged chickens (96). In general,
maintenance energy requirement increases in proportion to
metabolic body size as the bird mature. However, it has been
shown that coccidiosis markedly increased maintenance energy
requirement. For example, Leung et al. (86), observed a 16%
decrease in energy allocated to body weight gain (measured
in caloric efficiency) in a 35-day old bird challenged with

E. acervulina and E. Maxima at day 10 of age. The energy
needed for immunity development was 5% in healthy birds
compared to 28% for coccidiosis challenged birds and this cost
became disproportionately elevated as the birds became heavier
aged (97).

With diminution of digestive capacity and elevated
inefficiency in energy utilization in coccidiosis afflicted birds;
it is plausible that supplemental exogenous feed enzymes could
be beneficial. However, few studies investigated the impact of
supplementation of feed enzymes to complement endogenous
enzymes (e.g., amylase, protease, lipase) in coccidiosis challenged
birds. Dietary supplementation with a protease reduced negative
impact of a coccidiosis infection (E. acervulina, E. maxima, and
E. tenella) on body weight gain in broilers but had no effects
on lesions and oocyst shedding (98). In contrast, Parker et
al. (99) showed that an enzyme blend (amylase, protease, and
xylanase) fed to coccidiosis vaccinated broiler chicks had no
effect on ileal nutrient digestibility or growth performance but
reduced lesion scores. E. acervulina and E. maxima associated
intestinal damage have been linked with adverse effects on
bone health mainly because they infect duodenum and upper
jejunum, the major sites of minerals absorption (85, 100, 101).
In this context, the role of supplemental phytase on mineral
utilization has also been investigated in coccidia infection
model (102, 103). The peculiarity is that the pH of duodenum
of healthy birds is 6.0 or greater but is reduced to <5 in
birds infected with coccidiosis (104). Lower duodenal pH is
thought to enhance efficacy of phytase linked to optima pH
range (2.5 and 5.5) for effective degradation of phytate (105).
Indeed, phytase increased growth performance and tibia ash
concentration in the presence or absence of E. acervulina
(102). Coccidiosis reduced growth performance and absorption
of calcium and phosphorous resulting in reduced bone
strength, however, phytase supplementation did not mitigate
negative effects of coccidiosis on phosphorous utilization
(106). Supplementation of phytase, protease, and xylanase
singly or in combination did not mitigate reduction in growth
performance in broiler chickens exposed to a mixed coccidia
vaccine (107).

It is important to consider relationship between Eimeria
and Clostridium perfringens in evaluation of the role of feed
enzymes in coccidiosis control. Eimeria infection increases
endogenous losses of plasma proteins and mucin that nourishes
C. perfringens (9). The large flow of nitrogenous materials
in the ceca promotes production of toxic metabolites for
example, thiols, amines, ammonia, and indoles (108), but
most importantly high ceca digesta pH promotes proliferation
of pathogens such as C. perfringens (9, 12). Feed enzymes
can modulate GIT ecology reducing undigested nutrients and
production of oligosaccharides with potential prebiotic effects
(Figure 2) (24). For example, enzyme blend (amylase, protease,
and xylanase) supplementation supported gut ecology that
reduced intestinal lesion scores particularly in the ceca linked
to altered microbial profiles in coccidia-vaccinated broilers
(99). The authors interpreted that, although the enzyme blend
did not influence ileal digestibility of nutrients it altered the
characteristics of digesta such that ceca microbiota communities
were altered. Phytase supplementation had no effects on oocyst
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FIGURE 2 | Framework for targets amenable by yeast derivatives and feed enzymes in mitigating negative effects of coccidiosis.

shedding in naïve and coccidia vaccinated broilers subjected
to Eimeria challenge but it reduced lesion scores (106). The
effect of supplemental enzymes on lesion scores in coccidiosis
afflicted broilers has been attributed to production of volatile
fatty acids (34). An elegant study by Ruff et al. demonstrated that
coccidiosis lowered luminal small intestine pH but increased ceca
pH (109). It is therefore relevant that supplemental feed enzymes
have been shown to increase ceca concentration of volatile
fatty acids such as acetic and butyric acids with concomitant
reduction of ceca digesta pH (29). Acetic acid was shown
to be commensurate to anticoccidial drug (Amprolium) in
suppressing coccidiosis associated negative effects on growth
performance (110). Collectively, these studies suggested that
supplemental enzymes somewhat affect survivability or extent of
intestinal damage.

UTILITY OF YEAST PROBIOTICS IN
MODULATING COCCIDIOSIS IN BROILERS

There are limited studies on yeast probiotic (e.g., S. boulardii)
supplementation in broilers (111, 112). The common approach
is a blend of yeast probiotics with bacterial cultures on the
premise that beneficial effects of probiotics are genus, species and
strain specific and use of multi-strain and multi-species might
be more effective than mono-strain probiotics (54, 55). Indeed,
some investigations have shown that co-supplementing yeast
and bacterial probiotics enhanced their survival and growth
(113, 114). Moreover, aggregation of lactobacillus with yeasts
enhanced tolerance in gastric or intestinal juices (115). For
example, a supplement containing Lactobacillus acidophilus,
Bacillus subtilis, S. cerevisiae, and A. oryzae improved live
body weight gain linked to enhanced nutrients utilization

and intestinal microbial modulation (55). A combination of
yeast and (L. acidophilus and Streptococcus faecium) enhanced
growth performance in broilers through increased digestion
and absorption of nutrients (116). Lactobacillus fermentum and
S. cerevisiae was shown to modulate intestinal immune system
without negative effects on growth performance in broilers (57).
In contrast, a blend (Lactobacillus plantarum, Lactobacillus
delbrueckii ssp. bulgaricus, L. acidophilus, Lactobacillus
rhamnosus, Bifidobacterium bifidum, Streptococcus salivarius
ssp. thermophilus, Enterococcus faecium, A. oryzae, and Candida
pintolepesii) did not ameliorate negative effects of delayed
feed access in newly hatched chicks on growth performance
and gastrointestinal physiology (54). A challenge of evaluating
studies of probiotic blends is that experimental design does not
always incorporate single strains to characterize responses of
each strain vs. combination.

Saccharomyces cerevisiae var. boulardii is one of the most
researched non-bacterial probiotics with proven benefits in
various human gastrointestinal disease models (117). This yeast
was originally isolated from litchi fruit in Indochina by Henri
Boulard in 1920 and has been used for treatment of intestinal
diseases in children and adults since the 1950’s (117, 118).
Several mechanisms have been suggested as to the broad health-
promoting effects of consuming yeast probiotics in humans and
span from local general trophic effects to action on both innate
and/or adaptive immunity (117, 119, 120). Clinical trials included
mitigation of antibiotic-associated diarrhea; Clostridium difficile

diarrhea, irritable bowel syndrome and inflammatory bowel
diseases (117, 121). Folignè et al. (117) tested six yeast strains
for anti-inflammatory potential and demonstrated that yeast-
mediated protection seems to take place predominantly at
the level of the intestinal mucosa. The authors indicated that
prophylactic reinforcement and therapeutic restoration of barrier
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function by changing the luminal environment stimulated the
mucosal barrier. This work extended previous observations
that showed yeast probiotics enhanced epithelial integrity and
reduced bacterial translocation in various sepsis models (122,
123). The mode of action of yeasts in controlling enteric
diseases have not been elucidated but have been associated with
release of antimicrobial peptides, acidification of surrounding
environment, alteration of inflammatory and immune responses
or destruction of toxic factors (63).

Although the use of probiotic yeast to control enteric diseases
in humans has been studied extensively, little attention has been
given to enteric diseases of farm animals. In one study, broiler
chicks were fed 1 or 100 g S. boulardii/kg feed and challengedwith
S. typhimurium (124). The authors observed 70% colonization
in the ceca of control bird vs. 20 or 5% colonization in birds
fed 1 or 100 g, respectively. One innovative study investigated
the anticoccidial activity of a compound (s) isolated from
Meyerozyma guilliermondii yeast culture (125). The compounds
were shown to have anticoccidial activity against E. tenella
oocysts under in vitro simulation linked to reduced oocysts
viability. In other investigations, S. cerevisiae was investigated as
oral Eimeria vaccine delivery vehicle commensurate to previous
successful delivery of oral viral vaccines (126, 127). In this
context, a microneme protein (EtMic2) of E. tenella that is
intimately involved in host-cell invasion (128) was expressed
on the surface of live S. cerevisiae cells (129). The whole
yeast cells without or with EtMic2 on their surfaces was used
as a live oral vaccine against E. tenella challenge in pullets.
Significantly lower oocyst shedding, and lesion scores were
observed in birds receiving EtMic2 yeast relative to the control
or the birds receiving yeast without EtMic2 protein (129). The
EtMic2 group also showed higher weight gains. In general, the
utility of coccidiosis vaccination in the industry mainly relies on
development of cellular immunity for protection against later
Eimeria exposure (130). However, immunodominant surface
antigens identified in E. acervulina and E. maxima have been
shown to elicit measurable antibody responses particularly
production of IgA in addition to stimulating cell-mediated
immunity (131). Therefore, there is potential for antibodies
(raised by live immunization or against purified stage-specific
Eimeria antigens) to inhibit parasite development (128, 129, 132).
Field applications of anticoccidial compounds secreted by yeasts
and/or utility of yeast to deliver vaccines need to be investigated
for commercial application as complement for anticoccidial
drugs and/or as adjuvant for cocci vaccines.

UTILITY OF NUCLEOTIDE RICH YEAST
EXTRACTS IN MODULATING
COCCIDIOSIS IN BROILERS

As basic units of the DNA and RNA, nucleotides are present in all
living cells (133, 134). With adequate supply of energy and amino
acids, nucleotides can be synthesized de novo. However, they may
become conditionally essential during illness, periods of limited
feed intake or rapid growth (133, 134). These conditions are
commensurate to gastrointestinal damage occasioned by Eimeria

infection (9). Evaluations of nucleotide rich yeast extracts on
growth, feed efficiency and intestinal development and health has
been reported in broiler chickens (86, 87, 135, 136). However,
there are limited studies assessing the effects of dietary nucleotide
supplementation on development of immune organs in broilers
challenged with Eimeria. Human infants fed nucleotides were
shown to have increased production of IgA (137) linked to the
requirement of lymphocytes for exogenous nucleotides (138).
Moreover, dietary nucleotides supplementation in infants have
been shown to affect other immune functions such as the
activation of NK cells and macrophages, the production of
splenic cytokines, and the number of antibody secreting cells
(138). Leung et al. (87) evaluated the effect of supplementation
of nucleotide rich yeast nucleotide supplement on growth
performance, intestinal histomorphology, expression of select
intestinal genes and microbial activity during the acute
phase of Eimeria challenge (7 d post-challenge). Supplemental
nucleotides improved jejunal histomorphology and expression
of the nutrient transporter cationic amino acid transporter 1
(CAT1). Interestingly, the impact of nucleotides and Eimeria
were independent on microbiota community but interactive on
microbial activity. Instructively, there was a trend for decreasing
alpha diversity with nucleotide supplementation commensurate
to that seen with provision of antimicrobials (139). These
changes on alpha diversity and in microbiota populations may
have long-term impacts or may be further amplified with time.
Effects could also cascade down into production of volatile
fatty acids and change the cecal pH and subsequently factors
such as histomorphology and immune system development. In
further studies, Leung et al. (86) fed broiler chickens nucleotides
rich yeast extract and challenged them with Eimeria on d
10 post-hatch. The concentration of plasma and mucosal IgA
and immune organ weights (bursa, spleen, and thymus) were
determined at d 5 and 25 post-challenge. There were no effects
on d 5 post-challenge measurements, however, birds fed yeast
nucleotides showed heavier bursa on d 25 post-challenge. It
seems that nucleotides supplementation can attenuate some of
the negative effects of Eimeria, however, further investigations are
warranted to determine the optimal supplementation period and
concentration and the effect of individual nucleotides.

UTILITY OF YEAST CELL WALL (YCW)
COMPONENTS IN MODULATING
COCCIDIOSIS IN BROILERS

Yeast cell wall components (β-glucans and mannans) have been
linked to modulation of immune system (140, 141), binding to
toxins, and to pathogenic cells (142), and interactions with gut
constituents (143, 144). Hooge (145), reported a meta-analyses
of S. cerevisiae var. boulardii cell wall components supplemented
diets vs. negative control (antibiotic free, 29 experiments) or
antibiotic supplemented positive control (antimicrobial growth
promoter, 21 experiments) diets. The meta-analyses revealed
small magnitude (<2% improvement vs. negative control) but
significant impact of YCW on body weight gain and feed
conversion ratio but no difference between positive control (145).
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However, birds fed YCW showed 21.4 and 18.1% lower mortality
compared with negative and positive control, respectively. Yeast
cell wall products can serve as microbe-associated molecular
patterns and modulate the expression of pattern recognition
receptors (PRRS) (136, 146). Indeed, supplemental YCW showed
commensurate growth performance and livability responses to
zinc bacitracin and Salinomycin in a Eimeria and C. perfringens
co-infection model (147). Chicken macrophages are involved the
adaptive immune responses through interaction with Eimeria in
the intestinal mucosa (148). Immunodominant surface antigens
identified in E. acervulina and E. maxima have been shown
to elicit measurable antibody responses with IgA being the
most important isotype (131). Thus, although E. acervulina
and E. maxima challenge reduced jejunal mucosa IgA by 33%
at 5 days post-challenge, the concentration was increased by
16% at 25 days post-challenge (86). A further study indicated
that E. acervulina and E. maxima challenge increased jejunal
IgA by 64% at 5 days post-challenge (149). Although specific
mechanisms of action intestinal IgA on coccidial infections
are still subject of investigations, it has been speculated that
IgA reduces development of sporozoites or merozoites and
prevent host cell invasion (150, 151). The relevance is that YCW
components are known to be immunomodulators and it has been
demonstrated that that dietary supplementation increases local
mucosal IgA secretions as well as cellular and humoral immune
responses (Figure 2) (152).

It is plausible YCW components can modulate cellular and
humoral mediated immune responses against coccidial infections
(130). Dietary YCW (1 or 10 g/kg) reduced severity of infection
and oocyst shedding from a single E. tenella or mixture of E.
acervulina, E. maxima and E. tenella challenge in broiler chickens
(153, 154). Dietary supplementation with 5 g/kg of autolyzed S.
cerevisiae derivatives stimulated intestinal mucosal IgA secretion,
humoral, and cell-mediated immune responses, and reduced
oocysts shedding in broilers subjected to coccidia vaccination
(152). However, YCW (0.5 g/kg) fed singly or in combination
with tannin (0.5 g/kg) did not reduced severity of infection with
a mixture of E. acervulina, E. maxima, and E. tenella in broilers.
Broilers fed a supplement (1–2 g/kg) containing whole dead
yeast exhibited decrease in oocysts shedding as well as increased
macrophage nitric oxide production and inflammatory cytokine
production (155). A refined mixture of YCW and β-glucans and
a crude yeast extract were tested in broilers subjected to 10 times
Coccivac B vaccine (156). Although both products had no impact
on growth performance relative to the control, birds fed refined
mixture had lower expression of IL-6 in the ileal mucosa and
those fed crude yeast showed improved serum immunoglobulin
G (156). These contradictory results are possibly linked to the
differences in YCW inclusion in the feed and doses of Eimeria
spp. inoculation.

Investigations in developmental programming has added
to our understanding of the maternal offspring interface and
continues to raise important questions regarding nutritional
management of breeding animals (157, 158). In avian species,
immuno-competence development is initiated during the
embryogenesis (159). Protective role of maternal antibodies is
critical because of precocial nature of avian species (33). The

breeder antibodies are deposited in the egg and continue to
function in early life of chicks (33). The role of maternal
immunity on coccidial infections in chicks has been investigated
(160, 161). For example, infection of breeder hens with Eimeria
maxima induced production of parasite-specific antibodies
which were transferred to chicks (160). These antibodies
were highly protective, mediating up to a 97% reduction in
oocyst shedding in challenged hatchlings. We recently showed
that feeding broiler breeders yeast product rich in enzyme
hydrolyzed cell wall components increased deposition of IgA in
the hatching egg yolks (149). The data further indicated that
feeding hydrolyzed yeast cell wall to broiler breeders and to
the chicks improved jejunal histomorphology independent of
Eimeria challenge (149).

FURTHER REFINEMENT AND FUTURE
DIRECTIONS

The global poultry production has tripled to an annual
production of 90 million tons of chicken meat and 1.1 trillion
eggs (http://www.fao.org/faostat/) in the last two decades.
Further expansion is expected in response to burgeoning
human population. The sector is also under pressure to
produce food products in ways that are ethical, environmentally
sustainable, and wholesome. For example, indiscriminate use
of antibiotics is a topical global issue with increasing emphasis
on alternative strategies for effective prevention and control
of enteric pathogens. Herein is an overview of coccidiosis,
its implications on intestinal health and function and targets
amenable to modulation by feed enzymes and yeast derivatives
(Figure 2). To a large extent the poultry industry has widely
accepted the use of feed enzymes to improve feed digestion.
It is plausible that supplemental exogenous feed enzymes
could counteract diminution of digestive capacity in coccidiosis
afflicted birds. Feed enzymes could modulate ceca ecology
by reducing the flow of undigested nutrients and promoting
acidic fermentation. Effectively creating conditions that reduce
survivability of Eimeria and C. perfringens proliferation. Yeast
and yeast derivatives have been associated with alteration of
inflammatory and immune responses. There is tremendous
opportunity for developing new generation of yeast derivatives
with optimized features in terms of interaction with Eimeria
and modulation of the host immune system. The protective
role of maternal antibodies is of interest because the antibodies
deposited in the egg and the levels transferred to the offspring are
directly related to the circulating levels of these immunoglobulin
in the dam. More research is needed to refine the relationship
between composition and function of yeast derivatives with a
view of selecting new generation of yeast fractions with optimized
characteristics for application in broiler breeders. Like many feed
additives evaluations, inconsistencies of responses are often a
major concern. Utility of experimental disease challenge model
can help to mimicry field conditions; however, correct dosing of
active ingredient is critical. Although suppliers and regulatory
agencies have advanced use of feed enzymes to the extent dosage
and recovery in the feed can be determined, there is paucity
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on analytics for quantifying yeast derivatives in-feed which is
critical for accurate dosing. Accurate dosing is essential for
achieving desired benefits and preventing excessive feeding of
biologically active components.Moreover, feed additives research
rarely considers commercial broiler feed contains a range of
additives. Perhaps, future feed additives investigations should
consider co-supplementation of to document responses and
potential synergies.
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