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Abstract

As one of causal inference methodologies, the inverse probability weighting (IPW) method has 

been utilized to address confounding and account for missing data when subjects with missing 
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data cannot be included in a primary analysis. The transdisciplinary field of molecular 

pathological epidemiology (MPE) integrates molecular pathological and epidemiological methods, 

and takes advantages of improved understanding of pathogenesis to generate stronger biological 

evidence of causality and optimize strategies for precision medicine and prevention. Disease 

subtyping based on biomarker analysis of biospecimens is essential in MPE research. However, 

there are nearly always cases that lack subtype information due to the unavailability or 

insufficiency of biospecimens. To address this missing subtype data issue, we incorporated inverse 

probability weights into Cox proportional cause-specific hazards regression. The weight was 

inverse of the probability of biomarker data availability estimated based on a model for biomarker 

data availability status. The strategy was illustrated in two example studies; each assessed alcohol 

intake or family history of colorectal cancer in relation to the risk of developing colorectal 

carcinoma subtypes classified by tumor microsatellite instability (MSI) status, using a prospective 

cohort study, the Nurses’ Health Study. Logistic regression was used to estimate the probability of 

MSI data availability for each cancer case with covariates of clinical features and family history of 

colorectal cancer. This application of IPW can reduce selection bias caused by nonrandom 

variation in biospecimen data availability. The integration of causal inference methods into the 

MPE approach will likely have substantial potentials to advance the field of epidemiology.

Keywords

etiologic heterogeneity; marginal structural model; missing at random; neoplasm; unique disease 
principle; selection bias

Introduction

Epidemiological research often aims to detect and quantify the association between an 

exposure and a disease, where the disease designation (name) adopted in clinical practice is 

used to gather individuals with similar health problems and presumably similar etiologies. 

With recent advances of molecular pathology, the disease classification system incorporates 

our improved knowledge on pathogenic mechanisms, thus allowing for better management 

of each individual. The field of molecular pathological epidemiology (MPE) integrates 

molecular pathological and epidemiological methods, and takes advantages of improved 

understanding of pathogenesis to generate stronger biological evidence of causality and 

optimize strategies for individualized prevention and treatment. MPE research typically 

involves studying the association of an exposure with specific subtypes of disease (most 

commonly, neoplastic disease), thereby clarifying the differential effects of the exposure on 

the development and progression of different disease subtypes [1–6]. For example, beyond 

epidemiological evidence for cancer preventive effects of aspirin [7–12], findings from MPE 

studies suggest its specific effect for certain tumor subtypes defined by tissue biomarkers 

[13–16]. MPE research can contribute to better understanding of the relationship between 

exposures and molecular pathology, leading to individualized prevention and treatment 

strategies [1–5].

To characterize the pathogenic heterogeneity, disease subtyping based on biomarker analysis 

of biospecimens is essential in MPE research. In practice, however, nearly always there exist 
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disease cases with unavailable biomarker data. The typical strategy for dealing with the 

problem of missing subtype data is to perform a complete case analysis (CCA), where only 

cases with known subtype data are treated as outcome events and cases with missing subtype 

data are treated as censored at the event time. In the context of time-to-disease subtype 

analysis, the validity of CCA relies on the strong assumption that, among cases, the 

probability of missing subtype data is independent of subtype status, variables available only 

among cases, time of disease diagnosis and any other time-dependent covariates.

The missing at random (MAR) assumption usually means that, given covariates measured 

for all study participants, the probability of missing subtype data is independent of subtype 

status. Here we extend the MAR assumption such that the probability of missing subtype 

may depend on, in addition to covariates measured for all study participants, covariates that 

are defined and measured for cases only. In the scenarios of MAR, CCA may result in biased 

association estimates in MPE studies [17, 18]; this is partially because covariates measured 

for cases only cannot be incorporated into the model for the disease outcome as independent 

variables.

The causal inference field in epidemiology has advanced considerably, and developed 

various methodologies including inverse probability weighting (IPW) method, which is 

another well-established technique commonly used to deal with missing data [19–21]. In the 

IPW method, a statistical model for the missingness as an outcome is constructed. Then, 

each case with available subtype data is weighted according to the inverse of (i.e., 1 divided 

by) the probability of non-missing. This article aims to illustrate the use of IPW in assessing 

differential associations of exposures with disease subtypes in the presence of missing 

subtype data. We integrate IPW into a Cox proportional cause-specific hazards regression 

for competing risks, to address selection bias due to nonrandom availability of subtype data 

in MPE research [22–24]. A user-friendly SAS macro to implement this IPW method for 

outcome subtype analysis is publicly available.

Methods

Analysis strategy

We use colorectal cancer as a disease example; nonetheless, the IPW method for outcome 

subtype analysis can be applied to non-neoplastic diseases. In the context of MPE, this IPW 

method consists of two stages. In the first stage, the subtype data availability is modeled 

using logistic regression with the binary missing subtype status (subtype data available vs. 

missing) as the outcome variable, and covariates (including epidemiological, clinical, and 

pathological factors) as predictor variables. The IPW method requires that, conditional on 

the variables included in the logistic regression model, the probability of missing subtype 

data among cases is independent of subtype. The covariates included in the logistic 

regression model can be measured in the entire cohort or only among the disease cases. To 

make this assumption reasonable, it may be useful to include factors potentially associated 

with tumor subtype (e.g., disease stage, tumor location, tumor differentiation, age at 

diagnosis, etc.) [25–27] in the logistic regression model. Weights equal to the inverse of the 

probabilities of non-missing subtype estimated by logistic regression models are then 

incorporated into the second stage competing risks Cox proportional hazards regression 
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model. Figure 1a illustrates the causal assumptions in our analysis, for a time-fixed scenario, 

and shows why in the MPE subtype analysis, adjusting for covariates in the model would not 

suffice to eliminate the selection bias. The figure describes a competing risks scenario, 

where Y1 and Y2 are binary indicators representing the statuses (1=presence; 0=absence) of 

different subtypes (e.g., MSI-high tumor and non-MSI-high tumor), X represents the 

exposure, Z represents confounders available for all study participants, U represents 

unobserved variables, Q represents variables only available among cases, and O is a binary 

indicator representing the availability of subtype data. When studying the effect of the 

exposure X on Y1, the analysis is conditioned on Y2 = 0. Causal interpretation of competing 

risks was previously discussed elsewhere [28]. Conditioning on O = 1, i.e., on tumor subtype 

availability, opens three paths. The first two are X → O ← Y1 and X → O ← Q ← U → 
Y1, and the third is X → Y2 ← U → Q → O ← Y1. The third path is unique in the 

settings of competing risks because of conditioning on Y2 = 0. To eliminate the selection 

bias, one can apply IPW for selection bias, with the weights being the inverse of the 

probabilities P (O = 1|X, Q). In the pseudo-population created by the weights, there are no 

arrows from X or Q to O, and hence no selection bias is introduced when conditioning on O 
(Figure 1b). The same issues arise when studying the effect of X on Y2.

We now turn to describe MPE analysis with time-to-disease data, before incorporating IPW. 

Subtype analysis concerning time-to-disease diagnosis when the disease is partitioned into K 
subtypes is commonly performed using the Cox model for the subtype-specific hazard 

function [22, 23, 29]

λk(t; Xi(t), Zi(t)) = λ0k(t)exp [βkXi(t) + γk′ Zi(t)],

where λk (t) and λ0k (t) are the incidence rate and baseline incidence rate, respectively, at 

age t for disease of subtype k, i refers to individual, X and Z are possibly time-varying 

exposure of interest and potential confounders, respectively, exp (βk) represents the hazard 

ratio (HR) quantifying the exposure-subtype k association, and γk and Z are column vectors. 

For notational simplicity, we assume X is a scalar here; the method is valid for a vector- 

valued exposure. This model is also known as the competing risks Cox model [24, 29, 30]. 

Often when performing MPE analysis using this framework, the interest lies in whether X is 

associated with any, some, or all of the disease subtypes (in the context of the above 

equation, whether βk ≠ 0 for any k). Estimation of each βk is also of interest, as it gives 

information on the magnitude of the association. A second goal, often of equal importance, 

is to determine whether the association between X and the disease is the same across 

subtypes (whether β1 = β2 = ⋯ = βk). The parameters of interest, βk, k = 1, …, K, can be 

estimated through fitting a single Cox model including duplicated variables X1i, …, Xki, Z1i, 

…, Zki in the model, stratified by subtypes, on an augmented data set, in which each block 

of person-time is augmented for each subtype and where X1i, …, Xki, Z1i, …, Zki, are 

created corresponding to the K subtypes, with Xki = Xi, Zki = Zi for subtype k and 0 

otherwise, k = 1, …, K. The estimates of βk, k = 1, …, K are available as the estimated 

regression coefficients of Xki, k = 1, …, K. The common effect test for the null hypothesis 

H0: β1 = ⋯ = βK can also be tested in this single run of fitting the Cox model [23]. For 

cohort and nested case-control study designs, the tests and estimation through this data 
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duplication method can be carried out by existing software. For example, this can be 

achieved by combining PROC PHREG in SAS (SAS Institute, Inc., Cary, North Carolina) 

with a data duplication algorithm [23, 30]. Our previous SAS macro %subtype [23] 

implements this method. This macro also works for the constrained model [23], which is the 

Cox model above under the assumption that the coefficients of the potential confounders are 

same across subtypes (i.e., γ1 = γ2 = ⋯ = γk).

IPW begins with fitting of a logistic regression model among the cases for the probability

pi = P(Oi = 1|δi = 1, ti, Xi, Zi, Qi),

where Oi is an indicator that equals 1 if subtype information is available and 0 otherwise, 

and δi is an indicator that equals 1 for cases and 0 for controls. This model includes ti, the 

diagnosis time, the previously defined Xi and Zi, and Qi, a vector of measurements taken 

among the disease cases only, which is typically associated with the subtype and possibility 

with the missing subtype. Following the illustrative Directed Acyclic Graph (DAG) for time-

fixed scenario (Figure 1a), including Qi in the model potentially reduces the bias in 

estimation of hazard ratios if the Qi′s, e.g. the tumor location and stage, are associated with 

the missing status Oi. If Xi and/or Zi are time-varying, they should be evaluated at the time 

points such that Xi and/or Zi at those time points can best predict the missing status, or their 

values can be based on an appropriate metrics summarizing the history of Xi and/or Zi over a 

period of time if the missing status may be related to the history of Xi and/or Zi. Often these 

time points are the last available data on Xi and Zi.

Following the model fitting, an estimated probability p̂i is calculated for each of the 

observations with available subtype data. Standard diagnostic checks [e.g., area under 

receiver-operating characteristic (ROC) curves] can assist in checking the logistic regression 

model. In addition, one can assess the capability of inverse probability weights for selection 

bias in balancing the tumors with and without subtype data, by refitting the same logistic 

regression, while applying weights of 1
pi

 for subtype available tumors and 1
1 − pi

 for subtype 

unavailable tumors. In the pseudo-population created by these weights, there is no 

association between the covariates Qi, Xi, ti and/or Zi and the missing status Oi. Therefore, if 

the weights indeed balance tumors with and without subtype status, the coefficients in the 

weighted logistic regression should be close to zero. We will illustrate this balance check 

approach in our data example.

For the Cox model, the weights differ for controls, cases with known subtypes, and cases 

with missing subtypes. In the counting process data structure, which is commonly used in 

cohort studies to deal with the time-varying covariates and left truncation, for each control, 

the weight equals 1 for all time periods before the control was censored. For each case with 

a known subtype, the weight equals 1 for all time periods before diagnosis, and equals 1
pi

 for 

the period corresponding to the time of diagnosis. For each case without subtype 

information, the weight equals 1 for all time periods before the age of diagnosis, and equals 

0 for the period corresponding to the time of diagnosis. It is possible to extend the described 
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methodology for scenarios where IPW is used to account for missing exposure or missing 

confounders.

Upon calculation of the weights, the competing-risks Cox model is fitted by maximizing the 

following partial likelihood as a function of {βk} and {γk},

L = ∏
k = 1

K
∏

i = 1

n exp  βkXi(ti) + γk′ Zi(ti)

∑ j ∈ Ri
w j(ti) exp  βkX j(ti) + γk′ Z j(ti)

wi(ti)δik

where δik is an indicator that equals 1 if a disease of subtype k was diagnosed for participant 

i, ti is the diagnosis time for the participant, Ri is the risk set at time ti and wi(t) is the weight 

for participant at time with values described above. In SAS, this model can be easily fitted 

by running PROC PHREG on the duplicated dataset described above [23] together with a 

WEIGHT statement. We created a SAS macro for the application of this method which 

invokes the COVS option to get approximately correct standard deviations. Heterogeneity 

testing and an association test can be carried out using a Wald test procedure. The 

implementation of inverse probability weighted analysis is almost as simple as the 

unweighted CCA analysis in SAS.

Illustration of inverse probability weighted MPE analysis

We have previously conducted MPE studies to illustrate the associations between various 

exposures and risk of colorectal cancer subtypes, using the CCA approach. For example, we 

did not observe differential associations between alcohol consumption and risk of colorectal 

cancer subtypes according to microsatellite instability (MSI) status, which is a well-

recognized tumor molecular biomarker of colorectal carcinoma [31]. In contrast, family 

history of colorectal cancer was associated with a greater increase in risk for MSI-high 

colorectal cancer than in non-MSI-high colorectal cancer [32]. Here, we use these examples 

to illustrate the methodology and applicability of the inverse probability weighted data 

duplication-method Cox proportional cause-specific hazards regression in studying disease 

subtype heterogeneity.

Study population

The example data were derived from the Nurses’ Health Study (NHS). Details of the cohort 

study have been previously described [13, 15, 16, 33]. Briefly, 121,701 U.S. registered 

female nurses aged from 30 to 55 years were recruited into the NHS in 1976. Follow-up 

questionnaires were administrated at baseline and every two years thereafter, to collect 

updated lifestyle, medical and other health-related information. Incident colorectal cancer 

cases were ascertained and confirmed, using data from biennial questionnaires, the National 

Death Index, and medical records. Deaths, including lethal unreported colorectal cancer 

cases, were identified through National Death Index and next of kin, and cause of death in 

each case was determined by medical record review. A single pathologist (S.O.) performed a 

centralized review of hematoxylin and eosin stained tissue sections, and recorded 

pathological features in all cases included in the current study. This study was approved by 
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the Institutional Review Board at the Brigham and Women's Hospital and the Harvard T.H. 

Chan School of Public Health.

Assessment of microsatellite instability (MSI)

DNA was extracted from formalin-fixed paraffin-embedded archival tissue of colorectal 

carcinoma and normal colon. The status of MSI was determined by analyzing variability in 

the length of the microsatellite markers from tumor DNA compared to normal DNA. MSI 

status was determined using 10 microsatellite markers: BAT25, BAT26, BAT40, D2S123, 

D5S346, D17S250, D18S55, D18S56, D18S67 and D18S487 [34]. MSI-high was defined as 

the presence of instability in ≥ 30% of the markers, while non-MSI-high was defined as < 

30% unstable markers.

Estimation of probability of observing MSI status

Logistic regression was used to compute the probability of observing MSI status. We 

considered two possible logistic regression models for tumor subtype availability. In Model 

1, we included the clinicopathological covariates potentially related with the subtype, 

including disease stage (stage I, stage II, stage III, stage IV), tumor location (proximal colon, 

distal colon, rectum) and tumor differentiation (well, moderate, poor, unspecified). These 

were marked as Q in Figure 1 and in our models. In addition, we included age at diagnosis 

(continuous variable) and year of diagnosis (1976 – 1995, 1996 – 2000, 2001 – 2012). All of 

these clinicopathological features have been demonstrated to be associated with MSI status 

previously [25–27]. The computed probability based on Model 1 was referred to as p̂(1). 

Given the potential influence of family history of colorectal cancer on tumor size [35], 

which may associate with the availability of tumor tissue, we also considered pre-diagnosis 

family history of colorectal cancer in Model 2. This corresponds to the arrow between X and 

O in Figure 1, for our second example, where family history of colorectal cancer is the 

exposure. The goodness of fit of each model was assessed by ROC curves [36]. In addition, 

as described in the Methods section, we rerun the logistic regression models weighted by the 

inverse probability of MSI status availability for cases with MSI status available and inverse 

probability of MSI status unavailability for cases with missing MSI status. If the estimates in 

the weighted logistic regression models are very close to zero, it implies that the weights 

balance cases with and without MSI information, with respect to the variables we assume 

affecting the missing status.

In primary Cox regression analyses to detect the association of the exposure (alcohol intake 

or family history of colorectal cancer) with risk of colorectal cancer subtypes classified by 

MSI, the weight for colorectal cancer cases without estimated probability of observing MSI 

status (non-missing) due to lack of disease stage, tumor location, tumor differentiation, year 

of diagnosis or age at diagnosis was assigned as 1. In secondary Cox regression analyses, 

cases without the aforementioned clinicopathological features were deleted. The 

corresponding weights using p̂(1) and p̂(2) were w(1) and w(2), respectively.

Inverse probability weighted MPE analysis

We incorporated the weights into data duplication-method Cox proportional cause-specific 

hazards regression to estimate the associations between the exposures (alcohol intake / 
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family history of colorectal cancer) and the risk of colorectal cancer subtypes according to 

MSI status in the NHS by using the SAS macro %subtype_weights that we developed. The 

macro is an extension of the macro %subtype that we developed previously [23]. For 

comparison, we also estimated the relationship between the exposures and risk of colorectal 

cancer subtypes classified by MSI without any weighting by using the macro %subtype.

Pre-diagnosis regular aspirin intake, physical activity, body mass index, pack-years of 

smoking, total energy intake, history of endoscopy, and either family history of colorectal 

cancer or alcohol intake if it was not considered as the main exposure were set as covariates 

when we conducted Cox regression analyses. The raw data form of the examples along with 

the definitions of variables is provided in the Table S1 (Online Resource). Table S2 (Online 

Resource) contains the augmented data set for participant id of 1. We stratified the analyses 

jointly by age in months at start of follow-up and calendar year of current questionnaire 

cycle in the NHS. The time scale for the analysis was then measured in months since the 

start of the current questionnaire cycle, which is equivalent to age in months because of the 

way we structured the data and formulated the model for analysis. The SAS code used for 

these examples is provided in the online supplement (Online Resource).

Results

During 32 years of follow-up in the NHS (June 1980 to June 2012), we documented 2,541 

cases of incident colorectal carcinoma. Among these cases, 551 lacked at least one 

clinicopathological covariate potentially associated with tumor tissue availability, such as 

disease stage, tumor location, tumor differentiation, age at diagnosis or year of diagnosis. 

Since these clinicopathological features were core covariates in the logistic regression 

models, and 93% cases (514 of 551) without complete clinicopathological features were 

MSI data-unavailable, the missing indicator method might be not suitable. The missing 

indicators method for the missingness outcome model would result in overfitting caused by 

quasi-complete separation of the data. Therefore, we excluded the 551 cases from the data 

used for fitting the models for the MSI missing status. Finally, 1,990 cases were included in 

the logistic regression models, including 699 MSI data-available cases and 1,291 MSI data-

unavailable cases. Table S3 (Online Resource) shows the characteristics of cases by 

availability of MSI status in the NHS. Clinical and pathological features differed between 

MSI data-available cases and MSI data-unavailable cases.

Table 1 shows the distribution of weights for MSI data-available cases based on the 

aforementioned two logistic regression models: Model 1 based on clinicopathological 

features and model 2 based on the clinicopathological features plus the pre-diagnosis family 

history of colorectal cancer. The corresponding areas under the receiver-operating 

characteristic curves (AUCs) were 0.66 for both models.

Table 2 presents the estimates for the fitted and refitted logistic regression models for the 

availability of MSI data. In the fitted models, tumor differentiation, age at diagnosis and year 

of diagnosis were the main factors associated with the availability of MSI status. After 

refitting the logistic regression models by including the weights we mentioned in the 

Methods section, the estimated regression coefficients were now all close to zero, which 
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implied a good performance of the weights in balancing cases with and without MSI data 

with respect to the covariates in the logistic regression model.

The primary results of alcohol intake with risk of colorectal cancer subtypes according to 

MSI status are presented in Table 3. For the heavy drinkers (≥ 15 g/day) versus nondrinkers, 

weighting by the inverse probability of MSI availability resulted in more profound 

associations between alcohol intake and colorectal cancer risk for both MSI subtypes (P-

value changed from 0.10 to 0.05 for MSI-high tumors), and the adverse effect on the MSI-

high subtype [HR = 1.75; 95% confidence interval (CI), 0.997 – 3.080 from Model 2] tended 

to be stronger than that on the non-MSI-high subtype (HR = 1.24; 95% CI, 0.900 – 1.702). 

For the middle drinking group (1 – 14 g/day) versus nondrinkers, from the unweighted 

analysis, the estimated HRs were approximately the same between the two subtypes (MSI-

high tumors: HR = 1.25; 95% CI, 0.815 – 1.925; non-MSI-high tumors: HR = 1.25; 95% CI, 

1.009 – 1.546). However, the IPW analysis led to stronger association for the MSI-high 

subtype and attenuated association for the non-MSI-high subtype (P-value changed from 

0.04 to 0.13), and this resulted in the same trend as that mentioned above for the heavy 

drinker group, which was that the adverse effect on the MSI-high subtype tended to be 

stronger than that on the non-MSI-high subtype (MSI-high tumors: HR = 1.29; 95% CI, 

0.820 – 2.019; non-MSI-high tumors: HR = 1.19; 95% CI, 0.950 – 1.481). When we further 

deleted cases with MSI status but lacking data on either disease stage, tumor location, tumor 

differentiation, age at diagnosis, or year of diagnosis as sensitivity analyses, the results were 

similar to those from the primary analyses (Online Resource, Table S4).

The primary analyses revealed potentially differential associations between family history of 

colorectal cancer and risk of colorectal cancer subtypes by MSI status in unweighted and 

weighted Cox proportional hazards regression models (Table 4). The P-values for 

heterogeneity in the weighted and unweighted models were 0.05 and 0.02, respectively. 

Table S5 (Online Resource) presents the results from the secondary analyses of family 

history of colorectal cancer and risk of colorectal cancer subtypes according to MSI status 

by further deletion of cases with MSI status but lacking data on disease stage, tumor 

location, tumor differentiation, age at diagnosis, or year of diagnosis as sensitivity analyses. 

The results did not change substantially.

Discussion

In this study, we illustrated the use of inverse probability weighting in molecular 

pathological epidemiology (MPE) research to assess etiological heterogeneity across disease 

subtypes while addressing selection bias due to biospecimen data availability. The 

integrative MPE field has been growing for recent years [4, 6, 37–40]. The usefulness of the 

MPE approach has been discussed widely in the literature [41–51]. To fully leverage the 

potential of the MPE approach, further development of statistical methodologies is essential 

[6, 23, 52–56].

The method described in this study aims to correct for potential bias arising from differences 

between cases with and without available subtyping biomarker data. It should be noted that 

the purpose of the integration of the IPW method into MPE analyses is to address selection 

Liu et al. Page 9

Eur J Epidemiol. Author manuscript; available in PMC 2019 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



bias, but not to improve statistical power or efficiency. We developed a user-friendly SAS 

macro %subtype_weights that implements the IPW method. The macro is freely available at 

https://www.hsph.harvard.edu/molin-wang/software/.

In typical MPE studies, a complete case analysis (CCA) including only cases with relevant 

biospecimen data is conducted where cases without relevant biospecimen data are excluded 

based on the assumption that the included and excluded cases are exchangeable. When this 

assumption holds true, results from CCA are expected to be similar to results from analysis 

of the excluded cases (if relevant biospecimen data status would have been known and used) 

[33, 57, 58]. However, often there is a selection bias for included cases due to 

nonrandomness of biomarker data availability, and generalizability of findings based on the 

included cases need to be carefully evaluated [59]. Note that in the subtype data analysis 

considered in this paper, the method that treats all the cases with missing subtype data as an 

additional subtype is equivalent to the CCA method. In contrast to the plain CCA strategy, 

inverse probability weighting (IPW) can be used as a method of dealing with nonrandomly 

missing biomarker data, especially when there are substantial differences between biomarker 

(subtype) data available and unavailable cases. Our application of IPW attempts to utilize 

information from all cases (including cases with and without subtype data) in order to 

produce unbiased estimations of the associations of an exposure with outcome subtypes 

[20]. In the colorectal cancer analysis example, the probability of missing tissue specimens 

is higher in stage IV cases (due to the presence of unresectable advanced cancers) than in 

stage I to III cases. When we treat tumors with different stages equally, we fail to fully 

account the missing contribution of some stage IV patients. With the IPW method, we can 

correct the contribution of stage IV patients by giving them larger weights (inverse to the 

probability of biospecimen data availability).

Various factors can influence the probability of missing biospecimen data. In our colorectal 

cancer data example, using data on epidemiological and clinicopathological factors, we 

constructed a statistical model to estimate the probability of available subtyping biomarker 

data in each case. Our example can provide useful information in the application of IPW 

method to MPE research though its general applicability needs to be further tested. Because 

the best possible model of biospecimen data missingness is likely not only cohort-specific 

but also disease-specific, cohort- and disease-specific models need to be constructed when 

integrating the IPW method into MPE research.

In a large-scale cohort study, data on a predictor of missing biospecimen data are themselves 

missing in some individuals. Here, we provide some suggestions for dealing with missing 

data in such a predictor. For missing lifestyle variable data in some cases, exclusion of the 

cases from the missingness model is preferred when the proportion of the missing cases is 

small. Alternative strategies include imputation of data and the missing indicator method. 

For cases with missing data on critical clinicopathological features, exclusion may be a 

better option, especially when the availability of these features independently predicts the 

probability of missingness of biospecimen data [20]. In our example, 93% of disease cases 

with missing data in either of disease stage, tumor location, tumor differentiation, age at 

diagnosis or year of diagnosis were MSI data-unavailable; thus, we excluded the cases with 

missing those data from estimation of probability of MSI data availability. An alternative 
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approach to deal with missing data of these clinicopathological features is to estimate the 

probability of observing MSI data by averaging the estimated probabilities over the 

distribution of the feature with missing data. For example, if tumor location datum is 

missing for a case, we can calculate the estimated probability for each possible value of 

tumor location using the fitted logistic regression model while plugging in the values of the 

other variables as observed for this case, and then estimate the probability of observing MSI 

status for this case by the sum of the products of the obtained estimated probabilities for 

each tumor location and the percentage of the corresponding tumor location among the 

cases.

In an alternative method published recently [18], a model for Q conditional on the subtype, 

the time of diagnosis and other covariates was integrated with a partial likelihood based on 

the cause-specific Cox model for time to disease subtype data. This method and the IPW 

method illustrated in this paper rely on different model assumptions, and it is arguably easier 

to understand and implement the IPW method.

In summary, we have presented data duplication-method Cox proportional hazard regression 

weighted by the inverse probability of availability of subtyping biomarker data in MPE 

research to assess differential associations of an exposure with disease subtypes classified by 

the biomarker. This method is helpful for reduction of selection bias resulting from 

nonrandom missingness of disease subtype information. In the near future, the integration of 

causal inference methodologies into the MPE approach will likely have substantial 

potentials to advance the field of epidemiology, and this integrative area should be further 

explored.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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DAG Directed Acyclic Graph

HR hazard ratio

IPW inverse probability weighting
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METS mean metabolic equivalent task score
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MPE molecular pathological epidemiology

MSI microsatellite instability
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Fig. 1. 
Simplified diagram showing how inverse probability weighting (IPW) balances the selection 

bias in subtype analysis. (a) subtype analysis without IPW; (b) subtype analysis incorporated 

with IPW. Y1: subtype 1; Y2: subtype 2; X: exposures (alcohol intake, family history of 

colorectal cancer, et al.); Z: confounders; Q: clinical features (tumor stage, tumor location, 

tumor differentiation, et al.); U: unobserved variables; O: subtype availability
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